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Abstract

Speech quality and intelligibility are important in every acoustic speech commu-

nication scenario. Since reverberation and noise have clear detrimental effects

on the speech quality a need arises to develop algorithms, which perform dere-

verberation and noise reduction. Over the past years many algorithms have

been proposed, which either perform dereverberation (e.g. weighted prediction

error (WPE)) or noise reduction (e.g. minimum power distortionless response

(MPDR) beamforming). To tackle both dereverberation and noise reduction, cas-

cade systems have been proposed that consist of a multiple-input multiple-output

(MIMO) dereverberation stage and a multiple-input single-output (MISO) beam-

forming stage, both optimized separately. In contrast to these cascade systems,

recently the weighted power minimization distortionless response (WPD) algo-

rithm has been proposed by Nakatani et al., which performs jointly optimized

MIMO dereverberation and MISO beamforming also referred to as convolutional

beamforming. This work aims at reformulating and modifying this WPD algo-

rithm so that the sparsity of the cost function can be adjusted and a novel MIMO

version can be derived. For this a mixed `p-norm is utilized as cost function. It is

shown that the proposed MIMO-WPD is equivalent to a MISO version of WPD,

whereby only the weight update is modified by an additional relative transfer

function (RTF)-dependent term. In the experimental evaluation it is shown that

the proposed MIMO-WPD significantly outperforms the MISO-WPD in terms

of perceptual evaluation of speech quality (PESQ), frequency weighted segmetal

SNR (FWSSNR) and cepstral distance (CD), which are widely accepted objective

measures of speech quality. Additionally it is shown that the proposed MIMO-

WPD needs fewer iterations for convergence, which corresponds to less computing

cost.
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General Conventions

e =
∑∞

n=0
1
n!
≈ 2.71828 Euler’s number; e• = exp(•) is the exponential function.

e
(m)
M =

0, . . . , 0︸ ︷︷ ︸
m−1 zeros

, 1︸︷︷︸
mth

, 0, . . . , 0︸ ︷︷ ︸
M−m zeros

T selection vector of length M containing only

zeros except the mth entry equals one.

IM identity matrix of dimension M ×M .

C set of complex numbers.

N set of natural numbers.

R set of real numbers.

R>0 set of positive real numbers (without zero).

R≥0 set of positive real numbers (with zero).

Operators

•∗ complex conjugate.
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Nomenclature Nomenclature

•H conjugate matrix/vector transpose (hermitian).

|•| =
√
••∗ absolute value (applied on vector/matrix performs elementwise oper-

ation).

‖•‖p = p

√∑N
n=1|•n|

p `p vector norm.

‖•‖Fro =
√∑N1

n1=1

∑N2

n2=1|•n1,n2|
2 Frobenius norm of a N1 ×N2 matrix.

η =
‖•(i)−•(i−1)‖{2,Fro}

‖•(i−1)‖{2,Fro}
relative convergence criterion.

E [•] expectation operator.

Γ (•) gamma function.

L (•,α) = f(•) + g(•)α Lagrangian function used for constraint optimization

whereby f(•) denotes the function to be optimized and g(•) the constrained.

α ∈ CM auxiliary parameter vector for Lagrangian constraint optimization.

log (•) natural logarithm (base = e).

trace (•) trace operator.

Functions and Algorithms

build (•) function / algorithm that builds a convolution matrix according to the

algorithm (WPE or WPD) using the noisy input signal Yk, the prediction

delay τk and the prediction filter length Lk.

cw (•) function / algorithm that estimates the RTF from the noisy and noise

covariance matrix via covariance whitening.

diagMat (•) function that constructs a diagonal matrix, wherbey the entries of

the diagonal correspond to the input vector.

matSqrt (•) function / algorithm that calculates an arbitrary matrix square root

of the input matrix.

maxEigVec (•) function / algorithm that calculates the eigenvector corresponding

to the maximal eigenvalue of the input matrix.

spp (•) function / algorithm that estimates an SPP mask of the input signal.
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Nomenclature Nomenclature

Indices and Total Numbers

i ∈ N index of iteration.

K ∈ N number of frequency subbands.

k ∈ N frequency subband index.

l ∈ N filter tap index.

M ∈ N number of microphones.

m ∈ N microphone index.

T ∈ N number of time frames.

t ∈ N time frame index.

Parameters

ε ∈ R>0 regularization constant (default ε = 1× 10−8).

ηc ∈ R>0 convergence criterion of the alternating optimization (tolerance).

Imax ∈ N maximal number of iterations of the alternating optimization.

Lk ∈ N frequency dependent prediction filter length.

p ∈ ]0, 2] shape parameter determining sparsity of the `p-norm cost function.

τk ∈ N frequency dependent prediction delay.

Signals (STFT-domain)

sk,t ∈ C single-channel clean speech signal.

y
(m)
k,t ∈ C single-channel noisy microphone signal.

y
(m)
k =

[
y

(m)
k,1 , y

(m)
k,2 , . . . , y

(m)
k,T

]
∈ C1×T batch-vector of single-channel noisy micro-

phone signal.

yk,t =
[
y

(1)
k,t , y

(2)
k,t , . . . , y

(M)
k,t

]T
∈ CM multi-channel noisy microphone signal.

Yk = [yk,1,yk,2, . . . ,yk,T ] ∈ CM×T batch-matrix of multi-channel noisy microphone

signal.
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Nomenclature Nomenclature

ỹk,t =
[
yTk,t−τk ,y

T
k,t−τk−1,y

T
k,t−τk−2, . . . ,y

T
k,t−Lk+1

]T ∈ CM(Lk−τk) multi-channel multi-

frame stacked noisy microphone signal vector (only past frames correspond-

ing to late reverberation).

Ỹk = [ỹk,1, ỹk,2, . . . , ỹk,T ] ∈ CM(Lk−τk)×T batch-matrix of multi-channel multi-frame

stacked noisy microphone signal (only past frames corresponding to late re-

verberation).

ȳk,t =
[
yTk,t, ỹ

T
k,t

]T ∈ CM(Lk−τk+1) multi-channel multi-frame stacked noisy micro-

phone signal vector (current frame and past frames corresponding to late

reverberation).

Ȳk = [ȳk,1, ȳk,2, . . . , ȳk,T ] ∈ CM(Lk−τk+1)×T batch-matrix of multi-channel multi-

frame stacked noisy microphone signal (current frame and past frames cor-

responding to late reverberation).

x
(m)
k,t ∈ C single-channel reverberant speech signal.

xk,t =
[
x

(1)
k,t , x

(2)
k,t , . . . , x

(M)
k,t

]T
∈ CM multi-channel reverberant speech signal.

Xk = [xk,1,xk,2, . . . ,xk,T ] ∈ CM×T batch-matrix of multi-channel reverberant speech

signal.

d
(m)
k,t ∈ C single-channel desired signal.

d
(m)
k =

[
d

(m)
k,1 , d

(m)
k,2 , . . . , d

(m)
k,T

]
∈ C1×T batch-vector of multi-channel desired signal.

dk,t =
[
d

(1)
k,t , d

(2)
k,t , . . . , d

(M)
k,t

]T
∈ CM multi-channel desired signal.

Dk = [dk,1,dk,2, . . . ,dk,T ] ∈ CM×T batch-matrix of multi-channel desired signal.

d̆
(m)
k,t ∈ C single-channel dereverberated signal.

d̆
(m)
k =

[
d̆

(m)
k,1 , d̆

(m)
k,2 , . . . , d̆

(m)
k,T

]
∈ C1×T batch-vector of multi-channel dereverberated

signal.

d̆k,t =
[
d̆

(1)
k,t , d̆

(2)
k,t , . . . , d̆

(M)
k,t

]T
∈ CM multi-channel dereverberated signal.

D̆k =
[
d̆k,1, d̆k,2, . . . , d̆k,T

]
∈ CM×T batch-matrix of multi-channel dereverberated

signal.

r
(m)
k,t ∈ C single-channel late reverberant tail signal.

rk,t =
[
r

(1)
k,t , r

(2)
k,t , . . . , r

(M)
k,t

]T
∈ CM multi-channel late reverberant tail signal.
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Nomenclature Nomenclature

n
(m)
k,t ∈ C single-channel additive noise signal.

nk,t =
[
n

(1)
k,t , n

(2)
k,t , . . . , n

(M)
k,t

]T
∈ CM multi-channel additive noise signal.

w
(m)
k,t ∈ C single-channel whitened microphone signal.

wk,t =
[
w

(1)
k,t , w

(2)
k,t , . . . , w

(M)
k,t

]T
∈ CM multi-channel whitened microphone signal.

Wk = [wk,1,wk,2, . . . ,wk,T ] ∈ CM×T batch-matrix of multi-channel whitened mi-

crophone signal.

z
(m)
k,t ∈ C single-channel beamformed signal.

z
(m)
k =

[
z

(m)
k,1 , z

(m)
k,2 , . . . , z

(m)
k,T

]
∈ C1×T batch-vector of single-channel beamformed

signal.

zk,t =
[
z

(1)
k,t , z

(2)
k,t , . . . , z

(M)
k,t

]T
∈ CM multi-channel beamformed signal.

Zk = [zk,1, zk,2, . . . , zk,T ] ∈ CM×T batch-matrix of multi-channel beamformed sig-

nal.

Signal Statistics

φs,k = E
[
sk,ts

∗
k,t

]
≈ 1

T

∑T
t=1|sk,t|

2 ∈ R≥0 speech PSD.

Ry,k = E
[
yk,ty

H
k,t

]
≈ 1

T
YkY

H
k = 1

T

∑T
t=1 yk,ty

H
k,t ∈ CM×M noisy covariance matrix.

Ryλ,k = E
[

yk,ty
H
k,t

λk,t

]
≈ 1

T
YkΛ

−1
k YH

k = 1
T

∑T
t=1

yk,ty
H
k,t

λk,t
∈ CM×M power weighted noisy

covariance matrix.

R̃ỹλ,k = E
[

ỹk,tỹ
H
k,t

λk,t

]
≈ 1

T
ỸkΛ

−1
k ỸH

k = 1
T

∑T
t=1

ỹk,tỹ
H
k,t

λk,t
∈ CM(Lk−τk)×M(Lk−τk) power weighted

noisy covariance matrix of past frames corresponding to late reverberation

(batch).

p
(m)
yλ,k = E

[
ỹk,ty

(m)
k,t
∗

λk,t

]
≈ 1

T
ỸkΛ

−1
k y

(m)
k

H = 1
T

∑T
t=1

ỹk,ty
(m)
k,t
∗

λk,t
∈ CM(Lk−τk) power weighted

noisy cross-covariance vector of current frame at the mth channel with past

frames corresponding to late reverberation.

Pyλ,k = E
[

ỹk,ty
H
k,t

λk,t

]
=
[
p

(1)
y,k,p

(2)
y,k, . . . ,p

(M)
y,k

]
≈ 1

T
ỸkΛ

−1
k YH

k = 1
T

∑T
t=1

ỹk,ty
H
k,t

λk,t
∈ CM(Lk−τk)×M

power weighted noisy cross-covariance matrix of current frame with past

frames corresponding to late reverberation.
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Nomenclature Nomenclature

R̄ȳλ,k = E
[

ȳk,tȳ
H
k,t

λk,t

]
=

[
Ryλ,k PH

yλ,k

Pyλ,k R̃ỹλ,k

]
≈ 1

T
ȲkΛ

−1
k ȲH

k = 1
T

∑T
t=1

ȳk,tȳ
H
k,t

λk,t
∈ CM(Lk−τk+1)×M(Lk−τk+1)

power weighted noisy covariance matrix of current frame and past frames

corresponding to late reverberation.

Rd,k = E
[
dk,td

H
k,t

]
≈ 1

T

∑T
t=1 dk,td

H
k,t ∈ CM×M desired speech covariance matrix.

Rd̆,k = E
[
d̆k,td̆

H
k,t

]
≈ 1

T
D̆kD̆

H
k = 1

T

∑T
t=1 d̆k,td̆

H
k,t ∈ CM×M dereverberated covari-

ance matrix.

Rd̆λ,k = E
[

d̆k,td̆
H
k,t

λk,t

]
≈ 1

T
D̆kΛ

−1
k D̆H

k = 1
T

∑T
t=1

d̆k,td̆
H
k,t

λk,t
∈ CM×M power weighted dere-

verberated covariance matrix.

Rn,k = E
[
nk,tn

H
k,t

]
≈ 1

T

∑T
t=1 nk,tn

H
k,t ∈ CM×M noise covariance matrix.

Rw,k = E
[
wk,tw

H
k,t

]
≈ 1

T

∑T
t=1 wk,tw

H
k,t ∈ CM×M whitened noisy covariance ma-

trix.

γ
(max)
w,k = γ

(1)
w,k ∈ R maximal eigenvalue of whitened covariance matrix (eigenvalues

are sorted, from largest to smallest).

Γw,k =


γ

(1)
w,k

γ
(2)
w,k

0

0
.. .

γ
(M)
w,k

 ∈ CM×M diagonal eigenvalue-matrix of whitened

covariance matrix.

ψ
(max)
w,k = ψ

(1)
w,k ∈ CM eigenvector corresponding to maximal eigenvalue of whitened

covariance matrix.

Ψw,k =
[
ψ

(1)
w,k,ψ

(2)
w,k, . . . ,ψ

(M)
w,k

]
∈ CM×M eigenvector-matrix of whitened covari-

ance matrix.

Rz,k = E
[
zk,tz

H
k,t

]
≈ 1

T

∑T
t=1 zk,tz

H
k,t ∈ CM×M beamformed covariance matrix.

λk,t ∈ R>0 optimization weights, which depend on the power of the desired signal

in the kth frequency subband and the tth time frame.

λk = [λk,1, λk,2, . . . , λk,T ] ∈ R1×T
>0 batch-vector of optimization weights, which de-

pend on the power of the desired signal in the kth frequency subband.
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Nomenclature Nomenclature

Λk = diagMat (λk) =


λk,1

λk,2
0

0
.. .

λk,T

 ∈ RT×T
>0 batch-matrix of optimiza-

tion weights, which depend on the power of the desired signal in the kth

frequency subband.

ρ
(
d

(m)
k,t

)
∈ [0, 1] PDF of single-channel desired signal d

(m)
k,t .

L
(
d

(m)
k

)
=
∏T

t=1 ρ
(
d

(m)
k,t

)
∈ [0, 1] LH function of batch-vector of single-channel

desired signal d
(m)
k .

L
(
d

(m)
k

)
= − logL

(
d

(m)
k

)
= −

∑T
t=1 log ρ

(
d

(m)
k,t

)
∈ R≥0 nLLH function of batch

vector of single-channel desired signal d
(m)
k .

C
(
d

(m)
k

)
∈ R cost function of batch-vector of single-channel desired signal d

(m)
k .

β ∈ R>0 scale parameter of the CGG sparse prior.

Φ ∈ RM×M matrix to model group correlation structure within the mixed `Φ;2,p-

norm.

σk,t ∈ [0, 1] speech presence probability of the kth frequency subband and the tth

time frame.

σk = [σk,1, σk,2, . . . , σk,T ] ∈ [0, 1]1×T batch-vector of speech presence probability

in the kth frequency subband.

Σk = diagMat (σk) =


σk,1

σk,2
0

0
.. .

σk,T

 ∈ [0, 1]T×T batch-matrix of speech

presence probability in the kth frequency subband.

Filters and Transfer Functions (STFT-domain)

ak,l =
[
a

(1)
k,l , a

(2)
k,l , . . . , a

(M)
k,l

]T
∈ CM multi-channel cATF coefficients (batch).

v
(m)
k ∈ C single-channel mATF (batch).

vk =
[
v

(1)
k , v

(2)
k , . . . , v

(M)
k

]T
∈ CM multi-channel mATF (batch).
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Nomenclature Nomenclature

ṽ
(m)
k = vk

v
(m)
k

=

[
v

(1)
k ,v

(2)
k ,...,v

(M)
k

]T
v

(m)
k

∈ CM single-channel RTF using channel m as ref-

erence (batch).

v̄
(m)
k =

ṽ
(m)
k , 0, 0, . . . , 0︸ ︷︷ ︸

M(Lk−τk) zeros


T

∈ CM(Lk−τk+1) single-channel RTF using channelm

as reference (batch) extended with zeros for the past frames corresponding

to late reverberation.

v̄k =

vk, 0, 0, . . . , 0︸ ︷︷ ︸
M(Lk−τk) zeros


T

∈ CM(Lk−τk+1) multi-channel mATF (batch) extended

with zeros for the past frames corresponding to late reverberation.

g̃
(m)
k ∈ CM(Lk−τk) single-channel reverberation filter vector using channel m as

reference (batch).

ḡ
(m)
k =

[
e

(m)
M

−g̃
(m)
k

]
∈ CM(Lk−τk+1) single-channel dereverberation filter vector using

channel m as reference (batch).

G̃k =
[
g̃

(1)
k , g̃

(2)
k , . . . , g̃

(M)
k

]
∈ CM(Lk−τk)×M multi-channel reverberation filter ma-

trix (batch).

Ḡk =

[
IM

−G̃k

]
=
[
ḡ

(1)
k , ḡ

(2)
k , . . . , ḡ

(M)
k

]
∈ CM(Lk−τk+1)×M multi-channel dereverber-

ation filter matrix (batch).

qk ∈ CM single-channel general denoising filter vector (batch).

q
(m)
k ∈ CM single-channel normalized denoising filter vector using channel m as

reference (batch).

Qk =
[
q

(1)
k ,q

(2)
k , . . . ,q

(M)
k

]
∈ CM×M multi-channel normalized denoising filter ma-

trix using all M channels as references (batch).

h̄
(m)
k = Ḡkq

(m)
k ∈ CM(Lk−τk+1) single-channel normalized convolutional beamformer

filter vector using channel m as reference (batch).

H̄k = ḠkQk =
[
h̄

(1)
k , h̄

(2)
k , . . . , h̄

(M)
k

]
∈ CM(Lk−τk+1)×M multi-channel normalized con-

volutional beamformer filter matrix using all M channels as references

(batch).
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Chapter 1

Introduction

This work mainly aims at extending and improving the state-of-the-art convolu-

tional beamformer algorithm, performing unified dereverberation and denoising

of acoustic speech signals, proposed by Nakatani et al. [1].

1.1 Motivation

One important aspect of our human life is the ability to communicate and interact

with each another. Hereby acoustic speech communication plays a central role

since we utter approximately 16000 words per day on average [2]. The intelligibil-

ity of the speech is essential but can often be a challenge in everyday situations.

The main reason is that reverberation and noise can have strong detrimental ef-

fects on the speech quality especially for hearing impaired persons [3–5]. Some

examples of these everyday situations are:

• A city center with traffic noise

• Large buildings (e.g. malls, churches) with long reverberation times

• Crowded events with interfering speakers

The aforementioned convolutional beamformer algorithm aims at improving the

speech quality by performing dereverberation and denoising on these noisy and

reverberant speech signals. The main applications, where combined dereverbera-

tion and denoising can have great benefits, are:

• Hearing aids for hearing impaired persons

• Conference telephony

• Smart speakers with automatic speech recognition (ASR) systems

Also digital signal processing is possible in all of the mentioned applications.

1



1.2. REVERBERATION CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a RIR showing the three phases of reverberation. The
direct sound (red), the early reflections (green) and the late reverberation tail
(blue). (Image source: [6])

1.2 Reverberation

Reverberation occurs in every scenario where sound is reflected during its prop-

agation, thus it strongly depends on the surrounding environment. The received

signal gets distorted on the acoustic pathway from the sound source to the re-

ceiver mainly by air absorption and reflections on any object in the environment.

Hereby the latter is referred to as reverberation and responsible for the main

distortion. Since reverberation is strongly correlated with the target speech it

can be modeled well with a linear system filtering the original signal, which was

emitted by any kind of acoustic source. These linear systems are often described

by their impulse response, which is referred to as room impulse response (RIR) in

scenarios inside of buildings, which are important environments in terms of sound

communication applications. As shown in fig. 1.1 reverberation can usually be

separated into three phases. The direct sound (red) corresponds to the sound

wave propagating straight from the source to the receiver. The early reflections

(green) correspond to sound waves being reflected only a few times so that their

arrival times and directions are still distinct. They arrive up to approximately

50 ms later than the direct sound [7]. The late reverberation tail (blue) corre-

sponds to the sound waves being reflected multiple times so that their arrival

times and directions are not distinct anymore. Therefore the late reverberation

is often described to be diffuse. Important to notice is that the early reflections

are actually beneficial for speech intelligibility, since they can be integrated with

the direct sound to increase the signal-to-noise ratio of the speech signal [8–11].

Therefore a need arises to develop algorithms, which attenuate the late reverber-

2



CHAPTER 1. INTRODUCTION 1.2. REVERBERATION

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8000

6000

4000

2000

0

Time [s]

F
re

q
u
en

cy
[H

z]
Spectrogram of Clean Speech Signal

−20

0

20

M
ag

n
it

u
d
e

[d
B

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8000

6000

4000

2000

0

Time [s]

F
re

q
u
en

cy
[H

z]

Spectrogram of Reverberant Speech Signal

−20

0

20

M
ag

n
it

u
d
e

[d
B

]

Figure 1.2: Spectrogram showing an example of the short time Fourier transform
(STFT) coefficients of a clean speech signal (upper plot) and a corresponding
reverberant speech signal (lower plot).

ation, but keep the early reflections. In order to develop such algorithms it is

helpful to understand how the signal changes when reverberation is added to a

clean speech signal. Comparing the spectra of the clean speech signal with the

reverberant speech signal in fig. 1.2 reveals that the reverberation manipulates

the speech signal to be less sparse in the time dimension. This is due to the

fact that for each reflection additional energy is added to the direct signal with

a certain time delay.

1.2.1 Dereverberation Algorithms

Here algorithms are introduced, which operate in the STFT domain on each fre-

quency subband individually and which use the information (STFT-coefficients)

of the past time frames to predict the reverberation in the present time frame,

which then can be subtracted from the reverberant signal to extract the remain-

ing desired signal. This method is referred to as multi-channel linear prediction

(MCLP), since the multi-channel information of the past is used to predict the

present reverberation by a linear filter [12, 13]. Hereby the signal is modeled

3



1.3. NOISE CHAPTER 1. INTRODUCTION

with a convolutive acoustic transfer function (cATF) in the STFT domain and

the prediction filter tries to invert the effect of the cATF. Additionally a sparsity

promoting likelihood (LH) function could be utilized in order to optimize the pre-

diction filter. Utilizing a time-varying complex Gaussian (TVG) model as sparse

prior for the desired signal leads to the weighted prediction error (WPE) algo-

rithm, which is widely used for dereverberation [14, 15]. Later a multiple-input

multiple-output (MIMO) version of the WPE algorithm was proposed, which

provides the possibility of further multi-channel speech enhancement methods

(e.g. minimum power distortionless response (MPDR)-beamforming) [16]. In

the next step the WPE algorithm was generalized using a complex generalized

Gaussian (CGG) sparse prior and reformulated using the `p-norm of the desired

signal as sparsity promoting cost function [17]. This reformulation was extended

to a MIMO version utilizing the group sparsity structure in between the channels

[18]. All of the mentioned algorithms perform dereverberation on batch signals,

but the corresponding adaptive versions of these algorithms are also already pro-

posed [19–21]. This thesis mainly focuses on the batch version of WPE, which

only works for the stationary case, whereby the RIR is time-invariant within the

batch duration, so that also the MCLP filter can be time-invariant.

1.3 Noise

Different kinds of noise are present in many everyday speech communication

scenarios. Noise is usually modeled to be uncorrelated with the target speech

component, which is reasonable, since the noise almost always comes from a dif-

ferent source. Therefore the uncorrelated noise is modeled to be additive to the

clean or reverberant speech. Noise can be further categorized into spatially dif-

fuse noise, i.e. the noise is not localizable, and spatially non-diffuse noise, e.g.

an interfering speaker with a certain location. Another categorization is made

by distinguishing stationary noise from non-stationary noise. Hereby the second

order statistics (e.g. the covariance matrix) of stationary noise are constant over

time, whereas they are time-varying for non-stationary noise. This thesis mainly

focuses on diffuse stationary noise, which is modeled to be additive to the speech

signal. Therefore only batch algorithms are described, which perform speech en-

hancement on a previously recorded signal batch. However all of the algorithms

can also be formulated as an adaptive version, which is frame by frame online pro-

cessing without looking into the future. Figure 1.3 shows the spectra containing

the STFT coefficients of a clean speech signal (upper plot) and the corresponding

4
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Figure 1.3: Spectrogram showing an example of the STFT coefficients of a clean
speech signal (upper plot) and a corresponding speech signal with additive noise
(lower plot).

noisy speech signal (lower plot), whereby diffuse stationary noise is added to the

clean speech signal. The effect of the additive noise can be understood as blurring

every information (STFT-coefficient) of the signal, which has less energy than the

overshadowing noise.

1.3.1 Denoising Algorithms

The idea of common denoising algorithms is to filter a multi-channel signal with

a linear filter, which is optimized utilizing an objective cost function [22]. Two

widely known linear constrained beamformers are the MPDR beamformer, which

is a linear filter minimizing the output power, and the minimum variance dis-

tortionless response (MVDR) beamformer, which is a linear filter minimizing the

variance of the output corresponding to the noise component. However these

two algorithms are equivalent in case a perfect relative transfer function (RTF)

and perfect estimations of the noisy and noise covariance matrices are provided

[23]. The estimation of an RTF is essential for MPDR and MVDR beamforming,

since it introduces an additional constraint, which ensures a distortionless speech

5
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response, which means that the sound coming from the target speech direction

should not be distorted at all. Of course some kind of knowledge of the target

speech direction needs to be known. This knowledge end even more is usually

given by an RTF of the target speech, which also needs to be estimated, so that it

can be used in the described linear constrained beamformer. The delay-and-sum

(DAS) structure is a basic arrangement of a beamformer. Its scheme is presented

in fig. 1.4, where two sources are recorded of which only source one (red) is desired.

This beamformer structure can extract this desired (red) signal, if the direction

of source one is known, i.e. the corresponding delays [∆1,∆2,∆3,∆4] and the

corresponding weights [w1, w2, w3, w4] are known. The combination of the delays

and weights is equivalent to an multiplicative acoustic transfer function (mATF)

in the STFT domain. The corresponding RTF is a normalized version of the

mATF resulting from a division by the reference channel coefficient. One widely

known and used algorithm to estimate the RTF vector is covariance whitening

(CW) [24, 25]. Beamforming algorithms are usually multiple-input single-output

(MISO) algorithms, which can also be seen in the DAS beamformer scheme in

fig. 1.4.

Figure 1.4: DAS structure with four input channels. Every channel is delayed
and weighted before all channels are summed up. The delays and weights are
chosen in a way to achieve constructive interference of the desired target source
one (red). Additionally to the amplification of the target speech the undesired
source (blue) is attenuated due to destructive interference. (Image source: [26])
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Figure 1.5: Spectrogram showing an example of the STFT coefficients of a clean
speech signal (upper plot) and a corresponding speech signal with reverberation
and additive noise (lower plot).

1.4 Reverberation and Noise

In many everyday situations both noise and reverberation deteriorates speech

quality simultaneously. Figure 1.5 compares the spectra of such a noisy rever-

berant speech signal with its clean reference. From this representation it can

be observed that the noisy reverberant signal is far less sparse than the clean

speech, which is caused by both noise and reverberation. This would suggest to

develop an algorithm performing unified dereverberation and denoising with a

similar approach as for WPE.

1.4.1 Unified Algorithms

The MIMO extension of the conventional WPE algorithm provides the possibility

of further multi-channel speech enhancement methods, such as linear constrained

beamforming. Many cascade systems were proposed over the last years, whereby

joint dereverberation and denoising is performed in two stages, e.g. as in [27, 28].

Often the first stage is the MIMO-WPE algorithm and the second stage e.g. an

MPDR algorithm. Hereby the optimization of the two different filters happens

7
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separately. However, recently a novel algorithm was proposed by Nakatani et

al., which unifies these two stages so that it performs a joint optimization of the

MIMO-WPE filter and the MPDR beamformer filter. This algorithm is referred

to as weighted power minimization distortionless response (WPD) [1, 29, 30] and

lays the foundation of this thesis, which aims at extending and improving this

WPD algorithm with a new cost function and a MIMO version. Another recently

proposed approach utilizes a generalized sidelobe canceler (GSC) structure for

joint dereverberation and noise reduction [31–33].

8



Chapter 2

Theory

This chapter describes the underlying signal model for convolutional beamformers

and some of the conventional theory of dereverberation and denoising algorithms.

Although all of the following derivations can be done similarly in the time domain,

everything throughout this thesis is formulated in the STFT domain, whereby

the frequency subbands (denoted by k) are processed individually in a parallel

manner. The general signal model is described in section 2.1. Hereafter the

derivations of the following algorithms are described:

• MPDR/MVDR denoising algorithm (section 2.2)

• CW estimating an RTF (section 2.3)

• WPE algorithm (section 2.4)

− MISO-WPE with TVG model (section 2.4.2.1)

− MISO-WPE with general sparse prior (section 2.4.2.2)

− MISO-WPE with CGG sparse prior (section 2.4.2.3)

− MISO-WPE with `p-norm cost function (section 2.4.2.4)

− MIMO-WPE with `p-norm cost function (section 2.4.2.5)

• WPD algorithm with TVG model (section 2.5)

9



2.1. SIGNAL MODEL CHAPTER 2. THEORY

2.1 Signal Model

The origin of the signal to be enhanced using convolutional beamforming is the

clean speech signal sk,t uttered by a speaker. Here the clean speech is modeled in

the STFT domain (narrow band signal model), whereby the indices k and t denote

the frequency bin and time frame respectively. Then the signal is captured by M

microphones in a noisy reverberant environment resulting in the noisy signal

yk,t = dk,t + rk,t︸ ︷︷ ︸
xk,t

+nk,t ∀k, t (2.1)

where yk,t =
[
y

(1)
k,t , y

(2)
k,t , . . . , y

(M)
k,t

]T
∈ CM contains the STFT coefficients of the

multi-channel microphone signal with •T denoting the transpose of •. The stacked

signal vectors xk,t, dk,t, rk,t and nk,t similarly contain the STFT coefficients of

the multi-channel reverberant speech, the direct path and early reflections, the

late reverberation tail and the additive noise respectively. Using the clean speech

sk,t and a stacked filter vector ak,l containing the STFT coefficients of the multi-

channel cATF can further describe the reverberant speech. It is to be noticed

that the cATF is an STFT domain approximation of the multi-channel RIR in

the time domain. The first part with the desired signal is then given by

dk,t =

τk−1∑
l=0

ak,lsk,t−l ≈ vksk,t ≈ ṽ
(m)
k d

(m)
k,t ∀k, t (2.2)

where τk is the prediction delay separating the early reflections from the late

reverberation tail, l is the filter tap index and Lk the frequency dependent filter

length. The second part with the reverberation tail is then given by

rk,t =

Lk−1∑
l=τk

ak,lsk,t−l ∀k, t (2.3)

In eq. (2.2) the desired signal dk,t is approximated multiplying the mATF vk

with the clean speech sk,t, which is feasible under the assumption that the analysis

window of the STFT framework is longer than the duration of the early reflections

in the time domain. The RTF is defined as ṽ
(m)
k = vk/v

(m)
k , where m corresponds

to the reference channel so that d
(m)
k,t = v

(m)
k sk,t holds.

The goal of convolutional beamforming is to subtract the reverberation tail rk,t

and additive noise nk,t from the noisy microphone signal yk,t to extract the desired

signal dk,t containing the direct speech and early reflections.

10
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2.2 MPDR and MVDR Beamforming

MPDR and MVDR beamforming both use a linear filter to extract the target

signal from a certain direction out of the multi-channel microphone signals. For

this both algorithms suppress the noise component, which is assumed to be dif-

fuse. In order to find the optimal filter a cost function is set up so that either

the noisy signal power (MPDR) or the power of the noise component (MVDR)

should be minimized. In order to maintain the desired target speech component

at the output of the beamformer a linear constraint is enforced on the optimal

filter, so that every signal corresponding to the target speech RTF will not be

distorted. The following derivations are mainly based on [22, 23].

2.2.1 Signal Model and Beamformer

The signal model is similar to eq. (2.1), but for now a free-field assumption is

made, whereby no reverberation is present in the signal, so that the recorded

microphone signal yk,t only consist out of the desired speech signal dk,t and the

additive noise nk,t.

yk,t = dk,t︸︷︷︸
xk,t

+nk,t, (2.4)

The goal of MPDR and MVDR beamforming is to extract the single-channel tar-

get speech component d
(m)
k,t , which corresponds to the single-channel clean speech

sk,t, from the noisy signal yk,t by applying the filter q
(m)
k . The beamformed signal

is then given as

z
(m)
k,t = q

(m)
k

Hyk,t (2.5)

whereby •H denotes the conjugate-transpose (hermitian) of a vector or matrix.

2.2.2 Filter optimization

In order to optimize the filter coefficients q
(m)
k a cost function is set up, which

corresponds to the objective. In the case of the MPDR beamformer the power

of the complete noisy signal yk,t should be minimized, but additionally the tar-

get speech should not be distorted, which can be enforced by constraining the

11



2.2. MPDR AND MVDR BEAMFORMING CHAPTER 2. THEORY

optimization using the target speech RTF. Formally we have

q
(m)
k

MPDR = argmin
q

(m)
k

E
[∣∣∣z(m)

k,t

∣∣∣2] s.t. q
(m)
k

H ṽ
(m)
k

!
= 1

= argmin
q

(m)
k

q
(m)
k

HE
[
yk,ty

H
k,t

]
q

(m)
k s.t. q

(m)
k

H ṽ
(m)
k

!
= 1

= argmin
q

(m)
k

q
(m)
k

HRy,kq
(m)
k s.t. q

(m)
k

H ṽ
(m)
k

!
= 1

(2.6)

whereby E
[
yk,ty

H
k,t

]
is the definition of the noisy covariance matrix Ry,k with

E [•] being the expectation value operator. In the case of MVDR beamforming

the power of the noise signal nk,t should be minimized using the same constraint

as in MPDR beamforming. It follows

q
(m)
k

MVDR = argmin
q

(m)
k

q
(m)
k

HE
[
nk,tn

H
k,t

]
q

(m)
k s.t. q

(m)
k

H ṽ
(m)
k

!
= 1

= argmin
q

(m)
k

q
(m)
k

HRn,kq
(m)
k s.t. q

(m)
k

H ṽ
(m)
k

!
= 1

(2.7)

The solutions to these optimization problems are widely know as

q
(m)
k

MPDR =
R−1
y,kṽ

(m)
k

ṽ
(m)
k

HR−1
y,kṽ

(m)
k

(2.8)

q
(m)
k

MVDR =
R−1
n,kṽ

(m)
k

ṽ
(m)
k

HR−1
n,kṽ

(m)
k

(2.9)

In order to determine the optimal filter q
(m)
k estimations of the noisy and noise

covariance matrices and the target speech RTF vector are necessary. The latter

can be estimated using CW described in section 2.3.

2.2.3 Estimation of Covariance Matrices

There are two scenarios for the estimation of the covariance matrices and RTF.

For real time applications online signal processing is necessary, whereby the filter

coefficients are adaptive over time. Hereby also the covariance matrices and

RTF need to be estimated adaptively, e.g. with recursive smoothing. If the

task is signal enhancement of already recorded data and the signal statistics can

be assumed to be stationary, it is possible to perform batch signal processing,

whereby a whole batch of the signal (can be multiple seconds) is used for the

12
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Algorithm 1: MPDR/MVDR (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk ∀ k
parameters: reference channel m, beamformer b ∈ {”MPDR”, ”MVDR”}
functions : speech presence probability spp (•), trace of a matrix trace (•),

covariance whitening cw (•)

output : batch-vector of single-channel beamformed signal z
(m)
k ∀ k

1 foreach k ∈ {1, 2, . . . ,K} do // process each frequency subband k individually

2 Ry,k = 1
T YkY

H
k // estimating noisy covariance matrix by SCM

3 Σk = spp (Yk) // estimating SPP of the noisy signal

4 Rn,k =
Yk(IN−Σk)YH

k

trace(IN−Σk) // estimating noise covariance matrix by SCM using the SPP

5 ṽ
(m)
k = cw (Yk,Rn,k,m) // estimating RTF-vector by CW (algorithm 2)

6 switch b do // select beamformer

7 case ”MPDR” do

8 q
(m)
k =

R−1
y,kṽ

(m)
k

ṽ
(m)
k

HR−1
y,kṽ

(m)
k

// optimal MPDR beamformer

9 case ”MVDR” do

10 q
(m)
k =

R−1
n,kṽ

(m)
k

ṽ
(m)
k

HR−1
n,kṽ

(m)
k

// optimal MVDR beamformer

11 z
(m)
k = q

(m)
k

HYk // beamforming the noisy signal

estimations of the covariance matrices and RTF. The noisy covariance matrix in

the batch case can be estimated using its sample covariance matrix (SCM) as

Ry,k = E
[
yk,ty

H
k,t

]
≈ 1

T
YkY

H
k =

1

T

T∑
t=1

yk,ty
H
k,t ∈ CM×M (2.10)

whereby T is the number of time frames and Yk = [yk,1,yk,2, . . . ,yk,T ] ∈ CM×T

is the batch matrix of the noisy signal. The noise covariance matrix can also be

estimated using its SCM as

Rn,k = E
[
nk,tn

H
k,t

]
≈ 1

T

T∑
t=1

nk,tn
H
k,t ∈ CM×M (2.11)

but since the additive noise signal is not known in the blind case, it can be

approximated by applying an inverse of the speech presence probability (SPP)

σk,t on the noisy microphone signal yk,t like this:

Rn,k ≈
∑T

t=1 (1− σk,t) yk,ty
H
k,t∑T

t=1 (1− σk,t)
(2.12)

The SPP gives an estimate of the probability that speech is present for the kth

13
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Figure 2.1: Flow chart of MPDR/MVDR beamforming in the STFT domain.

frequency subband and the tth time frame and it can be estimated e.g. as in [34].

The inverse probability is given by subtracting the SPP from one and it indicates

a noise-only-presence probability. All frames containing only noise can be used for

estimation of the noise covariance matrix. An overview of the complete workflow

of the conventional MPDR/MVDR-beamforming algorithm is presented in fig. 2.1

and algorithm 1.

2.3 Covariance whitening (CW)

The aforementioned MPDR and MVDR beamformers are derived with a con-

straint involving the target speech RTF. CW is a widely used method to estimate

this target speech RTF. The following derivations are mainly based on [24, 25].

Here the signal model already described in eq. (2.4) is utilized and rewritten in

terms of covariance matrices, which can be done assuming that the noise signal

nk,t is uncorrelated with the desired speech signal dk,t.

Ry,k = Rd,k + Rn,k (2.13)

Using the approximation with an mATF in eq. (2.2) allows to decompose the

signal model as

Ry,k = φs,kvkv
H
k︸ ︷︷ ︸

Rd,k

+Rn,k (2.14)

where φs,k = E
[
sk,ts

∗
k,t

]
≈ 1

T

∑T
t=1|sk,t|

2 ∈ R≥0 is the speech power spectral

density (PSD). Hereby it can be observed that the desired speech covariance

matrix has a rank of one, since it is a scaled version of the multiplication of

the mATF with its hermitian. Therefore an eigenvalue decomposition (EVD) of

the speech covariance matrix as in principal component analysis (PCA) could be

14
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used to estimate the mATF, whereby the eigenvector corresponding to the largest

eigenvalue indicates the principal component. This so called maximal eigenvector

is an arbitrary scaled version of the mATF, whereby its normalized version is the

RTF we are looking for. However this only holds if the target speech has the

highest power of all spatially non-diffuse sources in the signal, which is true for

the condition of one localized target speech source mixed with additive diffuse

noise. The speech covariance matrix can also be estimated using its SCM and

looks like this:

Rd,k = E
[
dk,td

H
k,t

]
≈ 1

T

T∑
t=1

dk,td
H
k,t ∈ CM×M (2.15)

However since the speech component is not available in the blind case an approx-

imation method [24, 25] can be used, which performs pre-whitening of the noisy

signal. The pre-whitened signal wk,t is given by multiplying the inverse square

root of the noise covariance matrix Rn,k with the noisy covariance matrix Ry,k

like this:

wk,t = R
−H/2
n,k yk,t (2.16)

Hereby the noise covariance matrix can be estimated as described in section 2.2.3

and a square root of it can be defined by

Rn,k = R
H/2
n,k R

1/2
n,k ⇒

√
Rn,k = R

1/2
n,k and R

H/2
n,k =

(
R

1/2
n,k

)H
(2.17)

since the covariance matrix is a hermitian and positive definite matrix. It is to

be noticed that the square root is not unique, but for this derivation it does not

matter, whether the square root is determined using the EVD or the Cholesky

square root or any other method, as long as eq. (2.17) is fulfilled. The pre-

whitened covariance matrix Rw,k can be determined using its SCM like this:

Rw,k = E
[
wk,tw

H
k,t

]
≈ 1

T

T∑
t=1

wk,tw
H
k,t ∈ CM×M

= R
−H/2
n,k Ry,kR

−1/2
n,k

= R
−H/2
n,k Rd,kR

−1/2
n,k + R

−H/2
n,k Rn,kR

−1/2
n,k︸ ︷︷ ︸

IM

= φs,kR
−H/2
n,k vkv

H
k R

−1/2
n,k + IM

(2.18)

Now the principal component of this pre-whitened covariance matrix Rw,k is

extracted using its EVD, which is defined as Rw,k = Ψw,kΓw,kΨ
H
w,k, since this

15
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Figure 2.2: Flow chart of CW.

pre-whitened covariance matrix is hermitian. Hereby Γw,k is a diagonal matrix

consisting of the sorted eigenvalues of Rw,k and Ψw,k is the corresponding eigen-

vector matrix. The maximal eigenvalue is also the first eigenvalue in Γw,k so that

the eigenvector ψ
(max)
w,k corresponding to the principal component can be extracted

as the first column of Ψw,k. In order to get an arbitrarily scaled estimation of the

target speech mATF a de-whitening operation using the square root of the noise

covariance matrix is performed as

vk = R
H/2
n,k ψ

(max)
w,k (2.19)

The RTF can now be deduced from the mATF vk =
[
v

(1)
k , v

(2)
k , . . . , v

(M)
k

]T
∈ CM

by simply dividing by the entry of the reference channel m like this:

ṽ
(m)
k =

vk

v
(m)
k

=
R
H/2
n,k ψ

(max)
w,k

e
(m)
M

TR
H/2
n,k ψ

(max)
w,k

(2.20)

An overview of CW is summarized by fig. 2.2 and algorithm 2.

Algorithm 2: Covariance Whitening (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk,
multi-channel noise covariance matrix Rn,k

parameters: reference channel m

functions : matrix square-root matSqrt (•), eigenvector corresponding to maximal
eigenvalue maxEigVec (•)

output : RTF-vector ṽ
(m)
k for one frequency subband k corresponding to

reference channel m

1 R
1/2
n,k = matSqrt (Rn,k) // calculating arbitrarily matrix square root

2 Wk = R
−H/2
n,k Yk // pre-whitening of noisy signal

3 Rw,k = 1
T WkW

H
k // whitened covariance matrix (estimated by SCM)

4 ψ
(max)
w,k = maxEigVec (Rw,k) // extracting principal component

5 vk = R
H/2
n,k ψ

(max)
w,k // de-whitening of principal component

6 ṽ
(m)
k = vk/v

(m)
k // calculating RTF by normalization with reference channel m

16
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2.4 WPE Dereverberation

Since reverberation is caused by reflections it is a delayed and distorted version of

the direct sound from past frames as described in section 1.2. Therefore the idea

of WPE dereverberation is to predict the late reverberation rk,t of the current time

frame t by a linear prediction filter g̃
(m)
k applied to the past frames of the noisy

multi-channel microphone signal yk,t. The method of such an algorithm is also

referred to as MCLP [12, 14, 15]. The so called prediction delay τk determines the

size of the gap between the current time frame and the past time frames, which

correspond to the late reverberation rk,t. Its importance lies in keeping the early

reflections, which are beneficial for speech intelligibility as described in section 1.2,

and in avoiding whitening of the filtered signal d̆k,t. The filter optimization

takes advantages of the difference in sparsity of the reverberant and clean speech

signal. Conventionally a TVG is used as sparsity promoting LH function L to

model the single-channel desired signal d
(m)
k,t (see section 2.4.2.1), however it can

be reformulated and generalized using the `p-norm (section 2.4.2.4), which can

be further extended to perform MIMO-WPE (section 2.4.2.5).

2.4.1 Signal Model and MCLP Filter

The signal model is similar to eq. (2.1), but for now a noise-free assumption is

made, whereby the recorded microphone signal yk,t only consists of the desired

speech signal dk,t and the late reverberation tail rk,t.

yk,t = dk,t + rk,t︸ ︷︷ ︸
xk,t

(2.21)

The goal of WPE dereverberation is now to estimate the late reverberation r
(m)
k,t

using the prediction filter g̃
(m)
k and subtracting it from the noisy microphone

signal y
(m)
k,t of the reference channel m in order to extract the single-channel dere-

verberated speech signal d̆
(m)
k,t .

d̆
(m)
k,t = y

(m)
k,t − r

(m)
k,t = y

(m)
k,t − g̃

(m)
k

H ỹk,t︸ ︷︷ ︸
r
(m)
k,t

= ḡ
(m)
k

H ȳk,t (2.22)

whereby the reformulated prediction filter ḡ
(m)
k is defined as

ḡ
(m)
k =

[
e

(m)
M

−g̃
(m)
k

]
∈ CM(Lk−τk+1) (2.23)

17
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Hereby ỹk,t =
[
yTk,t−τk ,y

T
k,t−τk−1,y

T
k,t−τk−2, . . . ,y

T
k,t−Lk+1

]T ∈ CM(Lk−τk) is the

stacked signal vector containing the past frames corresponding to the late re-

verberation rk,t and ȳk,t =
[
yTk,t, ỹ

T
k,t

]T ∈ CM(Lk−τk+1) is the combined stacked

signal vector with the momentary frame yk,t and the past frames ỹk,t. Notice

that there is a gap of τk − 1 time frames between the first and second entry of

ȳk,t. This can also be formulated for the whole batch as

d̆
(m)
k = y

(m)
k − g̃

(m)
k

HỸk = ḡ
(m)
k

HȲk (2.24)

with d̆
(m)
k =

[
d̆

(m)
k,1 , d̆

(m)
k,2 , . . . , d̆

(m)
k,T

]
∈ C1×T , y

(m)
k =

[
y

(m)
k,1 , y

(m)
k,2 , . . . , y

(m)
k,T

]
∈ C1×T ,

Ỹk = [ỹk,1, ỹk,2, . . . , ỹk,T ] ∈ CM(Lk−τk)×T and Ȳk = [ȳk,1, ȳk,2, . . . , ȳk,T ] ∈ CM(Lk−τk+1)×T

being the stacked batch vectors of d̆
(m)
k,t and y

(m)
k,t and the stacked batch matrices

of ỹk,t and ȳk,t respectively.

2.4.2 Filter Optimization

In order to find the optimal filter a LH function is set up according to the assump-

tion that a dereverberated signal is more sparse than its corresponding original.

The following subsections show five similar approaches to optimize the WPE

dereverberation filter.

2.4.2.1 Conventional MCLP Dereverberation using a TVG Model

The conventional WPE algorithm is derived using the TVG model as sparse

prior for the single-channel desired signal d
(m)
k,t [17], corresponding to the reference

channel m. Hereby the distribution ρ of the STFT coefficients is modeled by a

circular complex Gaussian probability density function (PDF) NC

ρ
(
d

(m)
k,t , λk,t

)
= NC

(
d

(m)
k,t ; 0, λk,t

)
=

1

πλk,t
e
−
|d(m)
k,t |

2

λk,t (2.25)

with a zero mean and an unknown and time-varying variance λk,t ∈ R>0, which

corresponds to the power of the desired speech signal. The LH as product of the

probabilities of all T time frames is then given by

L
(
d

(m)
k ,λk

)
=

T∏
t=1

NC

(
d

(m)
k,t ; 0, λk,t

)
(2.26)

whereby d
(m)
k =

[
d

(m)
k,1 , d

(m)
k,2 , . . . , d

(m)
k,T

]
∈ C1×T and λk = [λk,1, λk,2, . . . , λk,T ] ∈

R1×T
>0 are the batch vectors containing the desired signal and the variances of the
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reference channel m for each time frame t respectively. The aim is to find the

optimal MCLP filter g̃
(m)
k and the corresponding variances λk which maximize

the LH L, i.e. the solution to

g̃
(m)
k

WPE = argmax
g̃

(m)
k ,λk>0

L
(
d

(m)
k ,λk

)
(2.27)

Alternatively to maximizing the LH L the negative log-likelihood (nLLH) L can

be seen as a cost function that needs to be minimized to find the optimal predic-

tion filter

g̃
(m)
k

WPE = argmin
g̃

(m)
k ,λk>0

L
(
d

(m)
k ,λk

)
= argmin

g̃
(m)
k ,λk>0

− logL
(
d

(m)
k ,λk

)

= argmin
g̃

(m)
k ,λk>0

−
T∑
t=1

log ρ
(
d

(m)
k,t , λk,t

)
= argmin

g̃
(m)
k ,λk>0

T∑
t=1


∣∣∣d(m)
k,t

∣∣∣2
λk,t

+ log πλk,t


= argmin

g̃
(m)
k ,λk>0

d
(m)
k Λ−1

k d
(m)
k

H +
T∑
t=1

log λk,t + T log π

(2.28)

whereby Λk is a diagonal matrix containing the variances λk,t of each time frame

t on its diagonal. Since it is not possible to jointly minimize the cost function

in eq. (2.28) with respect to the prediction filter g̃
(m)
k and the variances λk an-

alytically an alternating optimization procedure was proposed in [15]. For this

the optimization problem is divided into two subproblems, whereby either the

variances λk or the prediction filter g̃
(m)
k are assumed to be fixed. Now the op-

timization of these two subproblems is performed alternatingly in an iterative

scheme until the convergence of the dereverberated signal, which is the output.

The convergence is measured by the relative convergence criterion

η =

∥∥∥d̆(m)
k,cur − d̆

(m)
k,old

∥∥∥
2∥∥∥d̆(m)

k,old

∥∥∥
2

< ηc (2.29)

whereby d̆
(m)
k,cur and d̆

(m)
k,old are the dereverberated signals of the current iteration

and the last iteration respectively.

2.4.2.1.1 Estimation of the Prediction Filter g̃
(m)
k In order to minimize

the cost function in eq. (2.28) in respect to only the prediction filter g̃
(m)
k the
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variances λk are assumed to be fixed so that the cost function reduces to

g̃
(m)
k

(i) = argmin
g̃

(m)
k

d̆
(m)
k

(i)
(
Λ

(i)
k

)−1

d̆
(m)
k

(i)H s.t. d̆
(m)
k

(i) = y
(m)
k −g̃

(m)
k

HỸk (2.30)

where i is the index of the iteration. This has the following least-squares (LS)

solution:

g̃
(m)
k

(i) =
(
R̃

(i)
ỹλ,k

)−1

p
(m)
yλ,k

(i) (2.31)

whereby R̃ỹλ,k = E
[

ỹk,tỹ
H
k,t

λk,t

]
≈ 1

T
ỸkΛ

−1
k ỸH

k = 1
T

∑T
t=1

ỹk,tỹ
H
k,t

λk,t
∈ CM(Lk−τk)×M(Lk−τk)

is the variance-weighted noisy covariance matrix of the past frames correspond-

ing to the late reverberation and p
(m)
yλ,k = E

[
ỹk,ty

(m)
k,t
∗

λk,t

]
≈ 1

T
ỸkΛ

−1
k y

(m)
k

H =

1
T

∑T
t=1

ỹk,ty
(m)
k,t
∗

λk,t
∈ CM(Lk−τk) is the variance-weighted noisy cross-covariance vec-

tor of the past frames with the momentary frame y
(m)
k,t of the reference channel

m.

2.4.2.1.2 Estimation of Variances λk In the second step the cost function

in eq. (2.28) is minimized with respect to the variances λk where the optimal

prediction filter g̃
(m)
k is assumed to be fixed. The cost function of the subproblem

is then given for each time frame t individually by:

λ
(i)
k,t = argmin

λk,t>0

∣∣∣d̆(m)
k,t

(i−1)
∣∣∣2

λk,t
+ log λk,t (2.32)

The solution for this subproblem is

λ
(i)
k,t =

∣∣∣d̆(m)
k,t

(i−1)
∣∣∣2 ⇔ λ

(i)
k =

∣∣∣d̆(m)
k

(i−1)
∣∣∣2 (2.33)

whereby the absolute value operator is applied elementwise. For a practical algo-

rithm a small positive constant ε is added to prevent division by zero

λ
(i)
k,t =

∣∣∣d̆(m)
k,t

(i−1) + ε
∣∣∣2 ⇔ λ

(i)
k =

∣∣∣d̆(m)
k

(i−1) + ε
∣∣∣2 (2.34)

2.4.2.2 MCLP Dereverberation using a General Sparse Prior

The conventional WPE utilizes a TVG model as sparse prior. However the WPE

algorithm can be generalized with any circular sparse prior for the desired signal
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d
(m)
k,t [17], which is represented by the following general PDF

ρ
(
d

(m)
k,t

)
= e

−f
(∣∣∣d(m)

k,t

∣∣∣)
(2.35)

It can be shown that the prior ρ is sparse when f ′(•)/• is decreasing on • ∈ (0,∞),

whereby f ′(•) denotes the derivative of f(•). If this condition is fulfilled the sparse

prior PDF ρ
(
d

(m)
k,t

)
can be represented as a maximization over scaled Gaussians

as

ρ
(
d

(m)
k,t

)
= max

λk,t>0
NC

(
d

(m)
k,t ; 0;λk,t

)
ζ (λk,t) (2.36)

Hereby the scaling function ζ (•) can be interpreted as hyperprior on the variance

λk,t. Similarly to eq. (2.28) a LH function for the general sparse prior can be

formulated as

L
(
d

(m)
k ,λk

)
=

T∏
t=1

ρ
(
d

(m)
k,t , λk,t

)
=

T∏
t=1

max
λk,t>0

NC

(
d

(m)
k,t ; 0;λk,t

)
ζ (λk,t) (2.37)

and likewise also the nLLH function of the general sparse prior, which can be

seen as the cost function, can be reformulated in a way that it is to be minimized

over the prediction filter g̃
(m)
k and the variances λk in order to find the optimal

filter as

g̃
(m)
k

WPE = argmin
g̃

(m)
k

L
(
d

(m)
k ,λk

)
= argmin

g̃
(m)
k

T∑
t=1

− log ρ
(
d

(m)
k,t , λk,t

)

= argmin
g̃

(m)
k

T∑
t=1

− max
λk,t>0

logNC

(
d

(m)
k,t ; 0;λk,t

)
ζ (λk,t)

= argmin
g̃

(m)
k

T∑
t=1

min
λk,t>0

− logNC

(
d

(m)
k,t ; 0;λk,t

)
ζ (λk,t)

= argmin
g̃

(m)
k ,λk

T∑
t=1

− logNC

(
d

(m)
k,t ; 0;λk,t

)
ζ (λk,t)

= argmin
g̃

(m)
k ,λk

T∑
t=1


∣∣∣d(m)
k,t

∣∣∣2
λk,t

+ log πλk,t − log ζ (λk,t)



(2.38)

The joint optimization for this cost function is again not possible analytically as

described in section 2.4.2.1 for the conventional WPE. However a similar alter-

nating iterative optimization scheme can be utilized here, whereby the prediction

filter g̃
(m)
k and the variances λk are updated in separate steps.
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2.4.2.2.1 Estimation of the Prediction Filter g̃
(m)
k The update of the

prediction filter g̃
(m)
k is hereby completely equal to the conventional method in

paragraph 2.4.2.1.1 given by eq. (2.31), since the cost function in eq. (2.38) reduces

to the same expression as eq. (2.30), if the variances λk are assumed to be fixed.

2.4.2.2.2 Estimation of Variances λk Assuming the prediction filter g̃
(m)
k

to be fixed enables reformulation of the cost function for the variance update for

each time frame t individually as

λ
(i)
k,t = argmin

λk,t>0

∣∣∣d̆(m)
k,t

(i−1)
∣∣∣2

λk,t
+ log πλk,t − log ζ (λk,t) (2.39)

whereby the scaling function ζ(λk,t) of the variance introduces an additional term

comparing to the conventional cost function in paragraph 2.4.2.1.2. The solution

for a general sparse prior to this subproblem is given by

λ
(i)
k,t =

2
∣∣∣d̆(m)
k,t

(i−1)
∣∣∣

f ′
(∣∣∣d̆(m)

k,t
(i−1)

∣∣∣) (2.40)

2.4.2.3 MCLP Dereverberation using a CGG Sparse Prior

One example of a general sparse prior is the CGG sparse prior [17], which is more

general than the TVG model. The prior is given by

ρ
(
d

(m)
k,t

)
=

p

2πβΓ (2/p)
e
−
|d(m)
k,t |

p

βp/2 (2.41)

where β ∈ R>0 is its scale parameter, p ∈ ]0, 2] is its shape parameter and Γ (•)
is the gamma function. As seen in fig. 2.3 for p = 2 the CGG prior equals a

Gaussian and for smaller values of p it is seen to be super Gaussian i.e. sparse.

When written in the format of eq. (2.35) the function f(•) is given by

f
(∣∣∣d(m)

k,t

∣∣∣) =

∣∣∣d(m)
k,t

∣∣∣p
βp/2

− log
p

2πβΓ (2/p)
(2.42)

so that its derivative can be stated as

f ′
(∣∣∣d(m)

k,t

∣∣∣) =
p
∣∣∣d(m)
k,t

∣∣∣p−1

βp/2
(2.43)
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By inserting this derivative into the variance update of the general sparse prior

in eq. (2.40) the following variance update is obtained:

λ
(i)
k,t =

2βp/2

p

∣∣∣d̆(m)
k,t

(i−1)
∣∣∣2−p (2.44)

However since the estimation of the prediction filter g̃
(m)
k given by eq. (2.31) is

invariant to a scaling of the variances λk, the variance update can be reduced to

λ
(i)
k,t =

∣∣∣d̆(m)
k,t

(i−1) + ε
∣∣∣2−p (2.45)

where for a practical algorithm a small positive constant ε is added to avoid

division by zero.
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Figure 2.3: CGG-PDFs according to eq. (2.41) dependent on the shape parameter
p. The scale parameter is chosen to be β = 1. The plot only shows the PDF
value for real STFT coefficients d

(m)
k,t . However the actual PDF is circular over

the complex plane.

23



2.4. WPE DEREVERBERATION CHAPTER 2. THEORY

STFT build
weight
estima-

tion

multi-
channel
noisy
time

signal

SCM

SCM

WPE Filter
inverse
STFT

single-
channel

dere-
verber-

ated
time

signal

d̆
(m)
k

Λk

Λk

update

p
Ỹk
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Figure 2.4: Flow chart of MISO-WPE.

2.4.2.4 Reformulation using the `p-Norm

It is possible to reformulate the derivation of the WPE algorithm with a cost

function, which we show is equivalent to the LH function using the CGG sparse

prior, as [17]

C
(
d

(m)
k

)
=
∥∥∥d(m)

k

∥∥∥p
p

(2.46)

where ‖•‖p = p

√∑N
n=1|•n|

p denotes the `p-norm1 of a vector. In order to solve

the following resulting optimization problem

g̃
(m)
k = argmin

g̃
(m)
k

∥∥∥d(m)
k

∥∥∥p
p

(2.47)

and to show the equivalency to the CGG sparse prior formulation in section 2.4.2.3

the `p-norm minimization is replaced with a series of `2-norm minimization sub-

problems, which have an LS solution. The new cost function of these `2-norm

minimization subproblems is then given by

g̃
(m)
k

(i) = argmin
g̃

(m)
k

d
(m)
k

(i)
(
Λ

(i)
k

)−1

d
(m)
k

(i)H (2.48)

which is already known from eq. (2.30). Although in this context Λk denotes

the inverse of the optimization weights, which enables the `2-norm minimization

subproblems, the same nomenclature as for the variances in the former derivations

is used, because they are equivalent. Therefore also the update of the weights

is given by the variance update in eq. (2.45). A flow chart and the practical

MISO-WPE algorithm are presented in fig. 2.4 and algorithm 3 respectively.

1For p < 1 this is actually not a norm, since the triangle inequality is violated. However
here it is still referred to as `p-norm.
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Algorithm 3: MISO-WPE dereverberation (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk ∀ k
parameters: reference channel m, frequency dependent prediction delay τk,

frequency dependent prediction filter length Lk, shape parameter p,
regularization parameter ε, maximal number of iterations of the
alternating optimization Imax, convergence tolerance ηc

functions : constructing convolutional signal matrix build (•), constructing
diagonal matrix from vector diagMat (•)

output : batch-vector of single-channel estimated dereverberated signal d̆
(m)
k ∀ k

1 foreach k ∈ {1, 2, . . . ,K} do // process each frequency subband k individually

2 y
(m)
k = e

(m)
M

TYk // extracts batch-vector of single-channel convolutional signal

3 Ỹk = build (Yk; τk, Lk) // builds convolutional signal matrix with past frames

4 Λk = diagMat

(∣∣∣y(m)
k

∣∣∣2 + ε

)1− p2
// initialize weights using the noisy signal

5 d̆
(m)
k,old = y

(m)
k // initialize d̆

(m)
k,old with the noisy signal

6 for i← 1 to Imax do // iterations of alternating optimization

7 R̃ỹλ,k = 1
T ỸkΛ

−1
k ỸH

k // estimate weighted noisy covariance matrix by SCM

8 p
(m)
yλ,k = 1

T ỸkΛ
−1
k y

(m)
k

H // estimate weighted noisy cross-covariance vector by SCM

9 g̃
(m)
k = R̃−1

ỹλ,kp
(m)
yλ,k // estimate reverberation filter vector

10 d̆
(m)
k = y

(m)
k − g̃

(m)
k

HỸk // dereverberation by subtracting estimated reverberation

11 if

∥∥∥d̆
(m)
k −d̆

(m)
k,old

∥∥∥
2∥∥∥d̆

(m)
k,old

∥∥∥
2

< ηc then // relative convergence criterion

12 break // breaks the for loop of the alternating optimization

13 else

14 Λk = diagMat

(∣∣∣d̆(m)
k

∣∣∣2 + ε

)1− p2
// compute scaled signal power weights

15 d̆
(m)
k,old = d̆

(m)
k // store output for convergence criterion of next iteration

2.4.2.5 MIMO-WPE Dereverberation

For many applications a MIMO version of the WPE algorithm is very useful, e.g.

it enables cascade beamforming for additional denoising of the dereverberated

signal. The following derivations are based on [18]. A MIMO filter matrix G̃k =[
g̃

(1)
k , g̃

(2)
k , . . . , g̃

(M)
k

]
∈ CM(Lk−τk)×M is introduced, which contains the prediction

filter vectors g̃
(m)
k for every reference channel m in its columns. The subtraction

of the predicted multi-channel late reverberation rk,t from the multi-channel noisy

signal yk,t can be formulated similarly to eq. (2.22) as

d̆k,t = yk,t − rk,t = yk,t − G̃k
H ỹk,t︸ ︷︷ ︸
rk,t

= Ḡk
H ȳk,t (2.49)
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with

Ḡk =

[
IM

−G̃k

]
=
[
ḡ

(1)
k , ḡ

(2)
k , . . . , ḡ

(M)
k

]
∈ CM(Lk−τk+1)×M (2.50)

Using the batch matrices of the noisy signal Yk = [yk,1,yk,2, . . . ,yk,T ] ∈ CM×T

and the dereverberated signal D̆k =
[
d̆k,1, d̆k,2, . . . , d̆k,T

]
∈ CM×T leads to the

compact MIMO-WPE formulation

D̆k = ḠH
k Yk (2.51)

To determine the optimal prediction filter matrix G̃k an extension of the `p-norm

optimization can be formulated using the mixed `Φ;2,p-norm as proposed in [18]

given by

C (Dk) = ‖Dk‖pΦ;2,p =
T∑
t=1

‖dk,t‖pΦ;2 =
T∑
t=1

(√
dHk,tΦ

−1dk,t

)p
(2.52)

whereby the matrix Φ models the spatial correlations between the channels. The

`p-norm optimization problem of this cost function can be approximated with

a series of weighted `2-norm subproblems similarly to the MISO-WPE in sec-

tion 2.4.2.3 as

T∑
t=1

‖dk,t‖pΦ;2 ≈
T∑
t=1

∥∥∥d(i)
k,t

∥∥∥2

Φ;2

λ
(i)
k,t

= trace
(
Λ

(i)−1
k D

(i)H
k Φ−1D

(i)
k

)
(2.53)

with the weights λ
(i)
k,t selected so that eq. (2.53) is a first-order approximation of

the corresponding `Φ;2,p-norm cost function:

λ
(i)
k,t =

∥∥∥d̆(i−1)
k,t

∥∥∥2−p

Φ;2
(2.54)

The subproblem of estimating the prediction filter matrix G̃k is then given by

G̃
(i)
k = argmin

G̃k

trace

((
Yk − G̃H

k Ỹk

)
Λ

(i)−1
k

(
Yk − G̃H

k Ỹk

)H
Φ−1

)
(2.55)

and it has the following LS solution:

G̃
(i)
k = R̃

(i)−1
ỹλ,k P

(i)
yλ,k (2.56)
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Figure 2.5: Flow chart of MIMO-WPE.

whereby Pyλ,k = E
[

ỹk,ty
H
k,t

λk,t

]
=
[
p

(1)
y,k,p

(2)
y,k, . . . ,p

(M)
y,k

]
≈ 1

T
ỸkΛ

−1
k YH

k = 1
T

∑T
t=1

ỹk,ty
H
k,t

λk,t
∈

CM(Lk−τk)×M is the weighted multi-channel cross-covariance matrix of the past

frames with the momentary frame t. The convergence of the dereverberated signal

is measured by the relatively convergence criterion

η =

∥∥∥D̆k,cur − D̆k,old

∥∥∥
Fro∥∥∥D̆k,old

∥∥∥
Fro

< ηc (2.57)

whereby D̆k,cur and D̆k,old are the dereverberated signals of the current iteration

and the last iteration respectively and the Frobenius norm of a matrix is defined

as ‖•‖Fro =
√∑N1

n1=1

∑N2

n2=1|•n1,n2|
2. An overview of the complete workflow of

MIMO-WPE is presented in fig. 2.5 and algorithm 4.

2.4.2.5.1 Group Sparsity As proposed in [18] the matrix Φ is understood to

model the spatial (within-group) correlation of the multi-channel desired signal.

Hereby a group consists of the channels m = 1, 2, . . . ,M . The update of the so

called group sparsity Φ can be given by

Φ(i) =
1

T

T∑
t=1

d̆
(i)
k,td̆

(i)H
k,t

λ
(i)
k,t

=
1

T
D̆

(i)
k Λ

(i)−1
k D̆

(i)H
k (2.58)

However preliminary results of simulated experiments indicated that this group

sparsity update is not stable and did not lead to improvements of speech quality.

Therefore in all of the following derivations the group sparsity is neglected by

assuming that there are no spatial correlations between the microphone channels.

So the group sparsity correlation is set to be an identity matrix Φ = IM .
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Algorithm 4: MIMO-WPE dereverberation (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk ∀ k
parameters: reference channel m, frequency dependent prediction delay τk,

frequency dependent prediction filter length Lk, shape parameter p,
regularization parameter ε, maximal number of iterations of the
alternating optimization Imax, convergence tolerance ηc

functions : constructing convolutional signal matrix build (•), constructing
diagonal matrix from vector diagMat (•)

output : batch-matrix of multi-channel estimated dereverberated signal D̆k ∀ k

1 foreach k ∈ {1, 2, . . . ,K} do // process each frequency subband k individually

2 Ỹk ← build (Yk; τk, Lk) // builds convolutional signal matrix with past frames

3 foreach t ∈ {1, 2, . . . , T} do // process each time frame t individually

4 λk,t =
(
‖yk,t‖2Φ;2 + ε

)1− p2
// initialize weights by mixed norm of the noisy signal

5 Λk = diagMat (λk = [λk,1, λk,2, . . . , λk,T ])

6 D̆k,old = Yk // initialize D̆k,old with the noisy signal

7 for i← 1 to Imax do // iterations of alternating optimization

8 R̃ỹλ,k = 1
T ỸkΛ

−1
k ỸH

k // estimate weighted noisy covariance matrix by SCM

9 Pyλ,k = 1
T ỸkΛ

−1
k YH

k // estimate weighted noisy cross-covariance matrix by SCM

10 G̃k = R̃−1
ỹλ,kPyλ,k // estimate reverberation filter matrix

11 D̆k = Yk − G̃H
k Ỹk // dereverberation by subtracting estimated reverberation

12 if
‖D̆k−D̆k,old‖

Fro

‖D̆k,old‖
Fro

< ηc then // relative convergence criterion

13 break // breaks the for loop of the alternating optimization

14 else
15 foreach t ∈ {1, 2, . . . , T} do // process each time frame t individually

16 λk,t =

(∥∥∥d̆k,t∥∥∥2

Φ;2
+ ε

)1− p2
// updating weights by mixed norm of d̆k,t

17 Λk = diagMat (λk = [λk,1, λk,2, . . . , λk,T ])

18 D̆k,old = D̆k // store output for convergence criterion of next iteration

2.5 WPD Convolutional Beamforming

The main idea of WPD unified dereverberation and denoising is to set up an algo-

rithm with a MIMO-WPE dereverberation stage (described in section 2.4.2.5) and

an additional MPDR beamformer stage (described in section 2.2). While cascade

systems of the algorithms are already widely known, the novel idea proposed by [1,

29] is joint optimization of the two algorithms in order to improve both derever-

beration and denoising performance simultaneously. For this the full signal model

in eq. (2.1) is utilized and a filter vector of the form h̄
(m)
k = Ḡkq

(m)
k ∈ CM(Lk−τk+1)

performs MISO joint dereverberation and denoising on the noisy signal ȳk,t as

z
(m)
k,t = h̄

(m)
k

H ȳk,t (2.59)

28



CHAPTER 2. THEORY 2.5. WPD CONVOLUTIONAL BEAMFORMING

where z
(m)
k,t is the single-channel filtered signal of this convolutional beamformer

of the time frame t. This can also be written in a batch formulation as

z
(m)
k = h̄

(m)
k

HȲk (2.60)

whereby z
(m)
k =

[
z

(m)
k,1 , z

(m)
k,2 , . . . , z

(m)
k,T

]
∈ C1×T is the batch-vector of the filtered

signal.

2.5.1 Filter Optimization

In order to optimize the filter h̄
(m)
k a LH function can be set up similarly to

eq. (2.28)

h̄
(m)
k

WPD = argmin
h̄

(m)
k ,λk>0

T∑
t=1


∣∣∣z(m)
k,t

∣∣∣2
λk,t

+ log πλk,t


= argmin

h̄
(m)
k ,λk>0

z
(m)
k Λ−1

k z
(m)
k

H +
T∑
t=1

log λk,t + T log π

= argmin
h̄

(m)
k ,λk>0

h̄
(m)
k

HȲkΛ
−1
k ȲH

k h̄
(m)
k +

T∑
t=1

log λk,t + T log π

= argmin
h̄

(m)
k ,λk>0

h̄
(m)
k

HRyλ,kh̄
(m)
k +

T∑
t=1

log λk,t + T log π

(2.61)

The optimization over this cost function does not have any analytic solution

so that similarly to section 2.4.2.1 an iterative optimization scheme is utilized.

Hereby first the variances are optimized by keeping the WPD filter h̄
(m)
k fixed

and in a second step the variances are fixed to optimize only over the beamform-

ing filter h̄
(m)
k . These two optimization stages are repeated iteratively until the

resulting beamformed signal has converged.

2.5.1.1 Estimation of Beamforming Filter h̄
(m)
k

The last two terms of eq. (2.61) vanish if the variances are fixed. However the

distortionless constraint known from an MPDR needs to be considered so that

the cost function of this subproblem becomes

h̄
(m)
k

(i) = argmin
h̄

(m)
k

h̄
(m)
k

HR
(i)
yλ,kh̄

(m)
k s.t. h̄

(m)
k

H v̄
(m)
k = 1 (2.62)
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Here v̄
(m)
k is the RTF vector extended with M (Lk − τk) zeros corresponding to

the entries of the filter h̄
(m)
k , which correspond to the late reverberation, e.g.

perform the WPE dereverberation part. The extended RTF vector then looks

like this:

v̄
(m)
k =

ṽ
(m)
k , 0, 0, . . . , 0︸ ︷︷ ︸

M(Lk−τk) zeros


T

∈ CM(Lk−τk+1) (2.63)

The solution to this subproblem can be obtained using the method of Lagrange

multipliers and is equivalent to the widely known MPDR beamformer. However

the weighting matrix Λk containing the variances and the past frames within

Ȳk are novel and enable dereverberation in parallel to the denoising usually per-

formed by an MPDR. The solution of this subproblem is then given by

h̄
(m)
k

(i) =
R̄

(i)−1
ȳλ,k v̄

(m)
k

v̄
(m)
k

HR̄
(i)−1
ȳλ,k v̄

(m)
k

(2.64)

2.5.1.2 Estimation of Variances λk,t

If the beamforming filter h̄
(m)
k is fixed eq. (2.61) can be used to update the vari-

ances λk,t as

λ
(i)
k = argmin

λk>0
h̄

(m)
k

(i−1)HRyλ,kh̄
(m)
k

(i−1) +
T∑
t=1

log λk,t + T log π (2.65)

The solution to this subproblem is equivalent to the variance update of MISO-

WPE in eq. (2.33) given by

λ
(i)
k,t =

∣∣∣z(m)
k,t

(i−1)
∣∣∣2 ⇔ λ

(i)
k =

∣∣∣z(m)
k

(i−1)
∣∣∣2 (2.66)

whereby the absolute value operator is applied elementwise. For a practical algo-

rithm a small positive constant ε is added to prevent division by zero

λ
(i)
k,t =

∣∣∣z(m)
k,t

(i−1) + ε
∣∣∣2 ⇔ λ

(i)
k =

∣∣∣z(m)
k

(i−1) + ε
∣∣∣2 (2.67)

2.5.2 Factorized MISO-WPD

To further understand the structure of the WPD algorithm, which performs uni-

fied dereverberation and noise reduction, the convolutional filter h̄
(m)
k in eq. (2.60)

can be factorized into a dereverberation filter matrix Ḡk and a weighted mini-
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mum power distortionless response (wMPDR) beamformer filter vector q
(m)
k as

[30]

h̄
(m)
k = Ḡkq

(m)
k ⇒ z

(m)
k = h̄

(m)
k

HȲk = q
(m)
k

H ḠH
k Ȳk︸ ︷︷ ︸
D̆k

= q
(m)
k

HD̆k (2.68)

The optimization procedure, which is similar as in section 2.5.1.1, of this factor-

ized version of the beamforming filter can also be factorized. However the update

of the variances according to section 2.5.1.2 remains the same.

2.5.2.1 Filter Optimization

The cost function C
(
h̄

(m)
k = Ḡkq

(m)
k

)
of the beamforming filter subproblems from

eq. (2.62) can then be formulated as

h̄
(m)
k

(i) = argmin
h̄

(m)
k

q
(m)
k

HḠH
k R̄

(i)
ȳλ,kḠkq

(m)
k s.t. q

(m)
k

HḠH
k v̄

(m)
k = 1 (2.69)

This cost function can be separated into two steps, whereby in the first step it

is optimized with respect to Ḡk without the distortionless constraint from the

beamformer, but with a structural constraint for Ḡk in order to keep the direct

signal and early reflections. In the second step the resulting filtered signal D̆k is

used to optimize the remaining cost function with the distortionless constraint

with respect to q
(m)
k .

2.5.2.1.1 Estimation of Dereverberation Filter Matrix Ḡk The cost

function for the dereverberation step, which is performed at first, with the struc-

tural constraint of the dereverberation matrix Ḡk, is given by

Ḡ
(i)
k = argmin

Ḡk

q
(m)
k

(i−1)HḠH
k R̄

(i)
ȳλ,kḠkq

(m)
k

(i−1) s.t. Ḡk =

[
IM

−G̃k

]
(2.70)

The weighted noisy covariance matrix R̄ȳλ,k of the momentary frame and the past

frames corresponding to the late reverberation can also be factorized as

R̄ȳλ,k =

[
Ryλ,k PH

yλ,k

Pyλ,k R̃ỹλ,k

]
(2.71)

into the weighted covariance matrix Ry,k of the momentary frame, the weighted

covariance matrix R̃ỹλ,k of the past frames corresponding to the late reverbera-

tion and the weighted cross-covariance matrix Pyλ,k of the past frames with the
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momentary frame. Using this in eq. (2.69) yields

G̃
(i)
k = argmin

G̃k

q
(m)
k

(i−1)H

[
IM

−G̃k

]H [
R

(i)
yλ,k P

(i)H
yλ,k

P
(i)
yλ,k R̃

(i)
ỹλ,k

][
IM

−G̃k

]
q

(m)
k

(i−1) (2.72)

The solution of this optimization problem is equivalent to the conventional WPE

dereverberation filter update given by eq. (2.31).

2.5.2.1.2 Estimation of Beamforming Filter q
(m)
k Using the dereverber-

ation matrix Ḡ
(i)
k estimated above on the noisy covariance matrix R̄

(i)
ȳλ,k provides

the dereverberated signal D̆
(i)
k with its weighted covariance matrix R

(i)

d̆λ,k
as

D̆
(i)
k = Ḡ

(i)H
k Ȳk and R

(i)

d̆λ,k
= Ḡ

(i)H
k R̄

(i)
ȳλ,kḠ

(i)
k =

1

T
D̆

(i)
k

(
Λ

(i)
k

)−1

D̆
(i)H
k (2.73)

The cost function to be optimized with respect to the beamforming filter q
(m)
k is

then given by

q
(m)
k

(i) = argmin
q

(m)
k

[
q

(m)
k

HR
(i)

d̆λ,k
q

(m)
k s.t. q

(m)
k

H ṽ
(m)
k = 1

]
(2.74)

The constraint is rewritten due to the identity matrix in the M first rows of Ḡk

and the fact that only the first M entries of v̄k are nonzero. The solution to this

optimization problem is equivalent to the MPDR solution in eq. (2.8) given by

q
(m)
k

(i) =

(
R

(i)

d̆λ,k

)−1

ṽ
(m)
k

ṽ
(m)
k

H
(
R

(i)

d̆λ,k

)−1

ṽ
(m)
k

(2.75)

However due to the weights inside R
(i)

d̆λ,k
this is rather a wMPDR. The possibility

of accessing the dereverberated signal is an advantage of the factorized algorithm.

It enables e.g. new estimation of the SPP, the noise covariance matrix Rn,k and

the RTF by CW in between the WPE stage and the wMPDR stage in each

iteration of the optimization process. However the unified WPD algorithm has

the advantage of fewer calculations per iteration, i.e. less computing cost per

iteration. The complete workflow of the unified and the factorized version of

MISO-WPD are presented in fig. 3.1 and algorithm 5 respectively, including an

additional shape parameter p is as proposed in section 3.1.
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Chapter 3

Proposed `p-Norm Reformulation

for WPD

Similarly to the `p-norm reformulation of MISO-WPE in section 2.4.2.4 also the

WPD algorithm can by reformulated using the `p-norm as its cost function. How-

ever in order to achieve denoising with an additional beamforming structure the

MPDR constraint is added to the cost function. Furthermore in section 3.2 the

`p-norm reformulation of WPD is modified using the mixed norm `Φ;2,p, which

enables the derivation of a MIMO-WPD algorithm.

3.1 MISO-WPD Reformulation with `p-Norm

The cost function of MISO-WPD given in eq. (2.61) can be reformulated with

the `p-norm as

C
(
z

(m)
k

)
=
∥∥∥z(m)

k

∥∥∥p
p

s.t. h̄
(m)
k

H v̄
(m)
k = 1 (3.1)

whereby p is the shape parameter of the sparsity promoting cost function, which

is p = 0 in the conventional case, and v̄
(m)
k is the zero padded RTF vector. The

optimal filter vector h̄
(m)
k is obtained by the constrained minimization of the cost

function as

h̄
(m)
k

WPD = argmin
h̄

(m)
k

C
(
z

(m)
k

)
s.t. h̄

(m)
k

H v̄
(m)
k = 1

= argmin
h̄

(m)
k

∥∥∥z(m)
k

∥∥∥p
p

s.t. h̄
(m)
k

H v̄
(m)
k = 1

(3.2)

Analogously to section 2.4.2.4 the `p-norm optimization problem in eq. (3.2) is

approached with a series of weighted `2-norm subproblems like in eq. (2.48), which
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Figure 3.1: Flow chart of unified MISO-WPD.

are stated as

h̄
(m)
k

(i) = argmin
h̄

(m)
k

z
(m)
k

(
Λ

(i)
k

)−1

z
(m)
k

H s.t. h̄
(m)
k

H v̄
(m)
k = 1

= argmin
h̄

(m)
k

h̄
(m)
k

HȲk

(
Λ

(i)
k

)−1

ȲH
k h̄

(m)
k s.t. h̄

(m)
k

H v̄
(m)
k = 1

= argmin
h̄

(m)
k

h̄
(m)
k

HR̄
(i)
ȳλ,kh̄

(m)
k s.t. h̄

(m)
k

H v̄
(m)
k = 1

(3.3)

The solution to each of this subproblems is equivalent to the filter update of the

conventional WPD algorithm in eq. (2.62) given by

h̄
(m)
k

(i) =
R̄

(i)−1
ȳλ,k v̄

(m)
k

v̄
(m)
k

HR̄
(i)−1
ȳλ,k v̄

(m)
k

(3.4)

This optimal filter of the subproblem can now be used for the update of the

weights λk,t in the same way as in eq. (2.45), which results in

λ
(i)
k,t =

∣∣∣z(m)
k,t

(i−1) + ε
∣∣∣2−p (3.5)

whereby it is to notice that the WPD algorithm proposed by [29] is extended

with a CGG sparse prior in the LH function [17], which leads to the subtraction

of the shape parameter p in the exponent of the weight update. The complete

workflow of the unified and factorized version (analogously to section 2.5.2) of

MISO-WPD are described by fig. 3.1 and algorithm 5 respectively.
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Algorithm 5: Factorized MISO-WPD (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk ∀ k
parameters: reference channel m, frequency dependent prediction delay τk,

frequency dependent prediction filter length Lk, shape parameter p,
regularization parameter ε, maximal number of iterations of the
alternating optimization Imax, convergence tolerance ηc

functions : constructing convolutional signal matrix build (•), constructing
diagonal matrix from vector diagMat (•), speech presence probability
spp (•), trace of a matrix trace (•), covariance whitening cw (•)

output : batch-vector of single-channel beamformed signal z
(m)
k ∀ k

1 foreach k ∈ {1, 2, . . . ,K} do // process each frequency subband k individually

2 Ỹk = build (Yk; τk, Lk) // builds convolutional signal matrix with past frames

3 Λk = diagMat

(∣∣∣y(m)
k

∣∣∣2 + ε

)1− p2
// initialize weights using the the noisy signal

4 z
(m)
k,old = y

(m)
k // initialize z

(m)
k,old with the noisy signal

5 for i← 1 to Imax do // iterations of alternating optimization

6 R̃ỹλ,k = 1
T ỸkΛ

−1
k ỸH

k // estimate weighted noisy covariance matrix by SCM

7 Pyλ,k = 1
T ỸkΛ

−1
k YH

k // estimate weighted noisy cross-covariance matrix by SCM

8 G̃k = R̃−1
ỹλ,kPyλ,k // estimate reverberation filter matrix

9 D̆k = Yk − G̃H
k Ỹk // dereverberation by subtracting estimated reverberation

10 Rd̆λ,k = 1
T D̆kΛ

−1
k D̆H

k // estimate weighted dereverberated covariance matrix by SCM

11 Σk = spp
(
D̆k

)
// estimate SPP of dereverberated signal

12 Rn,k =
D̆k(IN−Σk)D̆H

k

trace(IN−Σk) // estimate noise covariance matrix by SCM using the SPP

13 ṽ
(m)
k = cw

(
D̆k,Rn,k,m

)
// estimating RTF-vector by CW (algorithm 2)

14 q
(m)
k =

R−1

d̆λ,k
ṽ

(m)
k

ṽ
(m)
k

HR−1

d̆λ,k
ṽ

(m)
k

// estimate wMPDR beamforming vector

15 z
(m)
k = q

(m)
k

HD̆k // estimate beamformed signal

16 if

∥∥∥z
(m)
k −z

(m)
k,old

∥∥∥
2∥∥∥z

(m)
k,old

∥∥∥
2

< ηc then // convergence criterion η

17 break // breaks the for loop of the alternating optimization

18 else

19 Λk = diagMat

(∣∣∣z(m)
k

∣∣∣2 + ε

)1− p2
// update weights using the beamformed

signal

20 z
(m)
k,old = z

(m)
k // store output for convergence criterion of next iteration
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3.2 Proposed MIMO-WPD beamforming

The first idea of the following proposed MIMO-WPD derivations was to provide

a multi-channel beamformed signal zk,t in order to use multiple channels for post-

processing. However we show that the MIMO formulation mainly modifies the

update of the weights λk,t. The underlying signal model is described in section 2.1

and the MIMO convolutional beamformer H̄k = ḠkQk =
[
h̄

(1)
k , h̄

(2)
k , . . . , h̄

(M)
k

]
∈

CM(Lk−τk+1)×M should perform joint dereverberation and denoising according to

zk,t = H̄H
k ȳk,t = QH

k ḠH
k ȳk,t (3.6)

whereby Qk =
[
q

(1)
k ,q

(2)
k , . . . ,q

(M)
k

]
∈ CM×M is a MIMO-wMPDR beamformer

matrix. Writing this filter equation in its batch formulation gives

Zk = H̄H
k Ȳk = QH

k ḠH
k Ȳk (3.7)

3.2.1 Filter Optimization

In order to find the optimal convolutional filter matrix I here propose the following

MIMO extension of the cost function in eq. (3.2) analogously to eq. (2.52) as

H̄WPD
k = argmin

H̄k

C (Zk) s.t. H̄H
k v̄k = vk

= argmin
H̄k

‖Zk‖pΦ;2,p s.t. H̄H
k v̄k = vk

(3.8)

The extension of the cost function compared to MIMO-WPE is given by the

additional constraints for every channel. Here also the extension compared to

STFT
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weight
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multi-
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time
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Figure 3.2: Flow chart of unified MIMO-WPD.
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MISO-WPD can be noticed, since its cost function considered only the reference

channel m. Important to notice here is that the multiple constraints of MIMO-

WPD are described using the non-normalized mATF vk and the corresponding

zero-padded vector

v̄k =

vk, 0, 0, . . . , 0︸ ︷︷ ︸
M(Lk−τk) zeros


T

∈ CM(Lk−τk+1) (3.9)

which can be obtained e.g. by CW (see eq. (2.19)). Like before this `p-norm op-

timization problem is approached with a series of weighted `2-norm subproblems

like in eq. (3.3), which are stated as

H̄
(i)
k = argmin

H̄k

trace

(
Zk

(
Λ

(i)
k

)−1

ZH
k Φ−1

)
s.t. H̄H

k v̄k = vk

= argmin
H̄k

trace

(
H̄H
k Yk

(
Λ

(i)
k

)−1

YH
k H̄kΦ

−1

)
s.t. H̄H

k v̄k = vk

= argmin
H̄k

trace
(
H̄H
k R̄

(i)
ȳλ,kH̄kΦ

−1
)

s.t. H̄H
k v̄k = vk

= argmin
H̄k

trace
(
H̄kΦ

−1H̄H
k R̄

(i)
ȳλ,k

)
s.t. v̄Hk H̄k = vHk

(3.10)

whereby the following identity of traces is used: trace(ABC) = trace(CAB) =

trace(BCA). The solution to this problem can be obtained by using the method

of Lagrange multipliers. The Lagrangian function L with the auxiliary parameter

vector α ∈ CM for the constraint is to be optimized and can be formulated as

(iteration index i omitted)

L
(
H̄k,α

)
= trace

(
H̄kΦ

−1H̄H
k R̄ȳλ,k

)
+
(
v̄Hk H̄k − vHk

)
α (3.11)

The gradient of this Lagrangian function L in respect to the convolutional filter

matrix H̄k and the auxiliary parameter vector α is set to zero, in order to find

the optimum of the cost function. The following identity, shown in equation 233

from [35], is used to reformulate the complex gradient matrix

∇H̄k
L
(
H̄k,α

)
= 2

∂L
(
H̄k,α

)
∂H̄∗k

(3.12)
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Inserting the Lagrangian function leads to

∇H̄k
L
(
H̄k,α

)
= 2

∂

∂H̄∗k
trace

(
H̄kΦ

−1H̄H
k R̄ȳλ,k

)
︸ ︷︷ ︸

A

+2
∂

∂H̄∗k

(
v̄Hk H̄k − vHk

)
α

(3.13)

whereby the derivative of the part A is given by table IV of [36] as

∂

∂H̄∗k
trace

(
H̄kΦ

−1H̄H
k R̄ȳλ,k

)
= R̄ȳλ,kH̄kΦ

−1 (3.14)

so that the complete gradient can be formulated as

∇H̄k
L
(
H̄k,α

)
= 2

(
R̄ȳλ,kH̄kΦ

−1 + v̄kα
H
) !

= 0

⇔ R̄ȳλ,kH̄kΦ
−1 !

= −v̄kα
H

⇔ H̄k
!

= −R̄−1
ȳλ,kv̄kα

HΦ

(3.15)

whereby R̄ȳλ,k is assumed to be invertible. The gradient in respect to the auxiliary

parameter vector α is given by the constraint itself as

∇αL
(
H̄k,α

)
= v̄Hk H̄k − vHk

!
= 0

⇔ v̄Hk H̄k
!

= vHk

⇔ −v̄Hk R̄−1
ȳλ,kv̄kα

HΦ
!

= vHk

⇔ αH
!

=
−vHk Φ−1

v̄Hk R̄−1
ȳλ,kv̄k

(3.16)

where the result of eq. (3.15) is inserted in the second step. The solution can be

obtained by inserting αH from eq. (3.16) into eq. (3.15)

H̄
(i)
k =

R̄
(i)−1
ȳλ,k v̄kv

H
k

v̄kHR̄
(i)−1
ȳλ,k v̄k

(3.17)

The update of the weights λk,t is equivalent to the weight update of MIMO-WPE

in eq. (2.54) and can also be regularized by a small positive constant ε in order

to avoid division by zero.

λ
(i)
k,t =

∥∥∥z(i−1)
k,t + ε

∥∥∥2−p

Φ;2
(3.18)

The complete workflow of the unified MIMO-WPD is presented in fig. 3.2.
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3.2.2 Factorized MIMO-WPD

Similar to section 2.5.2 also a factorized formulation of MIMO-WPD is possible.

Hereby the convolutional filter matrix H̄k factorizes into the dereverberation filter

matrix Ḡk and the beamforming filter matrix Qk as

H̄k = ḠkQk (3.19)

The estimation of Ḡk as the first step is completely equivalent to its MISO version

described in paragraph 2.5.2.1.1. The cost function for the beamforming filter

matrix Qk can be formulated as

Q
(i)
k = argmin

Qk

QH
k R

(i)

d̆λ,k
Qk s.t. QH

k vk = vk (3.20)

It is to be noticed that here again the mATF instead of the RTF is used to define

the distortionless constraint for each channel in a parallel manner. The solution

to this optimization problem is similarly to eq. (3.17) given by

Q
(i)
k =

R
(i)−1

d̆λ,k
vkv

H
k

vkHR
(i)−1

d̆λ,k
vk

(3.21)

which can be referred to as a MIMO-wMPDR beamformer. The factorized solu-

tion has a general advantage over the unified solution: It is possible to get access

to the dereverberated signal, which e.g. can offer new estimation of the SPP, the

resulting noise covariance matrix Rn,k and the resulting RTF by CW in between

the WPE stage and the wMPDR stage in each iteration of the optimization pro-

cess. However the unified WPD algorithm has the advantage of fewer calculations

per iteration, which means less computing power per iteration is required. The

complete workflow of the factorized MIMO-WPD is described in algorithm 6.
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Algorithm 6: Factorized MIMO-WPD (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk ∀ k
parameters: frequency dependent prediction delay τk, frequency dependent

prediction filter length Lk, shape parameter p, regularization parameter
ε, maximal number of iterations of the alternating optimization Imax,
convergence tolerance ηc

functions : constructing convolutional signal matrix build (•), constructing
diagonal matrix from vector diagMat (•), speech presence probability
spp (•), trace of a matrix trace (•), covariance whitening cw (•)

output : batch-matrix of multi-channel beamformed signal Zk ∀ k

1 foreach k ∈ {1, 2, . . . ,K} do // process each frequency subband k individually

2 Ỹk = build (Yk; τk, Lk) // builds convolutional signal matrix with past frames

3 foreach t ∈ {1, 2, . . . , T} do // process each time frame t individually

4 λk,t =
(
‖yk,t‖2Φ;2 + ε

)1− p2
// initialize weights by mixed norm of the noisy signal

5 Λk = diagMat (λk = [λk,1, λk,2, . . . , λk,T ])
6 Zk,old = Yk // initialize Zk,old with the noisy signal

7 for i← 1 to Imax do // iterations of alternating optimization

8 R̃ỹλ,k = 1
T ỸkΛ

−1
k ỸH

k // estimate weighted noisy covariance matrix by SCM

9 Pyλ,k = 1
T ỸkΛ

−1
k YH

k // estimate weighted noisy cross-covariance matrix by SCM

10 G̃k = R̃−1
ỹλ,kPyλ,k // estimate reverberation filter matrix

11 D̆k = Yk − G̃H
k Ỹk // dereverberation by subtracting estimated reverberation

12 Rd̆λ,k = 1
T D̆kΛ

−1
k D̆H

k // estimate weighted dereverberated covariance matrix by SCM

13 Σk = spp
(
D̆k

)
// estimate SPP of dereverberated signal

14 Rn,k =
D̆k(IN−Σk)Λ−1

k D̆H
k

trace(IN−Σk) // estimate noise covariance matrix by SCM using the SPP

15 vk = cw
(
D̆k,Rn,k

)
// estimating mATF-vector by CW (algorithm 2)

16 Qk =
R−1

d̆λ,k
vkvHk

vHk R−1

d̆λ,k
vk

// estimate multi-channel wMPDR beamforming matrix

17 Zk = QH
k D̆k // perform beamforming on dereverberated signal

18 if
‖Zk−Zk,old‖Fro

‖Zk,old‖Fro
< ηc then // relative convergence criterion η

19 break // breaks the for loop of the alternating optimization

20 else
21 foreach t ∈ {1, 2, . . . , T} do // process each time frame t individually

22 λk,t =
(
‖zk,t‖2Φ;2 + ε

)1− p2
// updating weights by mixed norm of zk,t

23 Λk = diagMat (λk = [λk,1, λk,2, . . . , λk,T ])
24 Zk,old = Zk // store output for convergence criterion of next iteration
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3.2.3 MISO-WPD with MIMO Weight Update

An investigation of the proposed MIMO-WPD algorithm reveals that an equiva-

lent MISO formulation of this algorithm is possible by only adjusting the update

of the weights λk,t. The MISO-WPD formulation is given by

z
(m)
k,t

(i) = h̄
(m)
k

(i)H ȳk,t =
v̄

(m)
k

HR̄
(i)−1
ȳλ,k

v̄
(m)
k

HR̄
(i)−1
ȳλ,k v̄

(m)
k

ȳk,t

=

(
v̄k

v
(m)
k

)H
R̄

(i)−1
ȳλ,k(

v̄k

v
(m)
k

)H
R̄

(i)−1
ȳλ,k

v̄k

v
(m)
k

ȳk,t = v
(m)
k

v̄k
HR̄

(i)−1
ȳλ,k

v̄kHR̄
(i)−1
ȳλ,k v̄k

ȳk,t︸ ︷︷ ︸
reference−independent

(3.22)

This final term has a reference-independent part, which is additionally multiplied

with the mATF value corresponding to the reference channel m, to obtain the

MISO-WPD beamformer. This provides the possibility of formulating a MIMO-

WPD filter operation by stacking the STFT-coefficients of the beamformed signal

and the mATF as

z
(i)
k,t =

vkv̄k
HR̄

(i)−1
ȳλ,k

v̄kHR̄
(i)−1
ȳλ,k v̄k

ȳk,t = H̄
(i)H
k ȳk,t (3.23)

Here it is proven that the proposed MIMO-WPD performs a MISO-WPD for

each channel in a parallel manner. However this is only true for one iteration

through the series of `2-norm subproblems, because it additionally modifies the

weight update. Since vk = v
(m)
k ṽ

(m)
k this can be reformulated as

z
(i)
k,t =

v
(m)
k ṽ

(m)
k v̄k

HR̄
(i)−1
ȳλ,k

v̄kHR̄
(i)−1
ȳλ,k v̄k

ȳk,t = ṽ
(m)
k z

(m)
k,t

(i) (3.24)

The algorithm can now be adjusted to a MISO version by shifting the RTF ṽ
(m)
k

from the MIMO-WPD filter operation in eq. (3.24) into the update of the weights

λk,t. The MISO-WPD weight update is given by

λ
(i)
k,t =

∣∣∣z(m)
k,t

(i−1)
∣∣∣2−p (3.25)

The weight update of the MISO-WPD algorithm can be modified to be equivalent

to MIMO-WPD by inserting the RTF ṽ
(m)
k from eq. (3.24) into eq. (3.25) as

λ
(i)
k,t =

∥∥∥z(i−1)
k,t

∥∥∥2−p

Φ;2
=
∥∥∥z(m)

k,t
(i−1)ṽ

(m)
k

∥∥∥2−p

Φ;2
=
∣∣∣z(m)
k,t

(i−1)
∣∣∣2−p∥∥∥ṽ(m)

k

∥∥∥2−p

Φ;2
(3.26)
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An overview of the complete workflow of factorized MIMO equivalent MISO-WPD

is presented in algorithm 7.

Algorithm 7: Factorized MIMO equivalent MISO-WPD (batch)

input : batch-matrix of multi-channel noisy microphone signal Yk ∀ k
parameters: reference channel m, frequency dependent prediction delay τk,

frequency dependent prediction filter length Lk, shape parameter p,
regularization parameter ε, maximal number of iterations of the
alternating optimization Imax, convergence tolerance ηc

functions : constructing convolutional signal matrix build (•), constructing
diagonal matrix from vector diagMat (•), speech presence probability
spp (•), trace of a matrix trace (•), covariance whitening cw (•)

output : batch-vector of single-channel beamformed signal z
(m)
k ∀ k

1 foreach k ∈ {1, 2, . . . ,K} do // process each frequency subband k individually

2 Ỹk = build (Yk; τk, Lk) // builds convolutional signal matrix with past frames

3 foreach t ∈ {1, 2, . . . , T} do // process each time frame t individually

4 λk,t =
(
‖yk,t‖2Φ;2 + ε

)1− p2
// initialize weights by mixed norm of the noisy signal

5 Λk = diagMat (λk = [λk,1, λk,2, . . . , λk,T ])

6 z
(m)
k,old = y

(m)
k // initialize z

(m)
k,old with the noisy signal

7 for i← 1 to Imax do // iterations of alternating optimization

8 R̃ỹλ,k = 1
T ỸkΛ

−1
k ỸH

k // estimate weighted noisy covariance matrix by SCM

9 Pyλ,k = 1
T ỸkΛ

−1
k YH

k // estimate weighted noisy cross-covariance matrix by SCM

10 G̃k = R̃−1
ỹλ,kPyλ,k // estimate reverberation filter matrix

11 D̆k = Yk − G̃H
k Ỹk // dereverberation by subtracting estimated reverberation

12 Rd̆λ,k = 1
T D̆kΛ

−1
k D̆H

k // estimate weighted dereverberated covariance matrix by SCM

13 Σk = spp
(
D̆k

)
// estimate SPP of dereverberated signal

14 Rn,k =
D̆k(IN−Σk)D̆H

k

trace(IN−Σk) // estimate noise covariance matrix by SCM using the SPP

15 ṽ
(m)
k = cw

(
D̆k,Rn,k,m

)
// estimating RTF-vector by CW (algorithm 2)

16 q
(m)
k =

R−1

d̆λ,k
ṽ

(m)
k

ṽ
(m)
k

HR−1

d̆λ,k
ṽ

(m)
k

// estimate wMPDR beamforming vector

17 z
(m)
k = q

(m)
k

HD̆k // estimate beamformed signal

18 if

∥∥∥z
(m)
k −z

(m)
k,old

∥∥∥
2∥∥∥z

(m)
k,old

∥∥∥
2

< ηc then // convergence criterion η

19 break // breaks the for loop of the alternating optimization

20 else

21 Λk = diagMat

(∣∣∣z(m)
k

∣∣∣2∥∥∥ṽ(m)
k

∥∥∥2

Φ;2
+ ε

)1− p2
// update weights

22 z
(m)
k,old = z

(m)
k // store output for convergence criterion of next iteration
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Chapter 4

Evaluation by Experiments

The main objective of the evaluation experiments is the comparison of the pro-

posed MIMO-WPD algorithm with the conventional MISO-WPD algorithm. So

each of the following experiments is performed using both algorithms. After

introduction of the experimental environment in section 4.1 the following two

experiments are performed.

• Evaluation of convergence performance (section 4.2)

• Influence of shape parameter p (section 4.3)

4.1 Experimental Environment

Here the main process flow of the experiments is further described. To this

end, the dataset, the objective measures and the choice of parameters for the

algorithms are introduced.

4.1.1 Dataset

To be able to directly compare results to the recent publications of WPD [1,

29, 30] the evaluation was performed on the Reverb Challenge dataset [37].

This dataset was built assuming a single stationary speaker uttering sentences

within different rooms and it contains speech signals of real and simulated data

recorded by a 1-channel, a 2-channel and an 8-channel circular microphone array.

However in this work only the simulated 8-channel recordings of the development

set are used for evaluation. This subset contains 1484 recordings with a total

length of about three hours, whereby the sentences are uttered by 10 different

speakers. These recordings are based on clean signals from the WSJCAM0 corpus
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[38], which are convolved with measured RIRs and further degraded by additive

stationary noise signals with a fixed SNR of about 20 dB. The RIRs correspond

to three different rooms with reverberation times T60 of

• RIR1 → T60 = 250 ms

• RIR2 → T60 = 500 ms

• RIR3 → T60 = 700 ms

For each room two scenarios with different microphone array to speaker distances

are recorded:

• ”near” → 100 cm

• ”far” → 250 cm

which leads to six different multi-channel RIRs. For the first two experiments the

Reverb Challenge dataset is used, whereby each utterance is convolved with one

of the ”near” and the ”far” RIRs for one of the three rooms (chosen randomly).

These simulated audio snippets are used for the experiments further described in

section 4.2 and section 4.3.

4.1.2 Objective Measures of Speech Quality

Objective measures are utilized to enable proper comparison of the algorithms.

Reference signals are needed for most of the objective measures, for which we

used the clean signals. The following three objective measures are evaluated:

• Perceptual evaluation of speech quality (PESQ) [39]:

An objective measure of the perceptual speech quality requiring a reference

signal. Larger values indicate better speech quality.

• Frequency weighted segmetal SNR (FWSSNR) [40]:

An objective measure which performs a frequency dependent weighting on

the segmental SNR, for which a reference signal is necessary. Values are

given in dB, whereby larger values indicate better speech quality.

• Cepstral distance (CD) [40]:

An objective measure providing an estimate of the logarithmic distance

between two magnitude spectra. Smaller values indicate that the output

signal is closer to the clean reference signal, which is preferred.
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4.1.3 Choice of Parameters

In order to perform the suggested experiments with the described algorithms

a number of parameters has to be set. Parameters that were not tuned were

set to standard values and kept constant across evaluations. Unless mentioned

differently in a particular experiment the following values shown in table 4.1

are used for the evaluation experiments. The sampling frequency of the data is

already fixed by the choice of the dataset. The STFT transform was chosen as a

basic transformation from the time domain into a framed frequency domain. The

specific parameters of the STFT transform are chosen according to [1], which is

also used as a motivation to chose the same frequency dependent prediction delays

and same frequency dependent prediction filter lengths. For the experiments an

energy-based voice activity detection (VAD) of the noisy microphone signal is

estimated, which is then used to determine the noise covariance matrix by SCM

similar as in eq. (2.12). It replaced the SPP in the formulated algorithms, but

was not updated in each iteration. However the noise is estimated only by the

noisy frames before the first and after the last speech frame, which are detected

by the VAD.

Table 4.1: Choice of fixed parameters for the WPD algorithms.

Parameter Symbol Value
sampling frequency 16 kHz
transform STFT
frame length 1024 taps =̂ 64 ms
frame shift 256 taps =̂ 16 ms
window Hamming
prediction delay τk 4 frames =̂ 64 ms
prediction filter length
(0 kHz - 0.8 kHz)

Lk=[0,51] 12 frames =̂ 192 ms

prediction filter length
(0.8 kHz - 1.5 kHz)

Lk=[52,96] 10 frames =̂ 160 ms

prediction filter length
(1.5 kHz - 8 kHz)

Lk=[97,512] 6 frames =̂ 96 ms

regularization constant ε 1× 10−8

reference channel m 1
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4.2 Convergence Performance

In the first step the convergence performance of the MIMO and MISO-WPD

algorithm was investigated. The following maximal numbers of iterations per

frequency of the alternating optimization procedure were chosen:

Imax = {1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55} (4.1)

The notches in the following boxplots indicate whether medians of two distribu-

tions are significantly different from each another. Figure 4.1 shows clearly that

the median over all signals of the convergence criterion η is significantly smaller

for the MIMO-WPD algorithm compared to MISO-WPD. This indicates that the

MIMO version of the algorithm converges more quickly than the MISO version.

-15

-10

-5

 2  3  4  5  7  9 11 13 15 18 21 24 27 30 34 38 42 46 50 55

MISO

MIMO

 2  3  4  5  7  9 11 13 15 18 21 24 27 30 34 38 42 46 50 55

0

0.5

1

Figure 4.1: This boxplot shows the distributions of the base-2-logarithm of the
convergence criterion η over the maximal iterations. The distributions contain the
convergence per signal, which is defined as the geometric mean of the convergence
criteria for each frequency subband. The upper plot shows a comparison between
the MIMO-WPD algorithm and the MISO-WPD algorithm, whereas the lower
plot shows the difference of the two. Hereby positive values indicate smaller
convergence criteria η for MIMO-WPD.
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In the second step the tolerance ηc for the convergence criterion η was fixed and

the amount of iterations needed for convergence was determined. The following

values for the tolerance ηc of the convergence criterion were chosen:

ηc =
1

2b
with b = {0, 1, 2, . . . , 20} (4.2)

Figure 4.2 shows that the median over all signals of the mean iterations until

convergence for MIMO-WPD is significantly smaller for tolerances of ηc < 2−3,

compared to MISO-WPD. This indicates that the MIMO version converges with

fewer iterations than its MISO equivalent.
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Figure 4.2: This boxplot shows the distributions of the iterations needed to con-
verge for fixed tolerances ηc of the convergence criteria. The distributions contain
the mean iteration per signal, which is defined as the arithmetic mean of the iter-
ations for each frequency subband. The upper plot shows a comparison between
the MIMO-WPD algorithm and the MISO-WPD algorithm, whereas the lower
plot shows the difference of the two. Hereby positive values indicate fewer itera-
tions for MIMO-WPD.
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4.2.1 Convergence of Objective Speech Quality Measures

Since we aim at improving the speech quality, we are interested in the performance

measured by the objective speech quality measures. Therefore the dependency

of the objective speech quality measures described in section 4.1.2 over the max-

imal number of iterations Imax is presented in the following. Hereby fixing the

maximal number of iterations Imax in contrast to fixing the tolerance ηc of the

convergence criterion has the advantage, that the computing time is deterministic,

i.e. predictable. Figure 4.3 reveals that the MIMO version of the WPD algorithm

significantly outperforms the MISO version in terms of PESQ improvement, since

the median after convergence is 0.07 larger. MIMO-WPD also converges faster

with only 3 iterations compared to 7 iterations for the MISO version. The median

of the PESQ improvement for MIMO-WPD after only one iteration is significantly

larger than the median of PESQ improvement for MISO-WPD after convergence.

Figure 4.3: This boxplot shows the distributions of the PESQ of the beamformed
signals and its improvements over the iterations Imax. The upper plot shows
a comparison of the absolute PESQ between the MIMO-WPD and the MISO-
WPD algorithm, the middle plot shows a comparison of the PESQ improvement
compared to the noisy input signal between the MIMO-WPD and the MISO-
WPD algorithm, whereas the lowest plot shows the difference of the two. In the
lowest plot positive values indicate a larger PESQ improvement for MIMO-WPD.
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Figure 4.4 reveals that MIMO-WPD also outperforms MISO-WPD in terms

of FWSSNR after both versions of the WPD algorithm converged, with a 0.35 dB

larger median of the FWSSNR improvement. Additionally MIMO-WPD reaches

convergence of the FWSSNR after 3 iterations, whereas MISO-WPD needs 7

iterations. The median after convergence of FWSSNR improvement for MISO-

WPD is not significantly larger than the median of FWSSNR improvement for

MIMO-WPD after only one iteration.

Figure 4.4: This boxplot shows the distributions of the FWSSNR of the beam-
formed signals and its improvements over the iterations Imax. The upper plot
shows a comparison of the absolute FWSSNR between the MIMO-WPD and the
MISO-WPD algorithm, the middle plot shows a comparison of the FWSSNR
improvement compared to the noisy input signal between the MIMO-WPD and
the MISO-WPD algorithm, whereas the lowest plot shows the difference of the
two. In the lowest plot positive values indicate more FWSSNR improvement for
MIMO-WPD.
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Figure 4.5 shows that MIMO-WPD additionally outperforms MISO-WPD in

terms of CD after both algorithms converged, with a 0.1 larger median of the CD

improvement. For the CD improvement MIMO-WPD converges after 4 iterations,

whereas the MISO version needs 9 iterations. The median of the CD improvement

for MIMO-WPD after only one iteration is insignificantly larger than the median

of CD improvement for MISO-WPD after convergence.

1

2

3

 1  2  3  4  5  7  9 11 13 15 18 21 24 27 30 34 38 42 46 50 55

MISO

MIMO

1

1.5

2

 1  2  3  4  5  7  9 11 13 15 18 21 24 27 30 34 38 42 46 50 55

 1  2  3  4  5  7  9 11 13 15 18 21 24 27 30 34 38 42 46 50 55

0

0.5

Figure 4.5: This boxplot shows the distributions of the CD of the beamformed
signals and its improvements over the iterations Imax. The upper plot shows a
comparison of the absolute CD between the MIMO-WPD and the MISO-WPD
algorithm, the middle plot shows a comparison of the CD improvement compared
to the noisy input signal between the MIMO-WPD and the MISO-WPD algo-
rithm, whereas the lowest plot shows the difference of the two. In the lowest plot
positive values indicate a larger CD improvement for MIMO-WPD.
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4.3 Influence of Shape Parameter p

The shape parameter p determines the sparsity of the CGG sparse prior or the

`p-norm cost function respectively as seen in fig. 2.3. Here the influence of this

parameter is investigated whereby the proposed MIMO-WPD algorithm and the

conventional MISO-WPD algorithm are performed on the Reverb Challenge

dataset (see section 4.1.1) with the following shape parameter values

p = {0, 0.1, 0.2, 0.3, . . . , 1.9, 2} (4.3)

Since the interest lies in a comparison of the two algorithms after convergence a

maximal number of iterations Imax = 15 was chosen for the following experiments,

which is motivated by the results shown in section 4.2.1. In the following plots

Figure 4.6: This boxplot shows the distributions of the PESQ of the beamformed
signals and its improvements over the shape parameter p. The upper plot shows
a comparison of the absolute PESQ between the MIMO-WPD and the MISO-
WPD algorithm, the middle plot shows a comparison of the PESQ improvement
compared to the noisy input signal between the MIMO-WPD and the MISO-
WPD algorithm, whereas the lowest plot shows the difference of the two. In the
lowest plot positive values indicate a larger PESQ improvement for MIMO-WPD.
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(fig. 4.6, fig. 4.7, fig. 4.8) it can be observed, that a shape parameter of p > 1

leads to a performance reduction in all three objective speech quality measures.

Comparing all of the results reveals that a shape parameter value of p ≈ 0.5

leads to the highest performances for MIMO-WPD in all three measures, whereas

MISO-WPD has its performance peak for PESQ at p ≈ 0.6, for FWSSNR at

p ≈ [0.4, 0.5] and for CD at p ≈ 0.4. However it is very interesting that the

largest medians of MIMO-WPD are only insignificantly larger than the largest

medians of MISO-WPD, for all three objective measures. This is similar to the

fact that for p ≈ [0.4, 0.6] the distributions of MIMO-WPD and MISO-WPD are

not significantly different.

Figure 4.7: This boxplot shows the distributions of the FWSSNR of the beam-
formed signals and its improvements over the shape parameter p. The upper plot
shows a comparison of the absolute FWSSNR between the MIMO-WPD and the
MISO-WPD algorithm, the middle plot shows a comparison of the FWSSNR
improvement compared to the noisy input signal between the MIMO-WPD and
the MISO-WPD algorithm, whereas the lowest plot shows the difference of the
two. In the lowest plot positive values indicate a larger FWSSNR improvement
for MIMO-WPD.
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Figure 4.8: This boxplot shows the distributions of the CD of the beamformed
signals and its improvements over the shape parameter p. The upper plot shows
a comparison of the absolute CD between the MIMO-WPD and the MISO-WPD
algorithm, the middle plot shows a comparison of the CD improvement compared
to the noisy input signal between the MIMO-WPD and the MISO-WPD algo-
rithm, whereas the lowest plot shows the difference of the two. In the lowest plot
positive values indicate a larger CD improvement for MIMO-WPD.
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Chapter 5

Conclusion

In many everyday scenarios reverberation and noise have clear detrimental effects

on the speech quality as described in chapter 1. Therefore a need arises to develop

and improve dereverberation and denoising algorithms. Over the past years many

algorithms performing either denoising, dereverberation, or a combination of both

were proposed, of which some are described in chapter 2. Recently the WPD

algorithm was proposed by Nakatani et al. [1], which is described in section 3.2.

This work proposes a reformulation of this WPD algorithm using the `p-norm

as cost function in chapter 3. This introduces the shape parameter p, which

controls the degree of sparsity of the cost function. Finally it changes the update

of the weights (variances) in the conventional WPD as described in section 3.1.

In the next step the MISO version of the WPD algorithm is extended to a MIMO

version in section 3.2, whereby it is shown that this extension only requires a small

modification of the weight update. In chapter 4 we investigated the performance

of the MIMO and MISO version of the WPD algorithm as well as the influence of

the shape parameter p. The evaluation was performed on the Reverb Challenge

dataset described in section 4.1.1, which contains simulated multi-channel noisy

reverberant speech signals. In section 4.2.1 it was shown that MIMO-WPD with

a shape parameter of p = 0 significantly outperforms MISO-WPD in terms of

PESQ, FWSSNR and CD. In addition MIMO-WPD outperforms MISO-WPD in

terms of convergence speed, which indicates less computing cost. However the

investigation of the influence of the shape parameter p in section 4.3 revealed that

the performance of MIMO-WPD and MISO-WPD is similar for optimal values

of p chosen for each algorithm. This indicates that the two modifications of the

weight update, which are the shape parameter p and an additional RTF-vector

term leading to MIMO-WPD, are non-complimentary.
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5.1 Outlook

There are many parts of the WPD algorithm, which can be further investigated.

One aspect is the mentioned correlation between the shape parameter modifica-

tion and the RTF-vector term modification of the weight update. Other interest-

ing directions include:

• Developing an adaptive version of the proposed MIMO-WPD with shape

parameter p based on [19–21], which would be able to perform online pro-

cessing in real time applications and to obtain estimates of signal statistics

at each time frame. The latter is very important for non-stationary signals,

whereby the RIR and the noise covariance matrix are time-varying.

• Performing additional source separation with the MIMO-WPD algorithm.

One approach could be merging this work with [41].

• Modification of the wMPDR beamforming stage in factorized WPD with a

multi-frame approach, which could be done similar as in [23, 42].

• Investigation of the influences of other parameters, e.g. the prediction delay,

prediction filter length or the choice of the transform with its frame length,

frame shift and window function.
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