

Steered Response Power-Based Direction-of-Arrival Estimation Exploiting an Auxiliary Microphone

h

EUSIPCO 2024, Lyon

Klaus Brümann, Simon Doclo,

Carl von Ossietzky Universität Oldenburg

27.08.2024

s

▶ Steered response power (SRP) method commonly used for estimating direction-of-arrival (DOA) of speech source relative to compact microphone array

s

- ▶ Steered response power (SRP) method commonly used for estimating direction-of-arrival (DOA) of speech source relative to compact microphone array
- ▶ DOA estimation depends on cross-power spectral densities (CPSDs), whose reliability is affected by noise and reverberation

s

- ▶ Steered response power (SRP) method commonly used for estimating direction-of-arrival (DOA) of speech source relative to compact microphone array
- ▶ DOA estimation depends on cross-power spectral densities (CPSDs), whose reliability is affected by noise and reverberation
- Phase transform (PHAT) weighting improves DOA estimation accuracy

s

- Steered response power (SRP) method commonly used for estimating direction-of-arrival (DOA) of speech source relative to compact microphone array
- DOA estimation depends on cross-power spectral densities (CPSDs), whose reliability is affected by noise and reverberation
- Phase transform (PHAT) weighting improves DOA estimation accuracy

Problem

- ▶ For closely spaced microphones, spatial coherence of noise & reverberation typically high
- ▶ CPSDs negatively affected **over extended frequency range**
- ▶ DOA estimation errors can occur despite PHAT weighting

Assuming additional microphone is available: $\bigcap_{A} \mathbf{m}_A$

- ▶ position is unknown
- \blacktriangleright spatially separated from compact microphone array

Assuming additional microphone is available:

▶ position is unknown

▶ spatially separated from compact microphone array

Proposed Idea

Compute more reliable CPSDs between **m***ⁱ* and **m***^j* based on:

- ▶ CPSDs between **m***ⁱ* and **m***^A*
- \triangleright CPSDs between m_A and m_i

⇒ exploit **spatial separation** between **m***^A* and compact microphone array

Signal Model and Acoustic Scenario

Signal Model

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Signal Model and Acoustic Scenario

Signal Model

Direct component in *j*-th microphone

$$
X_j^D(\omega) = \frac{1}{4\pi d_j} \exp(-j\omega d_j/\nu) S(\omega)
$$

$$
= X_i^D(\omega) \exp(j\omega \tau_{ij}(\mathbf{v}_s))
$$

with (far field) TDOA $\tau_{ij}(\mathbf{v}_s) = \mathbf{v}_s^{\mathsf{T}}(\mathbf{m}_j - \mathbf{m}_i)/\nu$

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Slide 4 27.08.2024

SRP-Based DOA Estimation

SRP-PHAT Function with candidate DOA vector **v**

$$
\varphi(\mathbf{v}) = \sum_{(i,j): i>j} \int_{-\infty}^{\infty} \underbrace{\psi_{ij}(\omega)}_{\text{Signal}} \underbrace{\exp(j\omega\tau_{ij}(\mathbf{v}))}_{\text{Model}}
$$
\nPHAT-weighted CPSD

\n
$$
\psi_{ij}(\omega) = \frac{\mathbb{E}\{Y_i(\omega)Y_j^*(\omega)\}}{|\mathbb{E}\{Y_i(\omega)Y_j^*(\omega)\}|}
$$

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Slide 5 27.08.2024

SRP-Based DOA Estimation

SRP-PHAT Function with candidate DOA vector **v**

$$
\varphi(\mathbf{v}) = \sum_{(i,j): i>j} \int_{-\infty}^{\infty} \underbrace{\psi_{ij}(\omega)}_{\text{Signal}} \underbrace{\exp(j\omega \tau_{ij}(\mathbf{v}))}_{\text{Model}}
$$
\nPHAT-weighted CPSD

\n
$$
\psi_{ij}(\omega) = \frac{\mathbb{E}\{Y_i(\omega)Y_j^*(\omega)\}}{|\mathbb{E}\{Y_i(\omega)Y_j^*(\omega)\}|}
$$
\nEstimate DOA

\n
$$
\hat{\mathbf{v}}_s = \underset{\mathbf{v}}{\argmax} \varphi(\mathbf{v})
$$
\nPHAT-weighted

\nCPSD

\n
$$
\longrightarrow \text{SRP-PHAT}
$$
\nMicrophone

\nArray

\nGeometry

\nGeometry

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Slide 5 27.08.2024 Carl von Ossietzky Universität Oldenburg

PHAT-Weighted CPSD

Assuming

▶ mutually uncorrelated direct and undesired (noise and reverberation) components

PHAT-weighted CPSD:

$$
\psi_{ij}(\omega) = \frac{\tilde{\psi}_{ij}^D(\omega) + \tilde{\psi}_{ij}^U(\omega)}{|\tilde{\psi}_{ij}^D(\omega) + \tilde{\psi}_{ij}^U(\omega)|}
$$

Carl von Ossietzky Universität Oldenburg

PHAT-Weighted CPSD

Assuming

▶ mutually uncorrelated direct and undesired (noise and reverberation) components

▶ spherically diffuse undesired component

PHAT-weighted CPSD:

$$
\psi_{ij}(\omega) = \frac{\tilde{\psi}_{ij}^D(\omega) + \tilde{\psi}_{ij}^U(\omega)}{|\tilde{\psi}_{ij}^D(\omega) + \tilde{\psi}_{ij}^U(\omega)|}
$$

\n
$$
= \frac{\frac{\phi_S(\omega)}{16\pi^2 \sigma_G^2} \exp(-j\omega \tau_{ij}(\mathbf{v}_s)) + \phi_U(\omega) \operatorname{sinc}(\frac{\omega d_{ij}}{\nu})}{|\frac{\phi_S(\omega)}{16\pi^2 \sigma_G^2} \exp(-j\omega \tau_{ij}(\mathbf{v}_s)) + \phi_U(\omega) \operatorname{sinc}(\frac{\omega d_{ij}}{\nu})|}
$$

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Carl von Occiotzki Universität Oldenburg

PHAT-Weighted CPSD

Assuming

▶ mutually uncorrelated direct and undesired (noise and reverberation) components

▶ spherically diffuse undesired component

PHAT-weighted CPSD:

$$
\psi_{ij}(\omega) = \frac{\bar{\psi}_{ij}^D(\omega) + \bar{\psi}_{ij}^U(\omega)}{|\bar{\psi}_{ij}^D(\omega) + \bar{\psi}_{ij}^U(\omega)|}
$$

\n
$$
= \frac{\frac{\phi_{S}(\omega)}{16\pi^2 d_c^2} \exp(-j\omega \tau_{ij}(\mathbf{v}_s)) + \phi_{U}(\omega) \operatorname{sinc}(\frac{\omega d_{ij}}{\nu})}{|\frac{\phi_{S}(\omega)}{16\pi^2 d_c^2} \exp(-j\omega \tau_{ij}(\mathbf{v}_s)) + \phi_{U}(\omega) \operatorname{sinc}(\frac{\omega d_{ij}}{\nu})|}
$$

For small inter-microphone distances *^dij* [⇒] sinc(*^ωdij ν*) affects many frequencies

Carl von Ossietzk Universität Oldenburg

PHAT-Weighted CPSD Using Auxiliary Microphone

Assuming

▶ mutually uncorrelated direct and undesired (noise and reverberation) components

 \blacktriangleright spherically diffuse undesired component

PHAT-weighted CPSD:

$$
\psi_{ij}(\omega) = \frac{\bar{\psi}_{ij}^{D}(\omega) + \bar{\psi}_{ij}^{U}(\omega)}{|\bar{\psi}_{ij}^{D}(\omega) + \bar{\psi}_{ij}^{U}(\omega)|}
$$
\n
$$
= \frac{\frac{\phi_{S}(\omega)}{16\pi^{2}d_{c}^{2}} \exp(-\jmath\omega\tau_{ij}(\mathbf{v}_{s})) + \phi_{U}(\omega)\operatorname{sinc}(\frac{\omega d_{ij}}{\nu})}{|\frac{\phi_{S}(\omega)}{16\pi^{2}d_{c}^{2}} \exp(-\jmath\omega\tau_{ij}(\mathbf{v}_{s})) + \phi_{U}(\omega)\operatorname{sinc}(\frac{\omega d_{ij}}{\nu})|}
$$

For small inter-microphone distances *^dij* [⇒] sinc(*^ωdij ν*) affects many frequencies

Proposed Method

Since *dAi* and *dAj* typically larger than *dij*, we propose to compute CPSD based on auxiliary microphone

$$
\psi_{ij}^{\mathsf{A}}(\omega) = \psi_{i\mathsf{A}}(\omega) \psi_{\mathsf{A}j}(\omega)
$$

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Slide 6 27.08.2024

Distortion of CPSD

Without Auxiliary Microphone

Source-to-undesired ratio
$$
SUR(\omega) = \frac{\phi_S(\omega)}{\phi_U(\omega)}
$$
 (defined at source position).

Distortion term $D_{ii}(\omega)$

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Distortion of CPSD

Without Auxiliary Microphone

$$
\psi_{ij}(\omega) = \frac{\exp(-\jmath\omega\tau_{ij}(\mathbf{v}_s)) + \frac{\widehat{\mathbf{16}\pi^2 d_{\mathcal{C}}^2}}{\mathsf{SUR}(\omega)}\, \mathsf{sinc}\left(\frac{\omega d_{ij}}{\nu}\right)}{|\, \exp(-\jmath\omega\tau_{ij}(\mathbf{v}_s)) + \frac{\mathbf{16}\pi^2 d_{\mathcal{C}}^2}{\mathsf{SUR}(\omega)}\, \mathsf{sinc}\left(\frac{\omega d_{ij}}{\nu}\right)|}
$$

Source-to-undesired ratio
$$
SUR(\omega) = \frac{\phi_S(\omega)}{\phi_U(\omega)}
$$
 (defined at source position).

 \blacktriangleright Distortion term $D_{ij}(\omega)$

With Auxiliary Microphone

$$
\psi_{ij}^{\mathbf{A}}(\omega) = \frac{\exp(-j\omega\tau_{ij}(\mathbf{v}_s)) + D_{ij}^{\mathbf{A}}(\omega)}{|\exp(-j\omega\tau_{ij}(\mathbf{v}_s)) + D_{ij}^{\mathbf{A}}(\omega)|}
$$

$$
D_{ij}^{\mathbf{A}}(\omega) = \frac{(4\pi)^2 d_c d_{\mathbf{A}}}{\text{SUR}(\omega)} \left[\text{sinc}(\omega d_{\mathbf{A}i}/\nu) \exp(-j\omega\tau_{\mathbf{A}j}(\mathbf{v}_s)) + \text{sinc}(\omega d_{\mathbf{A}j}/\nu) \exp(-j\omega\tau_{i\mathbf{A}}(\mathbf{v}_s)) \right] + \frac{(4\pi)^4 d_c^2 d_{\mathbf{A}}^2}{\text{sinc}(\omega d_{\mathbf{A}i}/\nu)} \text{sinc}(\omega d_{\mathbf{A}j}/\nu)
$$

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Slide 7 27.08.2024

Analysis and Evaluation

Numerical Analysis - Based on Theoretical Equations

Proportion of frequencies for which $D_{ij}^{\mathsf{A}}(\omega) \leq D_{ij}(\omega)$: $P = \frac{1}{2}$ *ω*0 \int^{ω_0} 0 $\mathcal{H}\left(\right. \left. |D_{\vec{j}j}(\omega)| - |D_{\vec{j}j}^{\mathsf{A}}(\omega)| \; \right) d\omega$

 $(H(x))$: Heaviside step function)

 \triangleright average *P* over 18 array orientations ($M = 2$, $d_{12} = 5$ cm)

▶ SURs: 15*,* 10*,* 5*,* 0 dB

Analysis and Evaluation

Numerical Analysis - Based on Theoretical Equations

Proportion of frequencies for which
$$
D_{ij}^{\mathsf{A}}(\omega) \leq D_{ij}(\omega)
$$
:

\n
$$
P = \frac{1}{\omega_0} \int_0^{\omega_0} \mathcal{H} \left(|D_{ij}(\omega)| - |D_{ij}^{\mathsf{A}}(\omega)| \right) d\omega
$$

 $(H(x))$: Heaviside step function)

- average *P* over 18 array orientations ($M = 2$, $d_{12} = 5$ cm)
- ▶ SURs: 15*,* 10*,* 5*,* 0 dB

Evaluation - Based on Simulated Signals

DOA estimation error: $\varepsilon = \cos^{-1} \left(\frac{\hat{\mathbf{v}}_s^T \mathbf{v}_s}{||\hat{\mathbf{v}}_s||_2 \cdot ||\mathbf{v}_s||_2} \right)$

- ▶ average *^ε* over 12 array orientations & 10 speech signals (*^M* = 3, *^dij* = 5 cm)
- Two reverberation and noise conditions (based on simulated RIRs and diffuse babble noise):

1. DRR = RSNR = -1.4 dB (SUR \approx 15 dB)

- 2. DRR = RSNR = -7.2 dB (SUR \approx 0 dB)
- \triangleright 3 s signals, $f_s = 16$ kHz, STFT: 512 sample frame length (32 ms), 50% overlap

SRP-Based DOA Estimation Exploiting an Auxiliary Microphone — EUSIPCO 2024, Lyon **Klaus Brümann**, Simon Doclo — Carl von Ossietzky Universität Oldenburg

Analysis of Distortion

Each point in 2D plane corresponds to a different auxiliary microphone position

▶ Auxiliary microphone positions outside of red circle $\Rightarrow D_j^A(\omega) < D_{ij}(\omega)$ for more than 50% of frequencies

Auxiliary microphone is beneficial when spatially separated from compact microphone array. For lower SUR, spatial separation needs to be larger

Signal-Based Evaluation

Auxiliary microphone brings benefit when spatially separated from compact microphone array In more challenging condition, spatial separation needs to be larger

Slide 10 27.08.2024

Signal-Based Evaluation

Auxiliary microphone brings benefit when spatially separated from compact microphone array In more challenging condition, spatial separation needs to be larger Simulation results correspond very well with theoretical analysis of distortion

Conclusions and Outlook

Conclusions:

- $\sqrt{\ }$ SRP-based DOA estimation can be significantly improved by incorporating auxiliary microphone which is spatially separated from compact microphone array
- $\sqrt{\ }$ Benefit of using auxiliary microphone can be predicted by theoretical analysis of distortion \rightarrow required spatial separation mainly depends on source-to-undesired ratio

Outlook:

- Multiple auxiliary microphones
- Multiple sources