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Abstract

Most single-channel speech enhancement algorithms in the short-time Fourier trans-

form (STFT) domain assume that neighbouring speech STFT coefficients are un-

correlated over time and frequency. Consequently, a commonly used approach is to

apply a (real-valued) Wiener gain (WG) to each noisy STFT coefficient indepen-

dently. Alternatively, exploiting the speech correlation between present and past

time frames results in a complex-valued filter which is applied to the noisy STFT

coefficients. Several single-channel inter-frame speech enhancement algorithms have

already been derived, such as the inter-frame Wiener filter (IFWF) and the inter-

frame minimum variance distortionless response (IFMVDR) filter. To provide a

trade-off between noise reduction and speech distortion, real-valued and complex-

valued speech-distortion weighted (SDW)-IFWFs have been derived, which differ in

their assumptions about the speech and noise correlation matrices. In this thesis,

the influence of the trade-off parameter is analysed for various implementations of

the SDW-IFWFs and SDW-WGs in a low-delay filter bank architecture. The in-

fluence of the oversampling-factor which determines the frequency resolution of the

real-valued SDW-IFWFs is also evaluated within the low-delay framework. Under

blind conditions (only the noisy speech signal available), three implementations of a

complex-valued SDW-IFWF are compared with two real-valued SDW-IFWFs using

practically feasible estimators for the required quantities. Each evaluation is tested

on diverse speech and noise material at different signal-to-noise ratios (SNRs), in

terms of objective speech quality and intelligibility measures as well as for noise

reduction.
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1 Introduction

Modern audio communication systems such as mobile phones, headsets, and hear-

ing aids are often unavoidably affected by undesired background noise. Interfering

speakers or ambient traffic are some examples of undesired additive noise which can

severely degrade the quality and intelligibility of speech. The aim in this thesis is

to use noise reduction techniques to filter out undesired, additive noise from speech

recorded by a single microphone in a noisy environment, to improve both the intel-

ligibility and quality of the speech.

Assuming that the speech and noise components are uncorrelated with eachother,

various noise reduction filters can be derived in the short-time Fourier transform

(STFT) domain. The basic STFT framework consists of a weighted overlap-add

(WOLA) filterbank which decomposes a noisy signal into overlapped, windowed

time segments and transforms each time segment into the frequency domain via dis-

crete Fourier transform (DFT). The enhanced speech signal in the time domain can

then be obtained by transforming the filtered noisy speech coefficients via inverse

STFT (ISTFT).

A common assumption made about speech or noise is that neighbouring time frames

and frequency bins are uncorrelated with eachother. One such filter which uses this

assumption is the single channel Wiener gain (WG) [1], which treats each time-

frequency point as uncorrelated with neighbouring points and applies the filter gains

to each time-frequency point independently.

In [2] it is shown that it is more accurate to take into account the so-called inter-

frame correlation (IFC) of speech and noise, since speech is highly correlated between

consecutive time frames and noise signals are also correlated to some degree. This

assumption allows complex-valued filters to be derived, such as inter-frame Wiener

filters (IFWFs), inter-frame minimum-variance distortionless response (IFMVDR)

filters, and speech-distortion weighted- (SDW)-IFWFs (also known as trade-off fil-

ters) [2–6], which are applied to coefficient vectors containing past and present

frames of the noisy speech to obtain an estimate of the speech STFT coefficients.

The IFC matrix of the noisy speech, which is required in all filters which exploit the

IFC, contains the autocorrelation estimates of the noisy speech and can be estimated

in a few ways, the most common of which is using a first-order recursive smoothing

due to its ease of computation, however, in this thesis, other estimators will also
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be considered. The theory behind filters which exploit the IFC is equivalent to the

theory behind the filters found in multi-channel applications [7], where the systems

use the correlation between microphones to estimate the filter coefficients, which are

then applied to each channel.

The filters which rely on the autocorrelation each have different characteristics.

The IFMVDR filter provides noise reduction with a constraint of preserved desired

speech, meaning that the correlated speech components are free of distortion. In

contrast, the IFWF performs more filtering of noise with the consequence of some

distortion of the desired speech, which may affect both the speech quality and in-

telligibility. It is known that the IFWF can be decomposed into an IFMVDR filter

multiplied by a WG. In [4] it is shown that in practice, an IFMVDR with a WG

post filter (IFMVDR+WG) implementation filters out more noise than an IFMVDR

and distorts speech less than an IFWF, providing a good compromise between both

filters. To balance the speech distortion and noise reduction. Complex-valued SDW-

IFWFs can be derived with a parameter which adjusts this trade-off. The idea of

the single-channel SDW-IFWF in [2] comes from the SDW- multi-channel Wiener

filter (MWF) proposed in [8–10] and in [6] it is shown that a real-valued SDW-IFWF

can be derived which can be condensed into scalar WGs. The SDW-IFWF is ex-

plored here and extended with two more versions. These filters rely on the speech

and either noisy speech or noise power spectral density (PSD). The noise PSD can

be estimated using a speech presence probability (SPP) estimator [11–13] and the

speech PSD can be estimated using the well known decision-directed approach to

estimate the a-priori signal-to-noise ratio (SNR), followed by a power subtraction.

The FIR filters discussed in this thesis tend to be computationally demanding for

high numbers of filter coefficients. This is due to the increasingly complex matrix

inversions in filters such as the IFMVDR or IFWF. This leads to computational de-

lay, which is undesired in real-time systems and applications such as communication

devices. One solution which bypasses matrix inversions uses real-valued scalar gain

filters, such as WGs. While scalar gains may be limited in terms of performance due

to having no effect on the phase of the STFT coefficients, they are more computa-

tionally efficient even in a filterbank with a higher frequency resolution. A drawback

of high-resolution filterbanks, however, is that in general they introduce more de-

lay in analysis-synthesis, making them unsuitable for real-time applications such as

hearing-aids. In [14], however, it is shown how to maintain low delay when using

longer analysis windows for a higher frequency resolution while still maintaining

perfect reconstruction. An asymmetrical analysis window is used, which focuses on

more recent frames, and the key to maintaining low delay is using a short synthesis
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window. All filterbanks used in this thesis use a low-delay architechture.

In this thesis, various forms of speech and noise IFC matrix and vector estimation,

as well as implementations of noise reduction filters are discussed and evaluated

objectively under oracle conditions, i.e. assuming perfect knowledge of the speech

and/or noise IFC coefficients, to see what is the best possible performance which can

be achieved. The effects of using different numbers of coefficients and a higher res-

olution filterbank, on the performance of the SDW-IFWFs, are briefly investigated

with the aim of pushing the limits of the filter performance under optimal condi-

tions even further. To conclude the evaluation, the best-performing combinations

of estimators and filters are implemented under blind conditions, i.e. with access

to only a noisy signal, to see what effect the estimation methods of the speech and

noise IFCs have on the filter performance.

This thesis is structured as follows: Section 2 introduces the noise reduction problem

and contains the details of the STFT filterbank. Section 3 introduces the WG,

IFWF, IFMVDR, SDW-IFWFs, and methods of estimating the IFC matrices and

vectors. Section 4 specifies the parameters used in the implementations for the

experimental evaluation and contains the results of the objective measures applied

to the filtered noisy signals. The conclusions and suggestions for further research

are included in Section 5.

Bachelor thesis 3
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A noisy speech signal x recorded by a single microphone can be decomposed as

x[n] = s[n] + v[n], (2.1)

where s is the clean speech signal, v is the noise signal, and n is the sample index.

Since overlapping frames are desired for a higher resolution of the IFC, the STFT

filterbank which is used is a WOLA filterbank. The noisy speech STFT coefficient

Xk,l at time frame l and frequency bin k can be expressed as the Fourier transform

of the windowed time signal x[n]

Xk,l =
∞
∑
n=−∞

hK[−n]x[n + lN]e
−2πj(n+lN)k

K (2.2)

where hK is the analysis window, N is the frame shift, and j2 = −1. K is the number

of subband signals in the K-filterbank with the respective frequency index k given

as

k = −K
2
+ 1,−K

2
+ 2, ...,

K

2
. (2.3)

The speech and noise STFT coefficients Sk,l and Vk,l can also be found using (2.2).

Throughout this thesis, it is assumed that the speech and noise signals are uncor-

related with each other. In Section 2.1, the single-frame signal model is introduced

and Section 2.2 extends this model to the multi-frame model with the assumption

that speech and noise are correlated across consecutive time frames. In Section 2.3 it

is shown how the multi-frame model can be used to derive real-valued, transformed

filter coefficient vectors which can be condensed into real-valued scalar filter gains

and are applied independently as in the single-frame signal model.

2.1 Single-Frame Signal Model

In the single-frame signal model it is assumed that noise and speech are uncorrelated

with each other and across time or frequency. Expressing the noisy speech signal in

the STFT domain using (2.2), the noisy speech coefficient Xk,l can be decomposed

into the speech and noise coefficients, Sk,l and Vk,l, respectively, describing the single-

frame signal model as follows
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Xk,l = Sk,l + Vk,l. (2.4)

To obtain an estimate of the speech coefficient Ŝk,l, a real-valued gain Gk,l is applied

independently to each noisy speech coefficient as follows

Ŝk,l = Gk,lXk,l. (2.5)

To obtain the speech signal estimate ŝ[n] in the time-domain, the ISTFT is applied,

which consits of applying an inverse DFT (IDFT) to each time frame, followed by

a WOLA procedure, where the frames are windowed and overlapped according to

their frame-shift. The summarized framework of these filters is depicted in Fig. 2.1.

Fig. 2.1. Block diagram of noise reduction using real-valued scalar filter gains.

2.2 Multi-Frame Signal Model

Now, assuming that the speech, noise, and noisy speech signals are correlated over

consecutive time frames, it makes sense to observe more than one frame simulta-

neously when deriving a noise reduction filter. Thus, the present frame and past

M − 1 frames of the noisy speech coefficients Xk,l from (2.2) can be stacked in the

column-vector xxxMk,l of length M

xxxMk,l = [Xk,l,Xk,l−1, ...,Xk,l−M+1]T , (2.6)

where T denotes the transpose operator. The same can be done for the speech and

noise to obtain sssMk,l and vvvMk,l, respectively, to obtain the multi-frame signal model

xxxk,l = sssk,l + vvvk,l = γγγsk,lS + vvvk,l + sss′k,l. (2.7)

γγγsk,l is the normalized speech IFC vector which only contains the correlated compo-

nents of the speech vector sssk,l and the uncorrelated speech components are contained

in sss′k,l . The normalized speech IFC vector can be obtained as follows

γγγsk,l =
E{sssk,lS∗k,l}
E{∣S2

k,l∣}
=

E{sssk,lS∗k,l}
φsk,l

, (2.8)

Bachelor thesis 5
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where ∗ denotes the complex conjugate and φsk,l is the speech PSD. The noisy speech

PSD φxk,l and noise PSD φvk,l can be obtained similarly. The IFC matrices of the

speech, noise, and noisy speech, namely RRRs
k,l, RRR

v
k,l, and RRRx

k,l, respectively, are defined

as follows

RRRx
k,l = E{xxxk,lxxxHk,l}, (2.9)

RRRs
k,l = E{sssk,lsssHk,l}, (2.10)

RRRv
k,l = E{vvvk,lvvvHk,l}, (2.11)

where E{} is the expectation operator and H is the Hermitian transpose operator.

As with the past-frames vector, the speech IFC matrix can also be decomposed into

an IFC vector containing the correlated speech components RRRs,corr
k,l and uncorrelated

speech componentsRRRs′
k,l. The rank-1 IFC matrix of the correlated speech components

is defined as the expectation value of the correlated components

RRRs,corr
k,l = E{γγγsk,lSk,l(γγγsk,lSk,l)H} = φsk,l{γγγsk,l(γγγsk,l)H}. (2.12)

As a result, the noisy speech IFC matrix RRRx
k,l can be broken down into the speech

and noise IFC matrices, where the speech IFC can further be decomposed into its

correlated and uncorrelated components

RRRx
k,l =RRRs

k,l +RRRv
k,l =RRRs,corr

k,l +RRRv
k,l +RRRs′

k,l. (2.13)

Examples of speech and noise IFC matrices can be seen in Fig. 2.2.

Fig. 2.2. Example of speech and noise IFC matrix estimates.

In Fig. 2.2, it can be seen that speech is correlated over several frames, while the

noise only remains weakly correlated within the range of the overlapping frames in

6 Bachelor thesis
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the STFT.

A modification which can be made to the multi-frame model is that the uncorrelated

speech components are neglected, so that the modified multi-frame model becomes

x̂xxk,l = γγγsk,lS + vvvk,l. (2.14)

This modification means that the modified noisy speech IFC matrix R̂RR
x

k,l is composed

of the IFC matrix containing the correlated speech components RRRs,corr
k,l and the noise

IFC matrix RRRv
k,l

R̂RR
x

k,l =RRRs,corr
k,l +RRRv

k,l. (2.15)

It should be noted that the speech, noisy speech and noise PSDs, φsk,l, φ
x
k,l, and φvk,l,

are equal to the first element of the respective IFC matrices RRRs
k,l, RRR

x
k,l, and RRRv

k,l as

shown

φxk,l = E{∣X2
k,l∣} = eeeT1RRRx

k,leee1. (2.16)

A common way to estimate the noisy speech PSD φxk,l is using the periodogram

φ̂xk,l = ∣Xk,l∣2, (2.17)

where φ̂sk,l and φ̂vk,l can be obtained similarly. The periodogram is often not the best

estimate due to its high variance, however, two other common methods are available

which aim to produce PSD estimates with less variance, namely, the Welch PSD [15]

and the multi-taper PSD [16,17]. The Welch method uses a sliding window to com-

pute an averaged spectrum while the multi-taper method averages a combination

pair-wise orthogonal windows. These methods will not be introduced in this thesis,

but how to compute them can be found in the literature.

In a blind implementation, the speech PSD can be estimated by first estimating the

a-priori SNR ξk,l using the well known decision-directed approach in [18] as follows

ξ̂k,l = a
φ̂Sk,l−1
φ̂vk,l−1

+ (1 − a)max(
φxk,l

φ̂vk,l
), (2.18)

where a is a weighting parameter. The a-priori SNR ξ̂k,l is then used in a power

subtraction [19,20] to obtain the speech PSD estimate φ̂sk,l

φ̂sk,l =
ξ̂k,l

1 + ξ̂k,l
φxk,l. (2.19)

Bachelor thesis 7
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The normalized IFC vector can be computed using the ML approach from [5], namely

γ̂γγsk,l = (1 + 1

ξ̂k,l
)γγγxk,l −

1

ξ̂k,l
µ̂µµv, (2.20)

where µ̂µµv is the long-term normalized noise IFC vector which can be estimated using

the analysis window hK , also from [5],

µ̂µµv[m] = ∑n h
K[n]hK[n +mN]
∑n(hK[n])2 . (2.21)

To obtain an estimate of the speech coefficient, a complex-valued FIR filter wwwk,l is

applied to the noisy speech frames vector xxxk,l as follows

Ŝk,l =wwwHk,lxxxk,l. (2.22)

Once Ŝk,l is obtained, the ISTFT is applied like in Section 2.1 to produce the speech

signal estimate ŝ. The summarized framework is shown in Fig. 2.3.

Fig. 2.3. Block diagram of noise reduction where the IFC matrices are used to compute
the filter coefficients. The vector of past noisy speech coefficients is stored in a first-in
first-out (FIFO) buffer which contains the present and past frames of Xk,l defined in (2.6).

2.3 Relation Between Single- and Multi-Frame Sig-

nal Models

It is possible to estimate the speech coefficient using scalar gain filters under the

assumption that the IFC matrices are Hermitian circulant structured. For this, the

causal consecutive-frame vector xxxMk,l shall be extended to a non-causal vector xxx2Mk,l of

length 2M , defined as

xxx2Mk,l = [Xk,l+M ,Xk,l+M−1, ...,Xk,l, ...,Xk,l−M+1]T , (2.23)

8 Bachelor thesis
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and similarly for sss2Mk,l and vvv2Mk,l . The noisy speech, speech, and noise IFC matrices

are defined as in (2.9), (2.10), and (2.11), respectively, but using the consecutive

frames vector defined in (2.23).

The STFT in (2.2) can also be applied analogously in a different filterbank with a

higher frequency resolution than the K-filterbank. For instance, the F -filterbank

with F frequency bands and frequency indices f , calculated similarly to k, using

(2.3). In general, F > K and the relation between resolutions of the K- and F -

filterbanks is described by the oversampling factor O as follows

O = F

K
= 2NM

K
. (2.24)

The frequency resolution O depends on the frame shift N since the IFC is sampled

at 1
N times the sampling frequency fs which corresponds to a decimation of fs by

factor N . Additionally, given that 2M coefficients along consecutive time frames

can be transformed into 2M coefficients along neighbouring frequencies, the neigh-

bouring frequency bands in the higher resolution F -filterbank also depend on M .

An example of how the frequency indices f correspond to the frequency indices k

can be seen in Fig. 2.4.

Fig. 2.4. Example of filterbank indices k and f for O = 4.

Since the IFC matrices are assumed to be Hermitian circulant structured, the corre-

lation vector rrrx,circk,l of length 2M which defines the entire Hermitian circulant matrix

RRRx,circ
k,l , is defined as

rrrx,circk,l = (eee2MM )TRRRx,circ
k,l . (2.25)

eee2MM is the selection vector of length 2M and contains all zeros for the coefficients

m′ = −M + 1,−M + 2, . . . ,M , except for a 1 at m′ = 0, i.e. in the Mth position. To

relate the multi-frame model to the single-frame model, the IFC matrix of length 2M

is assumed to have a Hermitian circulant structure. Hermitian Circulant matrices

are a subclass of Hermitian Toeplitz matrices where the additional property holds

rrr[2M −m] = rrr∗[m] , m = 0,1, ...,2M − 1. (2.26)

Bachelor thesis 9
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Thus, the noisy speech IFC matrix RRRx,circ has the following structure

RRRx,circ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rrrx[0] rrrx[2M − 1] . . . rrrx[M] . . . rrrx[1]
rrrx[1] rrrx[0] ⋱ rrrx[M + 1] ⋱ rrrx[2]
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

rrrx[M] rrrx[M − 1] ⋱ rrrx[0] ⋱ rrrx[M + 1]
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

rrrx[2M − 1] rrrx[2M − 2] . . . rrrx[M + 1] . . . rrrx[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.27)

An example of a Hermitian circulant structured speech IFC matrix is shown in Fig.

2.5. To obtain a causal noise IFC matrix estimate R̂RR
x

k,l, the Hermitian Toeplitz IFC

matrix for the coefficients m = 0,1, ...,M −1 can be extracted from the bottom-right

quadrant of the 2M x 2M circulant IFC matrix, however, it could also be extracted

from any M x M block centred along the diagonal.

Fig. 2.5. Example of the real and imaginary components of a 2Mx2M Hermitian circu-
lant speech IFC matrix for M = 8.

The key transformation used by the filters in this section is based on the assumption

that for wide-sense stationary processes, the DFT of the correlation vector rrrxk,l results

in the PSD φxf,l, where the PSD has an O times higher spectral resolution than the

coefficients defining the correlation sequence assuming that 2NM >K, i.e.

φxOk+o,l =
M

∑
m=−M+1

rrrx,circk,l [m]e−2π(Ok+o)mj , o = −O
2
+ 1,−O

2
+ 2, . . . ,

O

2
. (2.28)

This means that the frequency subbands f are covered by the indices Ok + o. To

store the information of the higher resolution PSD in the K-filterbank, the PSD

coefficients in the F -filterbank are windowed around the centre-frequencies of the

K-filterbank defined by k, as follows

10 Bachelor thesis
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φφφxk,l[o'] =
1

2M
∣HHHF ∶K[o']∣2φxOk+o',l , o' = −M + 1,−M + 2, . . . ,M. (2.29)

where HHHF ∶K[o′] contains the 2M central coefficients (−M + 1 to M) of the F -point

DFT of the analysis window hK . Examples of HHHF ∶K for different oversampling fac-

tors can be seen in Figs. 2.6 and 2.7. The windowing preserves the power in the

centre coefficients corresponding to a whole frequency band in the K-filterbank and

attenuates the power in more distant frequency bands.

Fig. 2.6. Re{HHHF ∶K
[f]} (Real part of 4K-point DFT of a Hann Analysis window hK of

length K = 64) and ∣HHHF ∶K
[f]∣2 plotted for frequency coefficients f .

If for example, O = 2, then HHHF ∶K windows the frequency coefficients f in the F -

filterbank more narrowly than for higher values of O, to correspond to the frequency

bands in the K-filterbank as shown in Fig. 2.7, since each frequency band f has a

larger bandwidth for a smaller value of O.

Fig. 2.7. Re{HHHF ∶K
[f]} (Real part of 2K-point DFT of a Hann Analysis window hK of

length K = 64) and ∣HHHF ∶K
[f]∣2 plotted for frequency coefficients f .

Placing the PSD coefficients from each frequency band k in (2.29) into a diagonal

matrix as follows, results in the 2M × 2M diagonal PSD coefficient matrix ΦΦΦx
k,l,

defined as

Bachelor thesis 11
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ΦΦΦx
k,l = III2M×2M ⋅φφφxk,l =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φφφk,l[−M + 1] 0 . . . 0

0 φφφk,l[−M + 2] . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . φφφk,l[M]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.30)

Using the DFT matrix

DDD = 1√
2M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−2πj(−M+1)(−M+1) . . . 1 . . . e−2πj(−M+1)(M)

⋮ ⋱ 1 ⋱ ⋮
1 1 1 1 1

⋮ ⋱ 1 ⋱ ⋮
e−2πj(M)(−M+1) . . . 1 . . . e−2πjMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.31)

the Hermitian circulant IFC matrix for a subband K can be estimated as follows

R̂RR
x,circ

k,l = 1

2M
DDDHΦΦΦx

k,lDDD. (2.32)

This is based on the property from [21], where it is shown that any circulant matrix

RRRx,circ
k,l has eigenvectors

ddd[m] = 1√
2M

[e−2πjm(−M+1), . . . , e−2πjmM]T , m = −M+1,−M+1, . . . ,M (2.33)

and corresponding eigenvalues contained in φφφxk,l, which define the values along the

diagonal of the diagonal eigenmatrix ΦΦΦx
k,l. Equivalent approximations as in (2.32)

can be made for RRRs,circ
k,l and RRRv,circ

k,l with (2.32). Using the transformation

WWW k,l =DDDwwwk,l, (2.34)

the transformed filter coefficient vectors WWW k,l can be windowed and overlapped into

a scalar gain which is applied to the noisy speech Xf,l in the F -filterbank. The

general formula to obtain Gf,l is

Gf,l =
O
2

∑
o=−O

2
+1
HHHF ∶K[c −Oo]WWWmod(f ′+o,K)+1−K

2
,l[c −Oo] (2.35)

where mod() is the modulo operator and ⌊ ⌋ is the floor operator. f ′ + o determines

the frequency bands k which are used in the WOLA procedure, where f ′ is defined

as

f ′ = ⌊f − 1

O
⌋ + K

2
− 1 (2.36)

and c−Oo determines which coefficients of the filter vector WWW k,l are overlapped with
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2 Problem Statement

coefficients in adjacent frequency bands determined by f ′, where c is defined as

c = O(O
2
− 1) −mod(O − f,O). (2.37)

Summing the overlapped, windowed coefficients in the K-filterbank leads to a con-

stant scalar value in the F -filterbank, since the coefficients in the K-filterbank have

a frequency resolution equal to the F -filterbank. For the WOLA procedure to be

successful, 2M = O2 must hold to obtain the desired scalar gain Gf,l. In practice,

since the DFT is periodic, the modulo function is applied to the frequency bands

which go out of range of k, e.g. K
2 + 1 would become −K2 + 1. A visual example of

the overlap process of the windows can be seen in Fig. 2.8.

Fig. 2.8. Example of overlapped windows HHHF ∶K for K = 64 and O = 2,4,6,8.

The overlap procedure can be applied as long as O > 1, otherwise the F -filterbank

has the same or a worse resolution than the K-filterbank. For O = 2 it can be seen

that the overlap procedure produces a slightly inconsistent value, however, the fluc-

tuations are quite small and as such it can still be used for the overlap procedure.

To obtain the speech estimate s[n] in the time domain, the ISTFT is applied to the

speech coefficient Ŝk,l. The summarized framework is shown in Fig. 2.9.

Alternatively, with the help of (2.32), the PSD in the F -filterbank φf,l can be used to

estimate the Hermitian circulant IFC matrices RRRcirc
k,l in the K-filterbank, to be used

in the complex-valued multi-frame filters described in Section 2.2. This procedure

is summarized in Fig. 2.10.

Another option would be to use (2.32) to estimate the diagonal matrices containing
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2 Problem Statement

Fig. 2.9. Block diagram of noise reduction using the PSD coefficients to compute the
transformed filter coefficients Wk,l, which are overlapped into real-valued filter gains Gf,l
in the F -filterbank.

Fig. 2.10. Block diagram of noise reduction where the PSD coefficients are transformed
to estimate the circulant IFC matrices in the K-filterbank, which are used to compute
complex-valued filters wk,l.

the PSD coefficients ΦΦΦk,l from the circulant IFC matrices R̂RR
circ

k,l . This procedure is

summarized in Fig. 2.11.

Fig. 2.11. Block diagram of noise reduction where the IFC matrices in the K-filterbank
are transformed into PSD coefficients. The PSD coefficients are used to compute the
transformed filter coefficients Wk,l which are overlapped into real-valued filter gains Gf,l
in the F -filterbank.

In the rest of this thesis, the frequency bands and time frame index k, f , and l will

be omitted for better readability, wherever only the current frame and frequency

index are needed.
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3 Single-Channel Noise Reduction

This section introduces some variations of Wiener filters, beginning with the WGs

and the SDW-WG in the single-frame model in Section 3.1. In Section 3.2, the

IFWF and the SDW-IFWFs from [2] are derived and discussed within the multi-

frame model. The SDW-IFWFs are also extended to filters which can be condensed

into scalar gains by assuming that the IFC matrix is circulant structured, as shown

in [6]. Throughout this section it is assumed that noise and speech are uncorrelated

with each other and to conclude this section, some practical methods of estimating

the IFC matrices for the multi-frame signal model are discussed.

3.1 Single-Frame Filters

This subsection begins with the theory behind the WGs and extends the filter to

the SDW-WGs which include a trade-off parameter which balances noise reduction

with speech-distortion.

3.1.1 WGs

Assuming that speech and noise are uncorrelated over consecutive time frames,

the single-channel WG can be derived by minimizing the mean-square error (MSE)

between the filtered noise and the speech at a current time-frequency point as follows

JWG = E{∣GX − S∣2}. (3.1)

Since the real-valued gains G are scalar values in the cost function, they are inher-

ently limited in terms of how much noise they can filter out since they disregard the

phase of the noise coefficient, however, they also benefit from reduced computational

complexity, which may be more desired in some applications. Solving (3.1) leads to

the WG

GWG = ξ

1 + ξ , (3.2)

where ξ is defined as the signal-to-noise ratio (SNR) defined by the PSDs of the

speech and noise signals

ξ = φ
s

φv
. (3.3)



3 Single-Channel Noise Reduction

To vary the intensity of the noise reduction, a SDW-WG can be derived with a

parameter µ which can increase the level of noise reduction with the drawback of

increased speech distortion. The corresponding cost function is given as

JSDW-WG = E{∣GS − S∣2} + µE{∣GV ∣2}. (3.4)

The solution to (3.4) is the SDW-WG

GSDW-WG = ξ

µ + ξ . (3.5)

For µ = 0, the SDW-WG filters out no noise since the gain equals unity, i.e.

GSDW-WG (µ = 0) = ξ
ξ
= 1. (3.6)

For µ = 1, the SDW-WG is equivalent to the WG in (3.2).

3.2 Complex-Valued Multi-Frame Filters

In this section, the WG is extended to the multi-frame signal model by taking

into account the correlation of speech and noise across consecutive time frames.

The multi-frame equivalent to the WG is the IFWF, which forms the basis for the

SDW-IFWF, where the trade-off between noise reduction and speech distortion can

be varied. Unlike in the single-frame signal model where the correlation between

time frames was neglected, SDW-IFWFs can be derived which aim to preserve the

correlated speech components while suppressing the uncorrelated components. It is

also shown how an IFWF can be decomposed into an inter-frame minimum power

distortionless-response (IFMPDR) filter and a WG, which is shown in [4] to be

robust when implemented as an IFMPDR with a WG post-filter.

3.2.1 IFWFs

The IFWF can be derived by minimizing the MSE between the filtered past noisy

frames and the current speech frame

J IFWF = E{∣wwwHxxx − S∣2}, (3.7)

to which the solution is the IFWF filter

wwwIFWF = (RRRx)−1RRRseee1 = (RRRs +RRRv)−1RRRseee1. (3.8)
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3 Single-Channel Noise Reduction

It is also known that the IFWF can be decomposed into an IFMPDR filter multi-

plied with a WG, therefore, the derivation of the IFMPDR will be discussed briefly.

The IFMPDR aims to minimize the total signal output power while preserving the

correlated (desired) speech component

minimize:
www

wwwHRRRxwww

subject to: wwwHγγγs = 1.
(3.9)

The solution to this optimization problem is

wwwIFMPDR = (RRRx)−1γγγs
(γγγs)H(RRRx)−1γγγs . (3.10)

After applying the matrix inversion lemma to (3.8), it is seen that the IFWF becomes

an IFMVPR filter multiplied by a WG

wwwIFWF = (RRRx)−1RRRseee1 =
(RRRx)−1γγγs

(γγγs)H(RRRx)−1γγγs
ξ

ξ + 1
=wwwIFMVPRGWG. (3.11)

In [4] it is shown that in practice, an implementation of a IFMPDR with WG

post-filtering applies more noise reduction than an IFMPDR filter and less speech

distortion than an IFWF. Since an IFMPDR filter contains a constraint to preserve

speech, it reduces the amount of noise present in the signal without affecting the

speech before filtering with a WG. The result is a good compromise between an

IFMPDR and an IFWF, however, the main advantage is that this implementation

of the IFWF is always robust since the IFMPDR and WG are both inherently robust.

3.2.2 SDW-IFWFs

In [2, 6], SDW-IFWFs are derived with a speech distortion parameter µ which pro-

vides a trade-off between noise reduction and speech distortion. For µ = 0, the

filters are free of speech distortion, i.e. either no filtering occurs or they become an

IFMPDR filter (depending on the implementation). As µ is increased, more noise

is reduced, however, the price to pay is increased speech distortion.

The minimization problem which balances speech distortion with noise reduction is

defined by the trade-off of the MSE which minimizes speech distortion and the MSE

which minimizes noise reduction, depending on the parameter µ as follows

JSDW-IFWF = E{∣wwwHsss − S∣2} + µE{∣wwwHvvv∣2}. (3.12)

The corresponding solution to (3.12) is given as
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3 Single-Channel Noise Reduction

wwwSDW-IFWF = (RRRs + µRRRv)−1RRRseee1. (3.13)

In this case, when µ = 0, no filtering takes place

wwwSDW-IFWF (µ = 0) = eee1 (3.14)

and when µ = 1, the SDW-IFWF becomes an IFWF

wwwSDW- IFWF (µ = 1) = (RRRs +RRRv)−1RRRseee1 = (RRRx)−1RRRseee1. (3.15)

Using the modified multi-frame model in (2.14) where the uncorrelated speech com-

ponents are neglected, the corresponding cost function to be minimized becomes

JSDW-IFWF-1 = E{∣wwwHγγγsS − S∣2} + µE{∣wwwHvvv∣2}. (3.16)

The solution to the modified cost function (3.16) is the SDW-IFWF-1

wwwSDW-IFWF-1 = (RRRv)−1γγγsφs
µ + (γγγs)H(RRRv)−1γγγsφs , (3.17)

which, when µ is set to 0, produces an IFMVDR filter

wwwSDW-IFWF-1 (µ = 0) = (RRRv)−1γγγs
(γγγs)H(RRRv)−1γγγs =www

IFMVDR. (3.18)

This filter is closely related to the IFMPDR filter from (3.9) and is the solution to

the constrained optimization problem which tries to minimize the noise power while

preserving the correlated speech component

minimize:
www

wwwHRRRvwww

subject to: wwwHγγγs = 1.
(3.19)

Since the SDW-IFWF-1 only takes into account the correlated components of the

speech signal, this can be ammended by re-estimating the noise IFC to also contain

the uncorrelated components of the speech signal as in (2.7), resulting in the cost

function

JSDW-IFWF-X = E{∣wwwHγγγsS − S∣2} + µE{∣wwwHvvv + sss′∣2}. (3.20)

The solution to (3.20), which takes into account the uncorrelated components of the

speech signal, is the SDW-IFWF-X filter

wwwSDW-IFWF-X = (RRRx)−1γγγsφs
µ + (1 − µ)(γγγs)H(RRRx)−1γγγsφs , (3.21)
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3 Single-Channel Noise Reduction

which is equivalent to the trade-off filter from [2]. When µ = 0, the SDW-IFWF-X

produces the IFMPDR filter from (3.10)

wwwSDW-IFWF-X (µ = 0) = (RRRx)−1γγγs
(γγγs)H(RRRx)−1γγγs =www

IFMPDR. (3.22)

When µ = 1, the SDW-IFWF-X becomes equivalent to the IFWF in (3.8).

3.3 Real-Valued Multi-Frame Filters

In this section, real-valued filters are derived, based on the assumptions made in

Section 2.3, which can be overlapped and condensed into scalar gains using (2.35).

Based on these assumptions, an IFWF and three SDW-IFWFs will be derived.

One of the SDW-IFWFs was already proposed in [6]. However, analogously to the

complex-valued SDW-IFWFs from Section 3.2, variations of the multi-frame signal

model are used to derive two more versions of the SDW-IFWFs.

3.3.1 IFWF-Cs

To derive a real-valued IFWF, the IFC matrices are assumed to be Hermitian cir-

culant such that the cost function for the complex-valued IFWF in (3.7) can be

transformed using (2.32) and (2.34), which leads to the modified cost function

J IFWF = E{∣wwwHxxx − S∣2}
=wwwHRRRx,circwww + (eee2M)HRRRx,circeee2M −wwwHRRRx,circeee2M − (eee2M)HRRRx,circwww

= 2M(WWWHΦΦΦxWWW + 111TΦΦΦx111 −WWWHΦΦΦx111 − 111TΦΦΦxWWW ).
(3.23)

The solution to the transformed MSE is the real-valued IFWF-C

WWW IFWF-C = (ΦΦΦx)−1ΦΦΦs111. (3.24)

The filter coefficients WWW IFWF-C can also be decomposed into the transformed filter

coefficients of an IFWF multiplied by a WG, similar to (3.11). The normalized

transformed speech IFC vector ΓΓΓs is defined as

ΓΓΓs = ΦΦΦs111

111HΦΦΦs111
. (3.25)

where the normalized transformed noisy speech and noise IFC vectors ΓΓΓx and ΓΓΓv,

respectively, can be obtained similarly. By transforming (3.11) with (2.35), the

decomposed IFWF-C is obtained
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3 Single-Channel Noise Reduction

WWW IFWF-C = [ (ΦΦΦx)−1ΦΦΦs111

(ΓΓΓs)H(ΦΦΦx)−1ΦΦΦs111
] ⋅ [(WWW IFWF-C)Teee2MM ] =WWW IFMPDR-CGWG (3.26)

where

WWW IFMPDR-C = (ΦΦΦx)−1ΦΦΦs111

(ΓΓΓs)H(ΦΦΦx)−1ΦΦΦs111
. (3.27)

is the solution to minimizing the transformed constrained optimization problem

minimize:
WWW

WWWHΦΦΦxWWW

subject to: WWWHΓΓΓs = 1.
(3.28)

where the aim is to minimize the total output power while preserving the filtered

correlated speech component. Since the MPDR-C can be overlapped into a scalar

gain, the IFWF-C can be expressed as a multiplication of two gains using (2.35)

GIFWF-C = GIFMPDR-CGWG. (3.29)

3.3.2 SDW-IFWF-Cs

The three SDW-IFWFs from Section 3.2.2 can be derived similarly to the IFWF in

Section 3.3.1. The SDW-IFWF-CX is from [6] and the SDW-IFWF-C and SDW-

IFWF-C1 are proposed here to compare their performance.

Transforming the cost function in (3.12) using (2.35) yields the following cost func-

tion

JSDW-IFWF-C = E{∣WWWHsss − S∣2} + µE{∣wwwHvvv∣2}. (3.30)

By assuming that the IFC matrices are circulant, the cost function in (3.12) can be

transformed using (2.35), which is solved by the SDW-IFWF-C

WWW SDW-IFWF-C = (ΦΦΦs + µΦΦΦv)−1ΦΦΦs111. (3.31)

For µ = 0, the SDW-IFWF-C performs no filtering

WWW SDW-IFWF-C (µ = 0) = 111 (3.32)

and for µ = 1, the SDW-IFWF-C becomes is equivalent to the IFWF-C in (3.24).

The rank-1 filter in (3.17) using the circulant IFC can be written as
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WWW SDW-IFWF-C1 = (ΦΦΦv)−1ΦΦΦs111

µ +A , A = 111TΦΦΦs(ΦΦΦv)−1ΦΦΦs111

111TΦΦΦs111
. (3.33)

For µ = 0 becomes an IFMVDR filter similar to (3.18)

WWW SDW-IFWF-C1 (µ = 0) = (ΦΦΦv)−1ΦΦΦs111

(ΓΓΓs)H(ΦΦΦv)−1ΦΦΦs111
=WWW IFMVDR-C (3.34)

which aims to minimize the noise power output while preserving the correlated

speech component

minimize:
WWW

WWWHΦΦΦvWWW

subject to: WWWHΓΓΓs = 1.
(3.35)

Analogously, the modified rank-1 filter (3.21) using the circulant IFC is given as

WWW SDW-IFWF-CX = (ΦΦΦx)−1ΦΦΦs111

µ + (1 − µ)B , B = 111TΦΦΦs(ΦΦΦx)−1ΦΦΦs111

111TΦΦΦs111
. (3.36)

For µ = 0, the SDW-IFWF-CX becomes an MPDR filter equivalent to (3.27)

WWW SDW-IFWF-CX (µ = 0) = (ΦΦΦx)−1ΦΦΦs111

(ΓΓΓs)H(ΦΦΦx)−1ΦΦΦs111
= WWW IFWF-C

(ΓΓΓs)HWWW IFWF-C
=WWW IFMPDR-C (3.37)

When µ = 1, the SDW-IFWF-CX becomes equivalent to the IFWF-C in (3.24).

3.4 IFC Matrix Estimation

The filters in Sections 3.2 and 3.3 rely on estimates of the speech and noise IFC

matrices. A few standard methods of estimating the IFC matrices will be covered

in this section. Since speech is typically considered to be stationary for between

10-50 ms, to obtain a good estimate of the speech IFC matrix, it must be averaged

within its range of stationarity. A very common method, due to its ease of com-

putation, is the first-order recursive smoothing (FORS) method. Other methods

are the autocorrelation sequence (ACS), the autocovariance method (ACM), and a

modified autocovariance method (MACM). The latter three are biased correlation

matrix estimates, because the past-frame vectors do not have many coefficients and

unbiased estimates would suffer from high variance.
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3.4.1 FORS

The speech IFC matrix can be estimated the FORS method, which uses a weighted

combination of the past IFC matrix and the new estimate

R̂RR
x,FORS

k,l = λR̂RRx

k,l−1 + (1 − λ)xxxMk,l(xxxMk,l)H , (3.38)

and is weighted by the smoothing parameter λ. In [3] it is discussed that in the case

of IFMPDR filters (with perfect knowledge of the speech and noise signals), the

short-term variation of inherently non-stationary speech signals cannot be captured

using a large value of λ, however, using small values of λ can produce singular or ill-

conditioned IFC matrices. It should also be considered that if, for instance, only poor

estimates of the speech are available, then R̂RR
x

may need to be averaged over more

values to obtain a more accurate estimate of E{xxxxxxH} with less variance, in-which

case, a higher value of λ would be desirable. One thing to note about R̂RR
x,FORS

k,l is

that it is generally not Hermitian Toeplitz structured, which it should be in theory

for the perfect IFC matrix estimate when making the assumption that speech is

stationary within the range of the IFC matrix. The smoothing time constant can

be calculated from the smoothing parameter λ as follows

τ = −N
ln(λ)fs

, (3.39)

where fs is the sampling frequency.

3.4.2 ACS

Hermitian Toeplitz matrices are a class of matrices which can be defined by their

first row, for example:

RRRToeplitz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rrr[0] rrr[1] . . . rrr[M − 1]
rrr[−1] rrr[0] . . . rrr[M − 2]
⋮ ⋮ ⋱ ⋮

rrr[−M + 1] rrr[−M + 2] . . . rrr[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.40)

where rrr[−m] = rrr∗[m].

Assuming that X is wide-sense stationary over a period of at least ρ frames, the

coefficients defining the Hermitian Toeplitz structure can be estimated using time

lags m and m′
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r̂rrxk,l[m] = 1

ρ

ρ−m
∑
m′=0

Xk,l−m′X∗
k,l−m−m′ , m = 0,1, ...,M − 1

= 1

ρ

ρ−m
∑
m′=0

xxxk,l[m′]xxx∗k,l[m′ +m],
(3.41)

where ρ is the number of frames which the signal is assumed to be stationary and

must be larger than M .

The noisy speech ACS IFC matrix can also be found by multiplying two data ma-

trices

RRRx,ACS = (AAAx,ACS)HAAAx,ACS. (3.42)

In the case of the ACS, the data matrix is structured as follows

AAAx,ACS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xxx[0] . . . 0

⋮ ⋱ ⋮
xxx[M − 1] . . . xxx[0]
⋮ ⋱ ⋮

xxx[ρ −M] . . . xxx[M − 1]
⋮ ⋱ ⋮

xxx[ρ] . . . xxx[ρ −M]
⋮ ⋱ ⋮
0 . . . xxx[ρ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.43)

where ρ defines the length of the past-frames vector xxxρk,l and M defines the size of

the IFC matrix.

3.4.3 ACM

The ACM estimate is essentially an autocorrelation sequence estimator which sub-

tracts the mean from the stationary random process before computing the autocor-

relation sequence

RRRx,ACM = E{∣(xxx − x̄xx)(xxx − x̄xx)H ∣2}, (3.44)

where x̄xx is the mean of xxx. To estimate the noisy speech IFC matrixRRRx,ACM using the

ACM, a similar matrix multiplication of data matrices is applied to (3.42), where

the ACM data matrix AAAx,ACM uses a submatrix of AAAx,ACS
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AAAx,ACM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xxx[M] . . . xxx[0]
⋮ ⋱ ⋮

xxx[ρ −M + 1] . . . xxx[M]
⋮ ⋱ ⋮

xxx[ρ − 1] . . . xxx[ρ −M + 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.45)

3.4.4 MACM

The MACM data matrix AAAx,MACM [22] is a block matrix containing the ACM data

matrix with the conjugate column-reversed ACM data matrix stacked beneath. To

estimate the noisy speech MACM IFC matrix RRRx,MACM, (3.42) is used with the

MACM data matrix.

AAAx,MACM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xxx[M] . . . xxx[0]
⋮ ⋱ ⋮

xxx[ρ −M + 1] . . . xxx[M]
⋮ ⋱ ⋮

xxx[ρ − 1] . . . xxx[ρ −M + 1]
xxx∗[0] . . . xxx∗[M]
⋮ ⋰ ⋮

xxx∗[M] . . . xxx∗[ρ −M + 1]
⋮ ⋰ ⋮

xxx∗[ρ −M + 1] . . . xxx∗[ρ − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.46)
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In this section, a wide range of filter implementations (a filter with a given IFC

matrix or PSD estimator) are tested under oracle conditions (knowledge of all the

required quantities). The parameters of a given implementation e.g. µ and λ, are

varied with the aim of finding the best performing combination out of the variations

which are implementable, the best performing multi-frame filter implementations

are then tested under blind conditions (knowledge of only the noisy speech signal).

Some quantities will remain fixed, such as the sampling frequency fs = 16000 Hz

and the frame length of the K- filterbank which is chosen to be K = 64 samples.

The value defining the length of the IFC coefficient vector was set to M = 8 and the

frame shift was set to N = 16, resulting in an overlap of 48 samples and therefore a

total analysis-synthesis delay of 3 ms. A Hann window of length 64 was used as the

analysis and synthesis window in the K-filterbank, as well as the synthesis window

in the F -filterbank. The asymmetrical analysis window used in the F -filterbank

consisted of the first half of a Hann window of length F −K/2 (where F is obtained

from (2.24)) concatenated with the second half of a Hann window of length K/2.

The short analysis windows of length K mean that with a frame shift of N , the

analysis-synthesis delay τdelay is only 3 ms based on the relation

τdelay =
K −N
fs

. (4.1)

Using a synthesis window which is 256 samples long would result in a delay of 15

ms, which is too long for many real-time applications. The resulting analysis and

synthesis windows can be seen in Fig. 4.1 and are summarized in Table 1.

Fig. 4.1. Analysis and Synthesis windows in the K- and F -filterbanks.
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Table 1: Analysis and synthesis windows in the K- and F -filterbanks.

Analysis Window Synthesis Window

K-filterbank hK hK

F -filterbank hF hK

To make the estimation of the inverse of the noisy speech IFC matrix ˆ(RRRx)
−1

more

robust, it was regularized as follows

ˆ(RRRx)
−1
= {RRRx + δ tr(∣RRRx∣)

M
IIIMxM}

−1
(4.2)

where δ = 0.04 was used as the regularization parameter and IIIMxM is the identity

matrix of dimensions MxM . The same regularization was also applied to the speech

and noise IFC matrices RRRs and RRRv, respectively.

The speech quality improvement was evaluated using the perceptual evaluation of

speech quality (PESQ) score [23], where the PESQ improvement is calculated over

the reference score of the speech and the noisy speech. The speech intelligibility

improvement is calculated in the same way but using the short term objective intel-

ligibility (STOI) improvement [24]. The segmental SNR (seg. SNR) improvement is

also included as an objective measure for how much noise reduction is applied, and

is calculated as the difference between the seg. SNR of the estimated speech and

the noisy speech

∆seg. SNR = 10

∣MMM sp∣
∑

m∈MMMsp

log10
∑N−1n=0 s2[n +mR]

∑N−1n=0 (s[n +mR] − ŝ[n +mR])2
− seg. SNRx, (4.3)

where MMM sp is the set of frames in which speech is present and the seg. SNR of the

noisy speech is defined as

seg. SNRx = 10

∣MMM sp∣
∑

m∈MMMsp

log10
∑N−1n=0 x2[n +mR]

∑N−1n=0 (x[n +mR] − x̂[n +mR])2
. (4.4)

Each implementation was tested on 10 different speech signals from the TIMIT

speech corpus [25] with a duration of around 3 seconds (5 male and 5 female speak-

ers). Each speech signal was tested in combination with one of 3 different types of

additive noise (SSN, babble noise, and traffic noise) from the NOISEX database [26]

and at 3 different SNRs (10 dB, 5 dB, and 0 dB), all-in-all, corresponding to almost

5 minutes of test data. The scores for each implementation were averaged across

all 90 tests. The value of each evaluation is plotted as a red circle with the number

next to it, indicating the respective maximal PESQ, STOI, or seg. SNR score.
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Section 4.1 contains a comprehensive evaluation, of all filters introduced in Section 3

and selected methods of estimating the IFC matrices or PSD coefficients under the

assumption of oracle knowledge (knowledge of all required quantities). In Section

4.2, the effect of varying the oversampling factor O is investigated in the real-valued

multi-frame filters and in Section 4.3 the best performing implementable multi-frame

filters from Section 4.1 are implemented and their performance is evaluated under

blind conditions.

4.1 Evaluation with Oracle Knowledge

Within this section, different filter implementations are tested with various methods

of estimating the IFC or PSD coefficients and then compared with direct access to

the speech and noise components. In Section 4.1.1 the single-frame filters were eval-

uated, comparing the periodogram, FORS, Multi-taper, and Welch PSD estimates

in the K- and F -filterbanks. In Section 4.1.2, the SDW-IFWFs are evaluated in

the K-filterbank, comparing the FORS, ACS, ACM, and MACM IFC estimates. In

section 4.1.3, the SDW-IFWF-Cs were evaluated in the F -filterbank with both the

periodogram and Welch PSD estimates. Furthermore, SDW-IFWFs were evaluated

where the IFC matrices in the K-filterbank were obtained using the periodogram

PSD estimate in (2.32) and another implementation which was tested was using the

ACS IFC matrix estimate to obtain the PSD coefficients to use in the SDW-IFWF-

Cs.

It should be noted that the IFC or PSD estimates and parameters were applied

the same for speech, noise, and noisy speech, e.g. if the FORS IFC estimate was

used with λ = 0.5 for speech, then the noisy speech and noise IFC estimates would

be estimated in the same way. In this section, all filters in the F -filterbank used

an oversampling factor of O = 4, meaning that the length of the F -filterbank was

F = 256 samples.

4.1.1 Single-Frame Filters

In this section, the SDW-WGs from (3.5) were tested using Periodogram, the FORS

PSD estimate, Welch’s method, and the multi-taper method to estimate the PSDs

in both the K- and F -filterbank as shown in Table 2.
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Table 2: SDW-WGs to be tested with the corresponding PSD estimation methods.

FilterFilterFilter
MethodMethodMethod QuantitiesQuantitiesQuantities PSD Estimation MethodPSD Estimation MethodPSD Estimation Method

SDW-WG φsk,l φvk,l (2.16) & (3.38) (2.17) Multi-taper PSD Welch PSD
SDW-WG φsf,l φvf,l

Figs. 4.2, 4.3, 4.4 show the results of the PESQ, STOI, and segmental SNR im-

provements which the SDW-WGs achieved in the K−filterbank. The smoothing

parameter λ which is used in the FORS PSD estimate is converted into the smooth-

ing time constant τ using (3.39). The averaging window length is varied in the

Welch PSD and the number of windows used in the multi-taper PSD are varied to

see which values produce the best performance.

Fig. 4.2. ∆PESQ scores for SDW-WG in the K−filterbank.
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Fig. 4.3. ∆STOI scores for SDW-WG in the K−filterbank.

Fig. 4.4. ∆Seg. SNR scores for SDW-WG in the K−filterbank.

The Periodogram, Welch PSD with a window length of 64, and FORS with λ = 0.1

(0.4 ms smoothing), all perform similarly. For the periodogram, Welch, and FORS

PSD estimates, the optimal value of µ is 0.75. The STOI improvement favours

lower values of µ while the seg. SNR improvement favours higher values, the PESQ

improvement provides a good medium. The Welch PSD estimate produces worse

results when shorter windows are used and the FORS estimate produces worse re-

sults when λ is increased. The multi-taper PSD method also produces good results,

Bachelor thesis 29



4 Evaluation

especially when less windows are used, however, it is outperformed by all of the

other estimators.

Figs. 4.5, 4.6, 4.7 show the results of the SDW-WGs in the F−filterbank.

Fig. 4.5. ∆PESQ scores for SDW-WG in the F−filterbank.

Fig. 4.6. ∆STOI scores for SDW-WG in the F−filterbank.
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Fig. 4.7. ∆Seg. SNR scores for SDW-WG in the F−filterbank.

The periodogram and FORS with λ = 0.1 (0.4 ms smoothing) perform the best.

While µ = 0.3 produces the best PESQ improvement with these methods, µ =
0.5−0.75 produces the best STOI improvement, and the best seg. SNR improvement

is obtained for µ = 1.5. Taking all measures into account, µ = 0.5 produces the best

overall results. As in the K-filterbank, the results of the FORS PSD estimate worsen

for increasing values of λ. The multi-taper and Welch PSD perform worse than the

periodogram and FORS for all values of µ, especially in terms of PESQ improvement.

Out of the SDW-WGs, the best results were achieved in the F -filterbank using

the periodogram and FORS with λ = 0.1, however, the Welch PSD, as well as the

periodogram and FORS with λ = 0.1 in the K-filterbank, also produced good results.

The main drawback of the SDW-WG is that it provides no filtering for µ = 0.
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4.1.2 Multi-Frame Filters

In this section, the three SDW-IFWFs from Section 3.2.2 were tested in the K-

filterbank. The FORS, ACS, ACM, and MACM estimators were tested for each

filter shown in Table 3.

Table 3: SDW-IFWF filters to be tested with the given IFC matrix estimation methods
from Section 3.4.

FilterFilterFilter
MethodMethodMethod QuantitiesQuantitiesQuantities

IFC MatrixIFC MatrixIFC Matrix
Estimation MethodEstimation MethodEstimation Method

SDW-IFWF RRRs
k,l RRRv

k,l FORS ACS ACM MACM

SDW-IFWF-1 RRRs
k,l RRRv

k,l FORS ACS ACM MACM

SDW-IFWF-X RRRs
k,l RRRx

k,l FORS ACS ACM MACM

Figs. 4.8, 4.9, and 4.10 show the results of the SDW-IFWF filter.

Fig. 4.8. ∆PESQ scores for the SDW-IFWF in the K−filterbank.
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Fig. 4.9. ∆STOI scores for the SDW-IFWF in the K−filterbank.

Fig. 4.10. ∆Seg. SNR scores for the SDW-IFWF in the K−filterbank.

The FORS with λ = 0 (no smoothing) and MACM with ρ = 7 (7 ms smoothing) were

the best performing IFC matrix estimators for the SDW-IFWF. Taking into account

the PESQ, STOI, and seg. SNR improvements, the FORS method performed the

best at µ = 0.3 and the MACM performed the best at µ = 0.5. With FORS, the

ACS, and the MACM, the shorter the smoothing, the better the performance of the

SDW-IFWF under oracle conditions. The ACS performed worse for this filter than

the FORS and the MACM estimates, and the ACM yielded the worst results.
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Figs. 4.11, 4.12, and 4.13 show the results of the SDW-IFWF-1 filter.

Fig. 4.11. ∆PESQ scores for the SDW-IFWF-1 in the K−filterbank.

Fig. 4.12. ∆STOI scores for the SDW-IFWF-1 in the K−filterbank.
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Fig. 4.13. ∆Seg. SNR scores for the SDW-IFWF-1 in the K−filterbank.

The FORS estimate with λ = 0 (no smoothing) performs the best in all tests. Al-

though the STOI improvement shows similar scores for all tested values of µ, the

PESQ and seg. SNR improvements clearly indicate maxima at µ = 0. In the case

of the FORS, ACS, and MACM estimates, the longer the smoothing, the worse the

performance. The MACM performs slightly better than the ACS in all tests and

the ACM performs the worst overall.

Figs. 4.14, 4.15, and 4.16 show the results of the implementations of the SDW-

IFWF-X filter.
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Fig. 4.14. ∆PESQ scores for the SDW-IFWF-X in the K−filterbank.

Fig. 4.15. ∆STOI scores for the SDW-IFWF-X in the K−filterbank.
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Fig. 4.16. ∆Seg. SNR scores for the SDW-IFWF-X in the K−filterbank.

In contrast to the SDW-IFWF and SDW-IFWF-1, the smoothing plays more of

a role in the SDW-IFWF-X. The ACS, FORS, and MACF IFC estimates provide

similar levels of maximal performance with respect to all scores. In the case of the

FORS and MACM, the best performing value of the tradeoff parameter is µ = 1,

however, lower values of µ perform better with longer smoothing. In the case of

the ACS, µ = 0.3 produces the best overall results, where longer smoothing shows a

clear decline in performance. The ACM IFC estimate delivers poor PESQ, STOI,

and seg. SNR reduction in all tests.

The best performing filters of this section are the SDW-IFWF-1 using FORS with

λ = 0 (no smoothing), closely followed by the SDW-IFWF using either FORS with

λ = 0 (no smoothing) or MACM with ρ = 7 (7ms smoothing). The SDW-IFWF-X is

the only implementable variation under blind conditions and produced good results

for a wide range of smoothing lengths and using the FORS, ACS, and MACM IFC

estimates.
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4.1.3 Multi-Frame Filters Using Circulant IFC Assumption

In this section, the three SDW-IFWF-Cs in Section 3.3 were tested in the F -

filterbank, where the PSD was estimated using either the periodogram or the Welch

PSD as shown in Table 4.

Table 4: SDW-IFWF-C filters to be tested and corresponding PSD coefficient estimation
methods.

FilterFilterFilter
MethodMethodMethod QuantitiesQuantitiesQuantities

PSD Diagonal MatrixPSD Diagonal MatrixPSD Diagonal Matrix
Estimation MethodEstimation MethodEstimation Method

SDW-IFWF-C ΦΦΦs
k,l ΦΦΦv

k,l

(2.17) Welch PSDSDW-IFWF-C1 ΦΦΦs
k,l ΦΦΦv

k,l

SDW-IFWF-CX ΦΦΦs
k,l ΦΦΦx

k,l

The Periodogram in the F -filterbank was also used to estimate the diagonal matrices

containing the PSD coefficients of the neighbouring frequency bands of k, which were

transformed into IFC matrices using (2.32) and then used in the SDW-IFWFs from

Section 3.2.2 in the K−filterbank, shown in Table 5.

Table 5: SDW-IFWF filters to be tested using the transformed IFC matrices.

FilterFilterFilter
MethodMethodMethod QuantitiesQuantitiesQuantities

PSD Diagonal MatrixPSD Diagonal MatrixPSD Diagonal Matrix
Estimation MethodEstimation MethodEstimation Method

SDW-IFWF ΦΦΦs
k,l ΦΦΦv

k,l
Transformed Periodogram

(2.17) & (2.32)
SDW-IFWF-1 ΦΦΦs

k,l ΦΦΦv
k,l

SDW-IFWF-X ΦΦΦs
k,l ΦΦΦx

k,l

In addition, the ACS was also used to estimate the IFC matrices in the K-filterbank,

then transformed into diagonal PSD matrices and used in the SDW-IFWF-Cs, shown

in Table 6.

Table 6: SDW-IFWF-C filters to be tested using the transformed diagonal matrices
containing the PSD coefficients.

FilterFilterFilter
MethodMethodMethod QuantitiesQuantitiesQuantities

IFC MatrixIFC MatrixIFC Matrix
Estimation MethodEstimation MethodEstimation Method

SDW-IFWF-C RRRs
k,l RRRv

k,l
Transformed ACS

(3.41) & (2.32)SDW-IFWF-C1 RRRs
k,l RRRv

k,l

SDW-IFWF-CX RRRs
k,l RRRx

k,l

Figs. 4.17, 4.18, and 4.19 show the results of the implementations of the SDW-IFWF

filter and the SDW-IFWF-C described in Tables 4, 5, and 6.
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Fig. 4.17. ∆PESQ scores for the SDW-IFWF filter and the SDW-IFWF-C described in
Tables 4, 5, and 6.

Fig. 4.18. ∆STOI scores for the SDW-IFWF filter and the SDW-IFWF-C described in
Tables 4, 5, and 6.

Bachelor thesis 39



4 Evaluation

Fig. 4.19. ∆Seg. SNR scores for the SDW-IFWF filter and the SDW-IFWF-C described
in Tables 4, 5, and 6.

The best performing SDW-IFWF-C in all tests was the periodogram. The PESQ

improvement indicates that µ = 0.3 produces the best score, while the best STOI and

seg. SNR improvement are obtained at µ = 0.75 and µ = 1.5, respectively. As such,

µ = 0.75 is a good compromise, since the PESQ improvement declines noticeably

for higher values while the STOI and seg. SNR improvements stay fairly even and

the seg. SNR improvement declines quickly for lower values. The Welch PSD pro-

vides slightly worse results than the periodogram in all tests, with the best results

produced by the window length 128 and µ = 0.75. The transformed periodogram

and transformed ACS also provide noise reduction and perform very similarly to ea-

chother, but do not perform as well as the methods where the PSD or IFC matrices

are estimated directly.

Figs. 4.20, 4.21, and 4.22 show the results of the implementations of the SDW-

IFWF-1 filter and the SDW-IFWF-C1 described in Tables 4, 5, and 6.
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Fig. 4.20. ∆PESQ scores for the SDW-IFWF-1 filter and the SDW-IFWF-C1 described
in Tables 4, 5, and 6.

Fig. 4.21. ∆STOI scores for the SDW-IFWF-1 filter and the SDW-IFWF-C1 described
in Tables 4, 5, and 6.
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Fig. 4.22. ∆Seg. SNR scores for the SDW-IFWF-1 filter and the SDW-IFWF-C1
described in Tables 4, 5, and 6.

In the case of the SDW-IFWF-C1, the best PESQ, STOI, and seg. SNR improve-

ments were produced by the periodogram. However, the overall performance was

marginally worse than the SDW-IFWF-C in all tests, except for at µ = 0, where

the SDW-IFWF-C1 provides noise reduction while the SDW-IFWF-C provides no

filtering. Nevertheless, taking into account all tests, the best performing value of µ

in the case of the periodogram was 0.75. When using the transformed periodogram

or transformed ACS, effectively no noise reduction occurs at µ = 0. The Welch PSD

estimate performs slightly worse than the periodogram and reaches its best perfor-

mance with a window length of 64 and µ = 0.75.

Figs. 4.23, 4.24, and 4.25 show the results of the SDW-IFWF-X filter and the

SDW-IFWF-CX described in Tables 4, 5, and 6.
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Fig. 4.23. ∆PESQ scores for the SDW-IFWF-X filter and the SDW-IFWF-CX described
in Tables 4, 5, and 6.

Fig. 4.24. ∆STOI scores for the SDW-IFWF-X filter and the SDW-IFWF-CX described
in Tables 4, 5, and 6.
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Fig. 4.25. ∆Seg. SNR scores for the SDW-IFWF-X filter and the SDW-IFWF-CX
described in Tables 4, 5, and 6.

The periodogram provides the best PESQ, STOI, and seg. SNR improvements.

Taking the three scores into account, the optimal value for µ is 0.4, since lower

values produce a notable reduction in seg. SNR improvement while higher values

produce a notable reduction in PESQ improvement. The Welch PSD estimate pro-

vides slightly worse scores than the periodogram and achieves its best performance

using a window length of 128 and µ = 0.3.

The SDW-IFWF-C and SDW-IFWF-CX using the periodogram provide the best

maximal performance in all tests. Taking the PESQ, STOI and seg. SNR scores

into account across all tested values of the speech distortion parameter µ, the SDW-

IFWF-C performs better than the SDW-IFWF-CX for µ > 0.5, however, the opposite

is the case for µ < 0.5. Looking at µ = 0, the SDW-IFWF-X provides the most noise

reduction in all tests, followed by the SDW-IFWF-1, and then the SDW-IFWF

which provides no reduction.

Overall, the best performing filters in this section are the SDW-IFWF-C and the

SDW-IFWF-CX using the periodogram, albeit the SDW-IFWF-C1 using the peri-

odogram provides more noise reduction than the SDW-IFWF-C at µ = 0. The goal

of the implementations including the transformed IFC and PSD coefficients was not

to obtain the best performing filter, but just to show that the circulant IFC matrix

can be used to estimate the PSD coefficients in practice (and vice-verse), to show

that the filters derived in Section 3.3 can also be applied in practice.
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4.1.4 Comparison of Implementations

In this Section, the best performing implementations from Sections 4.1.1, 4.1.2, and

4.1.3 are cherry-picked and compared to get an overview of the best performance of

these filters.

Fig. 4.26 shows the results of the best performing real-valued filter gains from Sec-

tions 4.1.1 and 4.1.3, in terms of PESQ, STOI, and seg. SNR improvement.

Fig. 4.26. Comparison of the scalar gain filter performance using the periodogram to
estimate the PSD.

The SDW-WG in the F -filterbank produces very similar results to the SDW-IFWF-

C. The SDW-IFWF-CX performs better than all other real-valued filter gains when

the trade-off parameter µ < 1, especially as µ = 0, where it is the only filter gain

which can apply noise reduction at this value. The filter performance is relatively

even for higher values of µ, where the seg. SNR improvement of the SDW-IFWF-CX

drops below other implementations for µ > 1. The PESQ scores indicate that the

filter performance is quite similar, with the exception of the real-valued gains in the

K-filterbank, which perform notably worse for µ < 0.75, however, the performance

is similar when µ ≥ 0.75. The STOI and seg. SNR improvements show that the

SDW-IFWF-C1 provides noise reduction at µ = 0 unlike the SDW-WGs and the

SDW-IFWF-Cs, however, it performs the worst out of all filters for higher values of
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µ.

Fig. 4.27 shows the results of the best performing implementations of the SDW-

IFWFs and SDW-IFWF-1 from Section 4.1.2 in terms of PESQ, STOI, and seg.

SNR improvement. Neither of these filters is implementable under blind conditions.

Fig. 4.27. Comparison of the best performing IFC matrix estimators in the SDW-IFWF.

The SDW-IFWF-1 using FORS with λ = 0 is the best filter in all tests. Out of the

SDW-IFWFs, the FORS implementation with λ = 0 provides the best performance

in terms of seg. SNR improvement. The performance of the filters in terms of

PESQ and STOI, on the other hand, is very similar. Informal listening tests even

showed that the MACM implementation sounded more natural and closer to the

actual clean speech signal than the implementations using FORS.

Fig. 4.28 shows the results of the best performing implementations of the SDW-

IFWF-Xs from Section 4.1.2, which can be implemented under blind conditions.
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Fig. 4.28. Comparison of the best performing IFC matrix estimators in the SDW-IFWF-
1 and SDW-IFWF-Xs.

Out of the SDW-IFWF-Xs, the ACS IFC matrix estimate with ρ = 7 (7 ms smooth-

ing) performed the best overall in all tests, closely followed by FORS with λ = 0.8

(4.5 ms smoothing). The MACM with ρ = 7 (7 ms smoothing) and FORS with

λ = 0.5 (1.4 ms smoothing) both peak at µ = 1 in all tests, where they perform

the best when taking into account the PESQ, STOI, and seg. SNR improvements

together. However, they perform worse than the other IFC estimation methods for

other values of µ.

Comparing the best performing SDW-IFWF-1 in Fig. 4.27 with the best performing

SDW-IFWF-X in Fig. 4.28, the SDW-IFWF-1 provides significantly more noise

reduction. This is surprising since in [27] it was shown that the MPDR (SDW-

IFWF-X at µ = 0) performed better than the MVDR (SDW-IFWF-1 at µ = 0)

under oracle conditions, however, only the recursive smoothing factor λ = 0.88 (7.88

ms smoothing) was taken into account. When looking at Figs. 4.11, 4.12, and 4.13,

similar PESQ and seg. SNR improvements are produced as in [27] when looking at

the scores which were achieved for λ = 0.88.

4.2 Influence of Oversampling Factor and IFC Length

on Filter Performance

Here, the effect of increasing the frequency resolution compared to the K-filterbank

was investigated using the oversampling factor O for the values 2, 4, 6, 8, 10. The
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SDW-IFWF-C, SDW-IFWF-C1, and SDW-IFWF-CX from Section 3.3.2 were all

tested under the assumption of oracle knowledge. In each case, the periodogram

was used to estimate the PSD, since it was seen in the previous subsection that the

periodogram produced the best results in the F -filterbank. Using the PSDs, the

filter coefficients WWW were computed according to each variation of the real-valued

multi-frame filter and overlapped into scalar gains Gf,l using (2.35).

Although an increase in O results in a higher spectral resolution, and thus allowing

for a better determination of the harmonic structure, it comes with the trade-off of

a reduced temporal resolution due to the longer analysis windows. This temporal

smearing as a result of increasing O can be seen in Fig. 4.29.

Fig. 4.29. Examples of the influence of the oversampling factor O on the enhanced
speech spectrogram using the SDW-IFWF-CX for µ = 0.25.

The results of the PESQ, STOI, and seg. SNR improvements are presented in Figs.

4.30, 4.31, and 4.32.
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Fig. 4.30. SDW-IFWF-C tested for different values of O.

The seg. SNR improvement indicates that the most noise reduction occurs at µ = 1

and O = 2. µ = 0.75 and O = 6 produce the best PESQ and STOI improvements,

therefore, it can be concluded that these are the best overall values for the SDW-

IFWF-C under oracle conditions.

Fig. 4.31. SDW-IFWF-C1 tested for different values of O.

The SDW-IFWF-C1 performs worse than the SDW-IFWF-C in terms of PESQ,

STOI, and seg. SNR improvement, however, its maximal performance at O = 2 and

µ = 0.75 is only slightly lower than the maximal performance of the SDW-IFWF-C.

The higher the oversampling value O, the worse the overall performance is in all
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measures.

Fig. 4.32. SDW-IFWF-CX tested for different values of O.

For the SDW-IFWF-CX, O = 6 and µ = 0.4 produce the highest PESQ improvement,

however, O = 4 and O = 2 produce the best STOI and seg. SNR improvements, re-

spectively, with µ = 0.75. The best overall performance is, thus, obtained with O = 6

and µ = 0.75 when taking into account all tests. At µ = 0 (equivalent to IFMPDR-

C), an increase in O results in a performance increase in all measures, where O = 10

produces the best performance.

After weighing up the PESQ, STOI, and seg. SNR improvements, O = 6 and µ = 0.75

produced the best overall performance in the SDW-IFWF-C and SDW-IFWF-CX.

Out of the real-valued multi-frame filters, the SDW-IFWF-CX produced both the

best maximal and overall performance in all tests.

4.3 Blind Implementations of Multi-Frame Fil-

ters

In this part of the evaluation, the best performing implementable filters from the

oracle evaluations in Sections 4.1 and 4.2 were tested under blind conditions (with

only access to the noisy speech signal). The noise PSD was estimated directly using

the noise power estimator from [13] and the speech PSD was estimated using (2.19)

and (2.18). In the case of the real-valued multi-frame filters, the old speech estimate
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used in the a-priori SNR was only updated every 4 frames since this was found to

be the optimal update rate which produced the least musical noise. In the case of

the complex-valued filters in the K-filterbank, the old speech estimate was updated

every frame.

The best performing IFC matrix estimators and filters from Section 4.1 were tested,

and are shown in Table 7. Even though the SDW-IFWF and SDW-IFWF-1 per-

formed well, they were not tested in the blind implementation since they required

estimates of RRRs
k,l and/or RRRv

k,l.

Table 7: Blind implementations with the corresponding IFC matrix or PSD coefficient
estimation methods

FilterFilterFilter
MethodMethodMethod QuantitiesQuantitiesQuantities

IFC or PSD Diagonal MatrixIFC or PSD Diagonal MatrixIFC or PSD Diagonal Matrix
Estimation MethodEstimation MethodEstimation Method

SDW-IFWF-X RRRx
k,l γγγsk,l, φ

s
k,l FORS ACS MACM

SDW-IFWF-C ΦΦΦs
k,l ΦΦΦv

k,l Periodogram
SDW-IFWF-X-C ΦΦΦs

k,l ΦΦΦx
k,l

Figs. 4.33, 4.34, 4.35, show the results of the SDW-IFWF-X implementations using

the FORS, ACS, and MACM IFC estimates and the results of the SDW-IFWF-C

and SDW-IFWF-CX using the periodogram can be seen in Figs. 4.36 and 4.37,

respectively.

Fig. 4.33. Objective scores of the blind SDW-IFWF-X implementation with FORS IFC
matrix estimation.
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4 Evaluation

The blind SDW-IFWF-X using the FORS IFC estimate produced unstable results

for all parameters across all tests, producing very low PESQ and seg. SNR improve-

ments as well as negative STOI improvements, many artifacts could be heard in

informal listening tests.

Fig. 4.34. Objective scores of the blind SDW-IFWF-X implementation with ACS IFC
matrix estimation.

Taking into account the PESQ, STOI, and seg. SNR improvements, the SDW-

IFWF-X using the ACS IFC estimate produced the best results for ρ = 0.16 (16 ms

smoothing) and µ = 0.75. A fraction of the noise reduction is apploed compared to

the oracle oracle conditions, however, out of the blind SDW-IFWF-X, the ACS IFC

estimate produced the best results, which was also reflected in informal listening

tests.
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4 Evaluation

Fig. 4.35. Objective scores of the blind SDW-IFWF-X implementation with MACM
IFC matrix estimation.

The MACM estimate produced robust results, however, in contrast to the ACS

which favoured longer smoothing windows, the MACF also performed the most

noise reduction at ρ = 7 (7 ms smoothing). Taking into account PESQ and seg.

SNR improvements, the optimal combination is ρ = 7 (7 ms smoothing) and µ = 0.75.

Fig. 4.36. Objective scores of the blind SDW-IFWF-C implementation using the peri-
odogram.

The PESQ and seg. SNR improvements indicate the best performance of the SDW-

IFWF-C when the tradeoff parameter µ = 1 and the oversampling factor O = 2. The
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4 Evaluation

best STOI improvement contradicts the PESQ and seg. SNR scores in terms of

which µ value produced the best performance and indicates the best performance

at µ ≈ 0.15 for all values of the oversampling factor O. Taking into account all

measures, the best performance is seen at µ = 1 and O = 2.

Fig. 4.37. Objective scores of the blind SDW-IFWF-CX implementation using the
periodogram.

For the SDW-IFWF-CX, the best PESQ and seg. SNR improvements are produced

at µ = 1 and O = 2 as with the SDW-IFWF-C. Similar to the oracle implementation

in Section 4.2, at µ = 0 (equivalent to the IFMPDR-C) the SDW-IFWF-CX produces

higher PESQ and seg. SNR improvement with increasing O. The SDW-IFWF-X

implementations using the ACS and MACM IFC estimates as well as the SDW-

IFWF-C and SDW-IFWF-CX implementations produced stable results throughout

all tests of the blind implementations.

Overall, the STOI improvement measure seemed very sensitive to estimation errors

in the blind implementations. Considering all blind implementations, the SDW-

IFWF-X with the FORS IFC matrix estimation performed poorly due to introduc-

ing high levels of artifacts and distortion. The SDW-IFWF-X with the ACS IFC

estimation produced the best results for ρ = 16 (16 ms smoothing) and µ = 0.75. Us-

ing the MACM IFC estimate, the speech quality improvement and noise reduction

was only slightly worse than the ACS, reflected by the PESQ and seg. SNR im-

provements, and produced the best results for µ = 0.75 and ρ = 7 (7 ms smoothing).

Informal listening tests also indicated that the ACS performed slightly better than

the MACM.
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4 Evaluation

The SDW-IFWF-CX produced the best results out of all of the blind implemen-

tations in terms of PESQ and seg. SNR improvement. The SDW-IFWF-C and

SDW-IFWF-CX both provided similar noise reduction, with the SDW-IFWF-CX

having a slight edge. Higher ∆seg. SNR scores favour higher values of µ in the

gain filters and increasing the oversampling factor O produces worse scores in terms

of PESQ, STOI, and seg. SNR improvement except for when µ ≤ 0.2. Although

the SDW-IFWF-Cs produced better PESQ and segmental SNR improvement scores

than the SDW-IFWF-Xs, informal listening tests confirmed the SDW-IFWF-Cs in-

troduced more musical noise than the SDW-IFWF-X.
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5 Conclusions

In this thesis, speech quality and intelligibility improvement was investigated for

a wide range of single-channel filters which can influence a trade-off between noise

reduction and speech distortion. The filters can be divided into two groups, those

within the single-frame model which assume speech and noise to be uncorrelated

across consecutive time frames and those within the multi-frame model where the

IFC is exploited to derive the optimal filter coefficients for noise reduction. Overall,

the complex-valued multi-frame filters performed the best under oracle conditions

(knowledge of all required quantities) and the real-valued multi-frame filters were

the most effective under blind conditions (only the noisy speech signal available).

The influence of the frequency resolution of real-valued multi-frame filters was evalu-

ated with the aim of improving their performance. When the periodogram was used

to estimate the PSD with the oversampling factor O = 6 ( which corresponds to a

bandwidth of 42 Hz per frequency band), the real-valued multi-frame filters applied

the most noise reduction under oracle conditions. Under blind conditions, a lower

frequency resolution corresponding to O = 2 (equivalent to a bandwidth of 125 Hz

per frequency band) yielded the best performance. A drawback of the real-valued

multi-frame filters is that in most cases they introduced more musical noise than

the robust implementations of complex-valued multi-frame filters.

The real-valued multi-frame filter gains were derived by assuming that the IFC

matrices are Hermitian circulant structured, which matched or improved upon the

performance of real-valued WGs within the single-frame model, especially at µ = 0,

where the WGs do not provide any noise reduction. It was shown that when µ = 0,

a real-valued rank 1 SDW-IFWF is equivalent to a real-valued MVDR gain and that

the real-valued multi-frame IFWF can be decomposed into an MPDR gain multi-

plied by a WG.

The MACM was proposed as a method to estimate the IFC matrix and produced

promising results in the complex-valued SDW-IFWF filter under oracle conditions.

The objective speech quality and intelligibility improvement matched that of the

commonly used FORS method, in addition to producing more natural sounding

speech estimates in informal listening tests. The complex-valued SDW-IFWF-1 us-

ing an instantaneous IFC matrix estimate (with no smoothing applied) performed

the best out of all implementations under oracle conditions. The ACS and the pro-



5 Conclusions

posed MACM method to estimate the IFC matrices produced robust results in the

complex-valued multi-frame filters under blind conditions, unlike the FORS which

produced good results only under oracle conditions.

Future research could explore the performance of different IFC matrix estimators/-

parameters within one filter implementation. Since speech and noise are different in

terms of stationarity, the performance of the oracle implementations can surely be

improved by choosing different smoothing parameters for each IFC matrix estimate

of speech and noise or noisy speech.
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wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky

Universität Oldenburg festgelegt sind, befolgt habe

Oldenburg, 19.11.2018
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unterschrift Studierende/r:


	Contents
	Introduction
	Problem Statement
	Single-Frame Signal Model
	Multi-Frame Signal Model
	Relation Between Single- and Multi-Frame Signal Models

	Single-Channel Noise Reduction
	Single-Frame Filters
	WGs

	Complex-Valued Multi-Frame Filters
	IFWFs
	SDW-IFWFs

	Real-Valued Multi-Frame Filters
	IFWF-Cs
	SDW-IFWF-Cs

	IFC Matrix Estimation
	FORS
	ACS
	ACM
	MACM


	Evaluation
	Evaluation with Oracle Knowledge
	Single-Frame Filters
	Multi-Frame Filters
	Multi-Frame Filters Using Circulant IFC Assumption
	Comparison of Implementations

	Influence of Oversampling Factor and IFC Length on Filter Performance
	Blind Implementations of Multi-Frame Filters

	Conclusions
	References

