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Abstract

Knowing the positions of ad-hoc, distributed microphones is desirable for

many multi-microphone speech enhancement applications. A practical way to

estimate the microphone array geometry (MAG) is using acoustic signals. It

was shown in [1] that the acoustic coherence could be used to estimate the

MAG, only requiring a few seconds of reverberant speech. The framework re-

lies on an iterative procedure, which is a variant of the well-known expectation

maximization (EM) algorithm, namely expectation conditional-maximization

(ECM), to estimate the coherence. From this coherence estimate, the pairwise

distances (PDs) between microphones are estimated by finding a distance-

dependent model which best fits estimated coherence. Lastly, the MAG is

estimated using multi-dimensional scaling (MDS).

The main goals of this thesis are to analyse how generalizable this frame-

work is and to find out how to best operate it in different scenarios, e.g., if

the array is small or large and if the microphones are in free-field or if there is

a head between the microphones of a pair of hearing aids. Therefore, various

parameters crucial to the MAG-estimation are analysed with Monte-Carlo

simulations in terms of PD and MAG estimation error. It is seen that ECM is

very sensitive to the initialization of the estimated coherence and speech and

reverberation power spectral densities (PSDs). Additionally, the PD estima-

tion is sensitive to the the range of frequencies used. An alternative initial

coherence estimate and filter for estimating the initial speech and reverbera-

tion PSDs are proposed which increase the robustness of the PD estimation

for a wider range of frequencies and reduce the PD estimation error. Since the

estimation of the relative-direct transfer function (RDTF) can suffer in highly

reverberant environments, the influence of estimation errors in the RDTF are

analysed in terms of MAG estimation error for a 3-dimensional microphone

array.

Using the insight gained from the results of the Monte-Carlo simulations,

the best-performing combination parameters is applied for estimating the ge-

ometry of a simulated, ad-hoc, 3-dimensional microphone array of different

sizes as well as the distance between a pair of hearing aids. For the hearing-

aid scenario, a psycho-acoustically motivated coherence model from [2] is sug-

gested for estimating the inter-aural coherence to estimate the PD between

hearing aids. The PD and MAG estimation errors are shown for a simulated,

realistic scenario using measured head-related impulse responses (HRIRs) and

the distributions of the errors are analysed, demonstrating the effect of out-

liers in the PD estimation on the MAG estimation. It is also shown how

a-priori knowledge of known distances in a microphone array (e.g., PDs be-

tween microphones of a single hearing-aid) can be used to improve the MAG

estimation error.
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Nomenclature

Acronyms

AoA Angle of arrival

BTE Behind-the-ear

CM-step Conditional-maximization step

CL Cube-length

DFT Discrete Fourier transform

DTF Direct transfer function

DoA Direction of arrival

ECM Expectation conditional-maximization

EDM Euclidean distance matrix

EM Expectation maximization

E-step Expectation step

FIR Finite impulse response

GCC-PHAT Generalized cross-correlation with phase transform

IC Inter-aural coherence

ITD Inter-aural time difference

M-step Maximization step

ML Maximum likelihood

MAG Microphone array geometry

MPDR Minimum-power distortionless response

MPDR-S Minimum-power distortionless response (stationary)

MPDR-TV Minimum-power distortionless response (time-varying)

MVDR Minimum-variance distortionless response

MDS Multi-dimensional scaling

PD Pairwise distance
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PDF Probability density function

PSD Power spectral density

RDTF Relative-direct transfer function

RDR Reverberant-to-direct ratio

STFT Short-time Fourier transform

SVD Singular-value decomposition

SNR Signal-to-noise ratio

TDoA Time-difference of arrival

ToA Time of arrival

Mathematical Notation

x or X Scalar

x Vector

X Matrix

Xa,b element in a-th row and b-th column of matrix X

X = [Xa,b] Matrix constructor

X−1 Inverse of matrix X

|X| Absolute value of scalar X

X∗ Complex-conjugate of scalar X

Re{.} Real part operator

Im{.} Imaginary part operator

{.}T Transpose operator

{.}H Hermitian operator

Span{.} Span operator

diag(.) Diagonal value operator

Tr(.) Trace operator

rank . rank operator
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‖.‖F Frobenius norm

‖.‖2 2-norm

|X|mtx Absolute value of each entry of matrix X

sinc(X)mtx sinc function (sinc(X) = sin(X)
X

) applied to each entry of matrix X

E{.} Expectation over realizations operator

Et{.} Expectation over time operator

Fixed Symbols

0A,B Matrix/vector of zeros with A rows and B columns

1 Vector of ones

α Stretching parameter of modified sinc coherence

β Damping parameter of modified sinc coherence

c Speed of sound

da,b Pairwise distance between microphones a and b

d1 vector consisting of 1st column of EDM DEDM

DEDM EDM matrix

δ Delta vector (containing distances which are proportional to TDoAs)

en n-th basis vector (i.e., a 1 in the n-th entry and rest 0s)

ε Constant (ε = 2πfs
c

)

εMAG MAG error

εPD PD error

eps Lower-bound

f Frequency

flower Lower frequency bound

fupper Upper frequency bound

fs Sampling frequency

F Loading factor
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g[k] RDTF vector

Gn[k] RDTF coefficient at n-th microphone

G Gram matrix

Γa,b[k] Coherence between microphones a and b

Γmsinc(k, d) Inter-aural coherence model

Γsinc(k, d) Diffuse coherence model

Γ[k] Coherence matrix

h[k] FIR filter

hMPDR[k] MPDR filter

hMPDR−S[k] MPDR-S filter

hMPDR−TV[k] MPDR-TV filter

hMVDR[k] MVDR filter

H Eigenvalue matrix with eigenvalues along diagonal,

corresponding to Eigenvector matrix W

i ECM iteration

I Maximal number of ECM iterations

I Identity matrix

k Frequency bin

K Number of frequency bins

K Set of frequencies used in PD estimation

l Time frame

L Number of time frames

Λ Eigenvalue matrix with eigenvalues along diagonal,

corresponding to Eigenvector matrix U

mn Coordinates of n-th microphone

M MAG matrix
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n microphone index

N Number of microphones

NC (µ, σ) Complex Gaussian with mean µ and standard-deviation σ

ν RDR lower threshold

P Array dimension

P ′ Room dimension

P PD matrix

φR[k, l] Reverberation PSD

φR[k] Complete observed reverberation PSD

Φr[k, l] Reverberation covariance matrix

φSref
[k, l] Speech PSD

Φsref [k, l] Speech covariance matrix

φSref
[k] Complete observed speech PSD

Φx[k, l] Covariance matrix of recorded speech

ψ PDF

q Source coordinate vector

R Euclidean vector space

Rn[k, l] Reverberation signal at n-th microphone

r[k, l] Multi-microphone vector of reverberation signal

r[k] Complete observed multi-microphone reverberation signal

ρ Smoothing parameter

στ RDTF error in samples

Sref [k, l] Speech signal at reference microphone

Sref [k] Complete observed multi-microphone speech signal

t Sample

T60 Reverberation decay time
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τTDoA Time-difference of arrival

τToA Time of arrival

θ Set of parameters estimated in ECM

U Eigenvector matrix corresponding to Eigenvalue matrix Λ

w[t] Impulse response

W Eigenvector matrix corresponding to Eigenvalue matrix H

Xn[k, l] n-th microphone signal

x[k, l] Multi-microphone vector of recorded speech signal

x[k] Complete observed multi-microphone recorded speech signal

z Translation vector
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1 Introduction

The research directly influencing this work and its applications are introduced in

Chapter 1.1. Proposed changes to the state-of-the-art framework (introduced in

Chapter 1.1), the goals of proposed analyses carried out in this thesis, and an outline

of the other chapters of this thesis are included in Chapter 1.2.

1.1 Background

Recent years have seen ever increasing reliance on the digitalization of academic

classes and meetings, requiring the use of webcams, but most importantly, micro-

phones to present material. A common problem in this form of presentation is

that the quality and intelligibility of the recorded speech is often adversely affected

by additive background noise, such as a background fan, or reverberation, due to

acoustically-reflective walls. Using an array of distributed microphones, there are

various ways to increase the speech quality; many require knowledge or an estimate

of the microphone array geometry (MAG) [5], i.e., the positions of the microphones

in a relative coordinate system, or partial information of the geometry such as the

microphone spacing relative to the source, in order to exploit spatial or temporal

properties of the recorded acoustic signals.

Some methods which aim to improve speech quality increase the signal-to-noise ratio

(SNR) or direct-to-reverberant ratio (DRR). To increase the SNR, a spatial beam-

former can be employed, such as a delay-and-sum beamformer, to preserve acoustic

information, i.e., the speech, coming from a certain direction while suppressing in-

formation (additive noise) from other directions [6]. In a reverberant room such as

an office or a classroom, the recorded speech signal arriving at the microphones takes

many paths from the source. In a free-field scenario, the component with the highest

amplitude travels directly from the source to the microphones, i.e., the direct com-

ponent. The early reflections acoustically reflect from or between the walls one or a

few times before arriving at the microphones. The reverberation component reflects

between the walls so many times that individual peaks corresponding to an acoustic

reflection are no longer identifiable and has an adverse effect on speech quality and

intelligibility. To increase the direct-to-reverberant ratio, dereverberation methods

can be employed [1]. A simulated room-impulse-response (RIR) which shows the

direct and early reflections, and reverberant tail, is shown in Fig. 1.1.
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Fig. 1.1: Left: RIR of a simulated room, simulated using [3].
Right: depiction of how a localized speech signal propagates to a micro-
phone within a room.
Black indicates the direct path, red the early reflections (only first-order
reflections are shown), and blue the reverberation component.

A distributed array can take many shapes and sizes and has a clear advantage over

a linear array, namely that there is no direction of arrival (DoA) of the source which

is broadside. In the case that expensive, distributed multi-microphone setups with

known geometries are not available, a cheap ad-hoc microphone array setup can be

employed to take advantage of the aforementioned techniques, e.g., when giving an

online or hybrid (both in-situ and streamed online) lecture, perhaps the lecturer has

a laptop with 2 microphones and a phone available to form an ad-hoc microphone

array. Precisely measuring the geometry becomes exponentially more tedious as the

number of employed microphones increases. Conveniently, the MAG can be esti-

mated in several ways only using sound input [7].

One method to estimate the MAG is using estimated time-differences of arrival

(TDoAs) between microphones, relative to a source signal, e.g., using the general-

ized cross correlation with phase transform (GCC-PHAT) in [8]. However, it was

shown in [9, 10] that estimating the MAG in this way requires the TDoAs to be es-

timated for sources at several unique source positions. This problem can be tackled

by relying on a moving source or exploiting acoustic reflections as virtual sources

as in [11]. A problem with these methods is that the presence of reverberation can

adversely affect the accurate estimation of the TDoA [12].

Motivated by the acoustic coherence-based framework proposed in [13] for blindly

estimating the MAG in diffuse noise, modifications were proposed for MAG esti-

mation using reverberant speech in [14]. This enables MAG estimation in highly

reverberant environments, where the TDoA-based methods suffer. The framework,

in this work referred to as the state-of-the-art, consists of three main steps: esti-

2



mation of the coherence between microphones, estimation of the pairwise distance

(PD) between microphones using the coherence, and finally, MAG estimation using

the PDs. An example ad-hoc microphone array for a scenario with four hearing-aids

and one mobile phone, and the corresponding PDs is shown in Fig., 1.2.

Fig. 1.2: An example ad-hoc microphone array consisting of hearing aids and a
mobile phone. The PDs between each microphone of the array are indicated
with different coloured lines. To estimate the coherence between a pair of
microphones, an estimate of the coherence between them is required.

To estimate the coherence, a variant of the expectation maximization (EM) al-

gorithm is used, i.e., expectation conditional-maximization [15], which iteratively

estimates the coherence and the speech and reverberation PSDs given the recorded,

reverberant speech signal and an estimate of the relative-direct transfer function

(RDTF). The PDs between microphones can be estimated by finding the model

coherence which best fits the estimated coherence from ECM and the MAG can

be estimated from the squared PDs using multi-dimensional scaling (MDS) [16, 17].

Additionally in [14], it was proposed to use a cylindrically isotropic coherence model,

instead of a spherically isotropic model, to more accurately model rooms with an

absorbent floor and ceiling [18, 19].

3



1.2 Contributions and Outline

The goals of this thesis are to check how generalizable this framework is and to inform

the reader on how to best operate the MAG estimation, i.e., which parameters need

to be tuned or modified to estimate the MAG as accurately as possible in different

scenarios such as conferencing with several distributed acoustic devices in the room

or quickly calibrating the inter-aural distance of a pair of hearing-aids. In [13] and

[14] the MAG estimation was only applied to 2-dimensional arrays with a maximal

PD of 20 cm and 16 cm, respectively. Part of the generalization includes analysing

the MAG estimation performance for larger PDs. Since the framework consists of

three separate algorithms in series (coherence estimation, pairwise distance (PD)

estimation, and MAG estimation), important parameters and their influence on the

PD and MAG estimation accuracy are analysed with Monte-Carlo simulations to

investigate error propagation through the framework.

In the coherence estimation step, the initialization of the ECM algorithm is inves-

tigated. Specifically, the initial coherence estimate and the filter which is used for

initializing the direct speech and reverberation PSDs using a maximum-likelihood

(ML) estimate. An alternative filter and different coherence initializations are pro-

posed and compared. In addition to investigating the PD estimation accuracy for

different ECM initializations, the effects of the range of frequencies used and the true

(underlying) PD are analysed. In this thesis, unless otherwise stated, the RDTF

vector is assumed to be known. Since in practice, the RDTF can contain estima-

tion errors, especially when it is estimated using GCC-PHAT in very reverberant

scenarios [12], one analysis is carried out to investigate the influence of estimation

errors in the RDTF on the MAG estimation.

With the insight gained from the analysis of the Monte-Carlo simulations, the MAG

estimation capabilities are applied in two simulated scenarios based on realistic

situations. The first scenario involves estimating the MAG of randomly placed

microphones in free-field. In the second scenario, the goal is to estimate the inter-

aural distance between a pair of between behind-the-ear (BTE) hearing aids. An

example of this scenario is depicted in Fig. 1.3. For this, it is proposed to use a

psycho-acoustically motivated inter-aural coherence model [2]. It is also investigated

whether incorporating prior knowledge into the MAG estimation can reduce the er-

ror of the estimated MAG.
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Fig. 1.3: Left: A hearing-aid located on an ear of a dummy [4].
Right: Birds-eye-view schematic of the inter-aural distances to be esti-
mated, indicated with different colours.

In Chapter 2 the acoustic scene, the signal model, and underlying assumptions are

introduced and each step of the state of the art MAG estimation is covered. Since

the MAG estimate is a relative geometry (i.e., defined in a local coordinate system)

and not one which is globally aligned, e.g., with the room or a source, the procedure

to align the estimated geometry with the true geometry is included for the purpose of

evaluating how accurate the MAG estimate is. The proposed analyses and changes

to the MAG estimation are stated in Chapter 3. The experimental results of the

analyses using Monte-Carlo simulations, where the state-of-the-art method is com-

pared with implementations using proposed modifications, are covered in Chapter

4. Moreover, the influence of the PDs, the range of frequencies used, and estimation

errors in the RDTF are analysed in terms of PD and/or MAG estimation errors.

Applying the best performing combinations of parameters, the MAG estimation is

applied for real-life-inspired scenarios, i.e., estimating the geometry of ad-hoc, dis-

tributed microphones and estimating the inter-aural distance between hearing-aids.

This work is concluded in Chapter 5 with a summary and some ideas for future

research.
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2 Theory

In this Chapter, the state-of-the-art MAG estimation framework using reverberant

speech is reviewed. The framework consists of a coherence estimation step, followed

by a PD estimation step, from which the MAG is estimated. A framework overview

schematic, with the corresponding chapters in which each individual method is de-

scribed, is presented in Fig. 2.1.

Recorded

Signal

ECM

(Estimate Coherence)

Chapter 2.2

Estimated

Coherence

Minimize Model-

Based Error

(Estimate PDs)

Chapter 2.3

Estimated

PDs

MDS

(Estimate MAG)

Chapter 2.4

Estimated

MAG

Fig. 2.1: MAG estimation Overview.

The acoustic scene, the signal model, and the signal statistics are introduced in

Chapter 2.1. The ECM framework for estimating the coherence is covered in Chap-

ter 2.2. The methods for PD estimation and MAG estimation are described in

Chapters 2.3 and 2.4, respectively. An overview block-diagram with the mathemat-

ical notation introduced in this Chapter is presented in Fig. 2.5. The Procrustes

analysis for aligning the estimated, relative coordinates with the true coordinates

for evaluation, is described in Chapter 2.6.
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2.1 Acoustic Scenario and Signal Model

The scenario geometry is described in the continuous spatial domain in P ′-dimensional

Euclidean space RP ′
and the signal in the short-time Fourier transform domain. The

acoustic scene in question comprises of one person speaking in a reverberant room,

with ad-hoc, digital devices distributed within the room in the free-field, which are

capable of recording audio, such as mobile phones, laptops, and/or hearing-aids.

For a more concise presentation and simpler derivation it is assumed that the source

and microphones are stationary, however, minor modifications could be made to the

framework in order to be applicable for slowly moving scenarios.

An omnidirectional speech source is located at position q ∈ RP ′
within the rever-

berant room and emits an acoustic wave at the speed of sound c. Distributed within

the room are N omnidirectional microphones, forming a P -dimensional array (with

P ≤ P ′) and the position of the n-th microphone (n ∈ {1, 2, . . . , N}) is denoted

by the position vector mn ∈ RP . For convenience, the individual position vec-

tors for each microphone of the microphone array are stacked into a MAG matrix

M = [m1,m2, . . . ,mN ]T, with {.}T the transpose operator.

e1

e2

Fig. 2.2: Example MAG with P = 2 and N = 5. The coloured lines represent the
coordinates of individual microphones in a relative coordinate system, with
e1 = [1, 0]T, e2 = [0, 1]T ∈ R2.

The acoustic wave travelling from the source can take many paths to a given mi-

crophone. The direct path component of this emitted wave travels directly from

the speech source to the distributed microphones. Another component of the wave

is partially absorbed and reflected at the walls once or a few times before being

captured by the microphones, these are called early reflections. The remaining

component of the wave, captured by the microphones, has gone through so many

reflections that they can not be distinguished from one-another. This component is

the reverberation and it decreases exponentially in amplitude the longer it propa-

gates throughout the room. A more detailed overview is described in [20]. In this

work, the early reflections are considered part of the reverberation component.

If the STFT frames are long enough to capture the RIR, the impulse response, which

would be applied to the source signal as a convolution in the time domain, can be
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applied as a multiplicative transfer function [21]. Since is is difficult to model the

acoustic transfer function from a source at an unknown location in the room to a

microphone at an unknown location in the room, the relative-direct transfer func-

tion (RDTF) is used to describe the direct path between the reference microphone

(arbitrarily chosen as n = 1) and other microphones.

The recorded microphone signal Xn[k, l] of the n-th microphone at time frame

l ∈ {1, 2, . . . , L} and frequency bin k ∈ {1, 2, . . . , K} in the STFT domain is stacked

in the multichannel, recorded microphone signal vector x[k, l] = [X1[k, l], X2[k, l], . . . ,

XN [k, l]]T and can be decomposed into a direct speech component

s[k, l] = g[k]Sref[k, l] (2.1)

and a reverberant signal vector r[k, l] = [R1[k, l], R2[k, l], . . . , RN [k, l]]T, defined sim-

ilarly to x[k, l]. In the free-field, the entries of the RDTF vector g[k] = [1, G2[k], . . . ,

GN [k]]T are defined as

Gn[k] = exp

(
−j2πτnk

K

)
, (2.2)

with j2 = −1, and describe the multiplicative direct path transfer function between

the speech signal at the reference microphone Sref[k, l] and the speech signal Sn[k, l]

at the n-th microphone. The signal model is defined as

x[k, l]︸ ︷︷ ︸
recorded

= g[k]Sref[k, l]︸ ︷︷ ︸
direct

+ r[k, l]︸ ︷︷ ︸
reverberation

. (2.3)

Example direct speech and speech reverberation spectrograms, Sref[k, l] and R1[k, l]

respectively, are depicted in Fig. 2.3. Visually, it is apparent that the late reflections

from the reverberation smear the direct speech over time and fill in some of the gaps,

i.e., low-amplitude time-frequency spectrogram coefficients.

(2.3.1) Direct speech (2.3.2) Recorded speech

Fig. 2.3: Example spectrograms of direct speech and reverberant, recorded speech.
The amplitude is plotted in dB.
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The propagation of the reverberation signal component between a given pair of

microphones a ∈ [1, N ] and b ∈ [1, N ], averaged over all realizations, is described by

the coherence matrix Γ[k, l] = [Γa,b[k, l]], i.e.,

Γa,b[k, l] =
E {Ra[k, l]R

∗
b [k, l]}√

E {Ra[k, l]R∗a[k, l]}
√
E {Rb[k, l]R

∗
b [k, l]}

,

=
φRa,b

[k, l]√
φRa,a [k, l]φRb,b

[k, l]
,

(2.4)

with {.}∗ denoting the complex conjugate operator and E {.} the expectation op-

erator over realizations. Assuming ergodicity, the expectation over realizations in

(2.4) can be replaced by the expectation over time Et {.} and since in this work it is

assumed that the acoustic scenario is spatially stationary, the coherence coefficient

Γa,b[k, l] in (2.4) is only dependent on the frequency bin k and not time-frame l, i.e.,

Γa,b[k]. The signal reverberation PSD is defined as

φRa,a [k, l] = E
{
|Ra[k, l]|2

}
(2.5)

and the corresponding cross-PSD as

φRa,b
[k, l] = E {Ra[k, l]R

∗
b [k, l]} , (2.6)

and they are are elements of the signal reverberation matrix Φr[k, l] =
[
φRa,b

[k, l]
]
.

If the room’s reverberation time is large enough, its reverberant sound field can be

modeled as diffuse, homogeneous, and spherically isotropic [20], i.e., the coherence

can be defined as a model function of the PD da,b between microphones a and b, and

frequency bin k, i.e.,

Γsinc(k, da,b) = sinc

(
εkda,b
K

)
, (2.7)

with sinc (x) = sin(x)
x

and ε = 2πfs
c

. The variation over da,b and frequency is shown

in Fig. 2.4.
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Fig. 2.4: Spherically isotropic coherence plotted over da,b and f (with f = k
Kfs

)

By assuming that the direct and reverberation components in (2.3) are uncorrelated,

the recorded signal covariance matrix Φx[k, l] = E
{
x[k, l]xH[k, l]

}
, with {.}H the

Hermitian operator, can be decomposed into the sum of the rank 1 direct covariance

matrix Φsref [k, l] = φSref
[k, l]g[k]gH[k], with φSref

[k, l] the PSD of the direct speech

signal at the reference microphone

φSref
[k, l] = Sref[k, l]S

∗
ref[k, l] , (2.8)

and the reverberant covariance matrix Φr[k, l] = E
{
r[k, l]rH[k, l]

}
.

Due to the homogeneous, reverberant sound field assumption, the reverberant co-

variance matrix can be described in terms of a time-varying reverberant PSD φR[k, l]

and a stationary coherence matrix Γ[k], i.e.,

Φr[k, l] = φR[k, l]Γ[k] . (2.9)

This gives the second-order statistics

Φx[k, l]︸ ︷︷ ︸
recorded covariance matrix

= φSref
[k, l]g[k]gH[k]︸ ︷︷ ︸

direct covariance matrix: Φsref
[k,l]

+ φR[k, l]Γ[k]︸ ︷︷ ︸
reverberation covariance matrix: Φr[k,l]

(2.10)

where both the direct and reverberation covariance matrices consist of a multiplica-

tion between a scalar and a time-invariant matrix.

10



(2.5.1) RDTF g(k) encodes TDoA
(depends on source angle &
PD)

(2.5.2) Spatial coherence Γ(k) encodes
PD

Fig. 2.5: Spatial signal parameters

2.2 Coherence Estimation Using ECM

In this work, the estimated PD matrix, which is used to estimate the MAG, requires

an estimate of the coherence matrix Γ̂[k] for different frequency bins k. In order

to estimate Γ[k], the expectation conditional-maximization (ECM) algorithm [15]

which is a generalized form of the EM algorithm, can be used. These are iterative

algorithms which, in each iteration, estimate a set of parameters in an expectation

step and then maximize (or increase) the likelihood that the estimated parameters

describe the observed and estimated data. In the M-step, ECM maximizes the like-

lihood conditionally on some functions of the parameters which are being estimated

(so-called conditional M-step (CM-step)), often making the likelihood maximization

simpler than in EM, with the drawback that it does not maximize the likelihood in

each iteration but only increases it.

A few assumptions are made for the derivation. The complete observed recorded sig-

nal is available for each frequency bin k, i.e., x[k] = [x[k, 1],x[k, 2], . . . ,x[k, L]]. The

complete speech Sref[k] and reverberation r[k] are defined similarly. The complete

speech and reverberation PSDs are defined asφφφSref
[k] = [φSref

[k, 1], φSref
[k, 2], . . . , φSref

[k, L]]

and φφφR[k] = [φR[k, 1], φR[k, 2], . . . , φR[k, L]], respectively. In this work, unless oth-

erwise stated, it is assumed that the true RDTF vector g[k] is known. In practice,

it can be computed using (2.2), with TDoAs τn estimated using e.g., GCC-PHAT

as in [8].

In order to fully describe the second-order statistics of the recorded speech in (2.10),

it is necessary to estimate the speech PSDs φφφSref
[k], reverberant PSDs φφφR[k], and

the acoustic coherence matrix Γ[k], which encodes the PD information, depicted in

Fig. 2.5. The set of parameters to be estimated is encapsulated by θ[k], i.e.,

θ[k] =
{
φφφSref

[k],φφφR[k],Γ[k]
}
. (2.11)

In [22], it was shown that the super-Gaussian distribution was a better model than
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a Gaussian distribution for speech, however, in [1] it was argued that using the

Gaussian distribution led to simpler derivations. It can be seen in Figs. 2.6 and 2.7

that using simulated RIRs, a zero-mean Gaussian distribution is a reasonable fit for

both the real and imaginary components of speech S1[k, l] and reverberation R1[k, l]

at the reference microphone. Fig. 2.8 shows that the diffuse coherence from (2.7)

fits well with the reverberation data.

Thus, it is assumed that in any given microphone, the speech Sref[k, l] and rever-

beration r[k, l] are distributed as independent complex Gaussians NC (0, σ), with

standard deviation σ and zero-mean µ = 0. Of course, the speech and reverbera-

tion covariance matrices are not just defined by this time-varying PSD, but also the

stationary components g[k] and Γ[k], respectively. Within the ECM framework, to

estimate the parameters in θ[k] (in the i-th iteration), their likelihoods are itera-

tively maximized given the recorded microphone signal x[k, l] and the parameters

in the previous ((i−1)-th) iteration (or using initial estimates in the first iteration),

i.e., the expectation of the log-likelihood function logψ is maximized.

Fig. 2.6: Probability density functions (PDF) ψ of recorded, direct speech am-
plitudes (real- and imaginary-parts) at the frequency bins with centre-
frequencies {31.25, 187.25, 2000} Hz. Re{.} and Im{.} denote the real- and
imaginary-part operators. The blue histograms show the discrete proba-
bility densities for 64 s of recorded, direct speech data and the red line
depicts the Gaussian probability density function with the mean and stan-
dard deviation which best represent the recorded, direct speech.
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Fig. 2.7: Probability density functions (PDF) of recorded, speech reverberation am-
plitudes (real- and imaginary-parts) at the frequency bins with centre-
frequencies {31.25, 187.25, 2000} Hz. The blue histograms show the dis-
crete probability densities for 64 s of recorded, speech reverberation data
(recorded speech, omitting the direct path) and the red line depicts the
Gaussian probability density function with the mean and standard devia-
tion which best represent the speech reverberation.
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Fig. 2.8: Simulated array with N = 4 microphones at random positions.
In black: coherence plotted over frequency f of speech reverberation data
(recorded speech, omitting the direct path), simulated using [3] with 64 s
of recorded, speech reverberation data.
In red: diffuse noise model coherence for a given PD da,b, plotted over
frequency f .

Q
(
θ[k]; θ̂(i−1)[k]

)
= E

{
logψ(Sref[k], r[k]) | x[k]; θ̂(i−1)[k]

}
. (2.12)

The PDF of the complete data ψ(Sref[k, l], r[k, l];θ) is defined as the product of the

joint probabilities of the speech and reverberation

ψ(Sref[k, l], r[k, l];θ[k]) =
L∏
l=1

ψ (Sref[k, l], r[k, l];θ[k]) , (2.13)

with the joint probability defined as

ψ(Sref[k, l], r[k, l];θ[k]) = NC
Sref[k,l]

(0, φSref
[k, l]) NC

r[k,l] (0,Φr[k, l]) . (2.14)

2.2.1 Initialization

To begin the ECM procedure, the estimated parameter set θ̂[k] is initialized with the

maximum likelihood (ML) estimates [23, 24] for the initial speech and reverberation

PSDs φ(0),Sref
[k, l] and φ(0),R[k, l], respectively, i.e.,

φ̂(0),Sref
[k, l] = hH

MVDR[k]
[
x[k, l]xH[k, l]− φ̂(0),R[k, l]Γ̂(0)[k]

]
hMVDR[k], (2.15)
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and

φ̂(0),R[k, l] =
1

N − 1
xH[k, l] Γ̂

−1

(0)[k]
[
I− g[k]hH

MVDR[k]
]
x[k, l] , (2.16)

using the multi-channel, minimum-variance, distortionless response (MVDR) filter

hMVDR[k]. I denotes the identity matrix and Γ̂(0)[k] denotes the initial, estimated

coherence matrix, which can be estimated a few different ways, discussed in Chapter

3.1.2.

The MVDR filter hMVDR[k] is derived by finding the filter coefficients h[k] which

minimize the reverberation output power while preserving the direct path g[k] [25],

i.e.,

min
h[k]

hH[k] Γ[k] h[k] , s.t. hH[k]g[k] = 1 . (2.17)

Because of the decomposition in (2.9), the reverberation covariance matrix Φr[k, l]

can be replaced with the coherence matrix Γ[k], making the MVDR a stationary

filter. The solution to (2.17) is

hMVDR[k] =
Γ−1[k]g[k]

gH[k]Γ−1[k]g[k]
. (2.18)

For the ECM initialization, Γ[k] is not known so it is replaced with the initial

estimate Γ̂(0)[k].

2.2.2 Iteration

After the initialization, the ECM algorithm enters an iterative process which iterates

I times and consists of an expectation step (E-step) and a conditional maximization

step (CM-step). At the beginning of each iteration, the estimated recorded covari-

ance matrix is assembled using available estimates of each component of the signal

model in (2.3), i.e.,

Φ̂(i),x[k, l] = φ̂(i−1),Sref
[k, l] g[k]gH[k] + φ̂(i−1),R[k, l] Γ̂(i−1)[k] . (2.19)

In the E-step, the expected speech coefficient and reverberation vector are estimated

using the observed data and estimated parameters from either the initialization or

the previous (i − 1-th) iteration. For this, the multi-channel Wiener filter is used.

Using these estimates, the expected speech PSD and reverberation covariance matrix

are estimated. The expected speech coefficient is estimated as

Ŝ(i),ref[k, l] = φ̂(i−1),Sref
[k, l] gH[k] Φ̂

−1

(i),x[k, l] x[k, l], (2.20)
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thus, the expected speech PSD is estimated as

|̂Sref|2(i)[k, l] = |Ŝ(i),ref[k, l]|2 +

φ̂(i−1),Sref
[k, l]

[
I− φ̂(i−1),Sref

[k, l] gH[k] Γ̂(i−1)[k] g[k]
]
. (2.21)

The expected reverberation vector is estimated as

r̂(i)[k, l] = φ̂(i−1),R[k, l] Γ̂(i−1)[k] Φ̂
−1

(i),x[k, l] x[k, l], (2.22)

thus, the reverberation covariance matrix is estimated as

r̂rH
(i)[k, l] = r̂(i)[k, l]r̂

H
(i)[k, l] +

φ̂(i−1),R[k, l] Γ̂(i−1)[k]
[
I− Φ̂

−1

(i),x[k, l] Γ̂(i−1)[k] φ̂(i−1),R[k, l]
]
. (2.23)

In the M-step, the parameters θ(i)[k] are estimated using the observed data and

expected estimated parameters. The speech PSD is estimated as

φ̂(i),Sref
[k, l] = |̂Sref|2(i)[k, l] . (2.24)

In the CM-step, the estimation of the coherence matrix and reverberation PSD is

interlaced (the estimation of φ̂(i),R[k, l] requires the estimate Γ̂(i)[k] from the same

iteration i), i.e.,

Γ̂(i)[k] =
1

L

L∑
l=1

r̂rH
(i)[k, l]

φ̂(i),R[k, l]
(2.25)

and

φ̂(i),R[k, l] = r̂rH
(i)[k, l] Γ̂

−1

(i) [k] . (2.26)

After iterating I times, the coherence Γ(I)[k] estimated in the I-th iteration is used

to estimate the PDs in Chapter 2.3.
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2.2.3 Recap

An algorithm overview is summarized with pseudo-code in Algorithm 1.

Algorithm 1: ECM

Input: x[k, l] ∀ k, l , g[k] ∀ k;

% initialize:

φ̂(0),Sref
[k, l] ∀ k, l using (2.15);

φ̂(0),R[k, l] ∀ k, l using (2.16);

Γ(0) ∀ k using a method described in Chapter 3.1;

% iterate:

for i = 1:I do

Estimate Φ̂(i),x[k, l] ∀ k, l using (2.19);

% E-step:

for k = 1:K do

for l = 1:L do

Ŝ(i),ref[k, l] using (2.20);

|̂Sref|2(i)[k, l] using (2.21);

r̂(i)[k, l] using (2.22);

r̂rH
(i)[k, l] using (2.23);

end

end

% CM-step:

for k = 1:K do

for l = 1:L do

φ̂(i),Sref
[k, l] using (2.24);

Γ̂(i)[k] using (2.25);

φ̂(i),R[k, l] using (2.26);

end

end

end

return Γ̂(I)[k];
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2.2.4 Practical Considerations

A few measures are important when implementing the ECM algorithm. Some are

based on practical considerations mentioned in [1] and others are to avoid numerical

or other unwanted errors. They are briefly listed in the following:

Numerical corrections

1. Enforce Hermitian structure for any matrix which should be Hermitian, e.g.,

matrix A

A =
1

2
(A + AH) (2.27)

2. Force any variables, which should be real-valued, to be real-valued, e.g. φ̂(i),S,ref,

φ̂(i),R, the entries of Γ̂(i)[k], and even the denominator of the MVDR filter in

(2.18), to prevent the imaginary-valued parts from growing and introducing

more estimation errors as the code iterates.

Heuristics

1. Before computing the inverse of any matrix A, apply regularization via diag-

onal loading [26, 27], i.e.,

A = A + I
1

N
Tr(AF + eps11T) , (2.28)

with Tr(.) denoting the Trace operator, F a loading factor (typically in the

region of L = 0.05), 1 denoting a column-vector of ones, and a lower-bound

eps = 10−6 when dealing with .wav files.

2. Set an upper-bound for the reverberation PSD estimate φ̂(i),R[k, l]

φ̂(i),R[k, l] = min(
1

N
xH[k, l]x[k, l] , φ̂(i),R[k, l] ) , (2.29)

based on the average recorded signal PSD, which includes both the direct

speech and reverberation PSDs.

3. In a given frequency bin k, only use data from relevant time-frames l to es-

timate stationary parameters (i.e., Γ̂(i)[k]). The relevant time-frames for the

estimation of Γ[k] in (2.25) are those where the reverberant-to-direct ratio

(RDR) at a given time frame and frequency bin RDR[k, l] is above a defined

threshold νRDR, i.e.,

R̂DR[k, l] =
φ̂(i),R,ref[k, l]

φ̂(i),S,ref[k, l]
> νRDR (2.30)

18



4. Set a lower bound for all estimated PSDs

φ̂(i),S,ref = max( φ̂(i),S,ref , eps ) (2.31a)

φ̂(i),R = max( φ̂(i),R , eps ) (2.31b)

in order to avoid dividing by 0, e.g., in (2.25).

5. Normalize coherence estimate Γ̂(i)[k] by its trace

Γ̂(i)[k] =
Γ̂(i)[k]

1
N

Tr(Γ̂(i)[k])
(2.32)

Informal tests indicated that omitting the division by the denominator in

(2.25) before this practical consideration resulted in a more robust coherence

estimation (due to reducing the number of divisions by small numbers).

2.3 PD Estimation

Once the coherence has been estimated using the ECM algorithm in Chapter 2.2, the

pairwise distances can be found by minimizing the difference between the estimated

coherence Γ̂(I),a,b[k] between microphones a and b, and the model coherence function

Γ(k, d) (which, importantly, is a function of distance). In [13, 14] it was shown that

the PD d̂a,b could be estimated as the distance d for which the model coherence best

matches the estimated coherence over a set of selected frequency bins k ∈ K, i.e.,

d̂a,b = argmin
d

{∑
k∈K

|Γ̂(I),a,b[k]− Γ(k, d))|2
}
. (2.33)

The set of frequency bins is discussed further in Chapter 3.3.

2.4 MAG Estimation Using MDS

In Chapters 2.2 and 2.3 it was shown how to estimate the coherence and the pairwise

distances between microphones, respectively. MDS computes relative coordinates in

P -dimensional space (i.e., coordinates arbitrarily rotated, translated, or reflected in

relation to the true coordinates) from squared pairwise distances. So in this chapter

is is shown how the estimated distances can be used to estimate the MAG. The

reason why only the MAG (i.e., the relative coordinates) is estimated and not the

true coordinates is because the information describing the rotation, translation, and

reflection, relative to the source or the room is lost when describing the problem in

terms of PDs.
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Rather than using the distances da,b in the PD matrix P = [da,b], the squared

distances d2
a,b are used in the Euclidean distance matrix (EDM) DEDM = [d2

a,b] in

order to be able to exploit a rank property in the eigenvalue decomposition [16, 28].

The EDM can be constructed from the individual squared PDs d2
a,b or in matrix

form, i.e.,

DEDM = [d2
a,b] = 1diag(MMT)T︸ ︷︷ ︸

rank=1

− 2MMT︸ ︷︷ ︸
rank≤P

+ diag(MMT)1T︸ ︷︷ ︸
rank=1

, (2.34)

with diag(.) denoting the diagonal-element operator, which returns the diagonal

elements of a square matrix as a column-vector. (2.34) clearly shows that the rank

of an EDM can be at most P + 2 as stated in [28], i.e.,

Rank(DEDM) ≤ P + 2 . (2.35)

This coincides with the expectation because the underlying coordinate matrix M

is at most rank P , regardless of the number of microphones. The matrix terms

1diag(MMT)T and diag(MMT)1T are translation operations and can not be di-

rectly estimated without knowing M, however, other transformations can be ap-

plied which preserve the geometry of the remaining term with a dependence on M.

Reformulating (2.34) as follows

MMT = −1

2
(DEDM − 1diag(MMT)T − diag(MMT)1T) (2.36a)

= −1

2
(DEDM − 1d1 − d11

T) (2.36b)

= G , (2.36c)

with each element of

1diag(MMT)T = 1dT
1 , (2.37)

leaves the Gram matrix G with rank G ≤ P . It was shown in [29] that any rank

2 matrix subtraction from DEDM, structured like the one in (2.36), that leaves G

positive semi-definite also ensures that G is a Gram matrix and can be replaced by

a multiplication with DEDM from both sides, i.e.,

Theorem 2.1 DEDM is an EDM iff

−1

2
(I− 1zT)DEDM(I− z1T)

is positive semi-definite for any z such that zT1 = 1 and zTDEDM 6= 0 .

Applying Theorem 2.1 yields a Gram matrix Grel = MrelM
T
rel where the underly-

ing co-ordinates Mrel are translated by z in addition to the arbitrary rotation or
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reflection from expressing the problem in terms of distances, i.e.,

Grel = −1

2
(I− 1zT)DEDM(I− z1T) . (2.38)

As shown in [28], z = e1 in (2.38) is equivalent to using d1 in (2.36), centering the

co-ordinates Mrel or M, respectively, at the origin. A commonly used alternative to

z is the geometric centering matrix zc, i.e.,

zc =
1

N
1T , (2.39)

which translates the underlying coordinates Mrel such that their centroid is at the

origin (instead of the reference microphone). With Grel, the coordinates can be

estimated with the help of an eigenvalue decomposition

Grel = UΛUT. (2.40)

After sorting the eigenvalues in order of decreasing magnitude, |λ1| ≥ |λ2| ≥ · · · ≥
|λN | , the P -dimensional coordinates are obtained by truncating the eigenvalues to

the P largest eigenvalues (if the PDs are not corrupted by estimation errors then

there should be at most min(P,N) non-zero eigenvalues)

M̂rel = U[diag(
√
λ1, . . . ,

√
λP ),0P×(N−P )]

T , (2.41)

with 0P×(N−P ) a P × (N − P )-dimensional matrix of zeros. Each step of the algo-

rithm is summarized with pseudo-code in Algorithm 2.

Algorithm 2: MDS

Input: D̂EDM, P ;

Ĝrel ← −1
2
(I− 1zT

c )D̂EDM(I− zc1
T);

UΛUT ← Ĝrel ;

M̂rel ← U[diag(
√
λ1, . . . ,

√
λP ),0P×(N−P )]

T;

return M̂rel;

In order to analyse the similarity of the EDM DEDM with the low-rank approximation

based on the estimated, relative MAG M̂rel, the EDM can be reconstructed using

(2.34), i.e.,

D̂EDM,MDS = 1diag(M̂relM̂
T
rel)

T − 2M̂relM̂
T
rel + diag(M̂relM̂

T
rel)1

T . (2.42)

The difference between (2.34) and (2.42) is that if DEDM has any estimation errors,
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they can increase its rank and the rank of the underlying Gram matrix G, while

(2.42) is constructed based on an approximation of Grel which is at most rank P .

2.5 Overview of Complete MAG Estimation Framework

A summary of the whole MAG estimation algorithm is presented in this section.

The most important parameter estimation steps are presented in Fig. 2.9. First,

the recorded reverberant speech in the STFT domain and the initial coherence

estimate are passed into the ECM algorithm. As well as these inputs, the RDTF is

also required, which in this thesis is assumed to be known (unless otherwise stated),

but can be estimated using GCC-PHAT as in [8]. After I iterations of the ECM

algorithm, ECM is terminated and the estimated coherence is passed to the PD

estimation step. The PD is determined by finding the model coherence which best

matches the estimated coherence. Using the squared estimated PDs, the MAG can

be estimated using MDS.

x[k, l]

Γ̂(0)[k]

estimate

RDTF
ĝ[k]

ECM Γ̂(I)[k]

1) Estimate

acoustic

coherence
Minimize

Model-

Based

Error

D̂EDM

2) Estimate

PDs

MDS M̂rel

3) Estimate

local

geometry

Fig. 2.9: MAG estimation block-diagram. Since in this work (unless otherwise
stated) it is assumed that the RDTF g[k] is available, the ”estimate RDTF”
block is greyed-out.

2.6 Realigning the Coordinates

For the purpose of evaluating the accuracy of the estimated MAG M̂rel, which is

arbitrarily rotated, translated, and reflected in reference to the true coordinates M,

the whole geometry must be aligned with the true coordinates to find the error

of each microphone. This problem, where a matrix must be mapped to another as

closely as possible is called the orthogonal Procrustes problem, the solution to which

is presented in [30]. For related applications of this solution, see [7, 28].

The alignment of the relative estimated microphone positions M̂rel with the true

positions M is simplified by manually setting the origin as a common point-of-

reference as it is a point which can be defined in both coordinate systems, e.g., the

centroid or a specific microphone. For this, the centroids (mean coordinate) mc and
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mrel,c are subtracted from (each column of) the matrices M and M̂rel, respectively,

such that their centroids are at the origin i.e.,

Mc = M− 1mT
c ,

M̂rel,c = M̂rel − 1m̂T
rel,c ,

(2.43)

placing the centroids of both matrices at the origin. Thus the alignment problem

is no longer about translation, but instead, just about rotating/reflecting M̂rel,c to

Mc, which can be applied as a matrix operation Q, i.e.,

Q = argmin

Q

s.t. QQT = I

||M̂rel,cQ−Mc||2F
(2.44)

with ||.||F the Frobenius norm. The condition QQT = I must be fulfilled for Q to not

apply any translation or scaling, i.e., to be a rotation and/or reflection operation.

The solution to (2.44) can be found by using the singular-value decomposition (SVD)

of M̂T
rel,cMc, i.e.,

M̂T
rel,cMc = USVDΣVT

SVD . (2.45)

Rewriting (2.44) using ||M̂rel,cQ −Mc||2F = Tr
(

(M̂rel,cQ−Mc)
T(M̂rel,cQ−Mc)

)
reduces the number of terms which influence the minimization, i.e.,

Q = argmin

Q

s.t. QQT = I

{
−Tr

(
QTM̂T

rel,cMc

)}
(2.46a)

= argmax

Q

s.t. QQT = I

{
Tr
(
QTUSVDΣVT

SVD

)}
(2.46b)

= argmax

Q

s.t. QQT = I

{
Tr
(
VT

SVDQTUSVDΣ
)}

. (2.46c)

Finding the solution involves exploiting the diagonal elements of the orthogonal

matrix VT
SVDQTUSVD, which can not exceed 1 due to the constraint. Thus, a solution

which maximizes Tr
(
VT

SVDQTUSVDΣ
)

in (2.46) involves setting VT
SVDQTUSVD = I,

i.e.,

QT = VSVD UT
SVD . (2.47)

To evaluate how accurate the estimated MAG M̂rel is, compared to the true coor-

dinates M, the estimated MAG is centered at the origin as in (2.43), the optimal
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Q is found with (2.47), and then the rotated estimated MAG M̂rel,cQ is compared

with Mc. Error measures are discussed in Chapter 4.
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3 Proposed Analyses and Changes to the MAG

Estimation

Building on the theory discussed in Chapter 2, in this Chapter, some modifications

are proposed to the state-of-the-art MAG estimation as well as parameters to be

analysed. Changes to the initialization of the ECM algorithm from Chapter 2.2 are

proposed in Chapter 3.1. A proposed analysis of the effect of estimation errors of the

RDTF g[k], used in ECM, is described in Chapter 3.2. A proposed analysis of the

frequency range used in the PD estimation in Chapter 2.3 is discussed in Chapter 3.3

and an alternative coherence model is suggested for estimating the distance between

hearing-aids. In Chapter 3.4, a method is proposed to incorporate prior knowledge

in MDS with the aim of improving the MAG estimation accuracy.

3.1 ECM Initialization

Although the ECM algorithm maximizes the likelihood in each iteration, it is not

guaranteed to converge to the global-optimum solution after several iterations. This

is because it could arrive in a local optimum. This means that the initialization of

the ECM algorithm is important, because by initializing the parameters more closely

to the global optimum, they are more likely to converge to the global optimum than

a local optimum. Two changes are proposed to the initialization. In Chapter 3.1.1, it

is proposed to use a different filter for estimating the initial speech and reverberation

PSDs and in Chapter 3.1.2 alternative initial coherence estimates are proposed.

3.1.1 Filter for PSD Initialization

When initializing the ECM algorithm, the initial speech and reverberation PSDs are

estimated using an MVDR filter in (2.18). In this work it is assumed that the direct

and reverberant speech components are uncorrelated, therefore the MVDR filter is

equivalent to the minimum-power distortionless response (MPDR) filter hMPDR[k]

[25], which aims to minimize the total output power while preserving the direct

path, i.e.,
min
h[k]

hH[k] Φx[k, l] h[k] ,

s.t. hH[k]g[k] = 1 .
(3.1)

The solution to (3.1) is

hMPDR[k, l] =
Φ−1

x [k, l]g[k]

gH[k]Φ−1
x [k, l]g[k]

. (3.2)

This equivalence of course only holds if there are no estimation errors in g[k],

Φ−1
x [k, l], or Γ[k]. In this instance, the MPDR filter is arguably a better choice,
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because the coherence Γ[k] or an estimate thereof is not available in the ECM ini-

tialization whereas Φx[k, l] can be estimated directly from the reverberant speech

data x[k, l] by averaging over time. The MAG estimation capabilities of both filters

are compared in Chapter 4.1.

Two Implementations are considered, the first is a stationary implementation of the

filter ̂hMPDR-S[k] which relies on a stationary covariance matrix estimate

̂hMPDR-S[k] =

(
1
L

∑L
l=1 x[k, l]xH[k, l]

)−1

g[k]

gH[k]
(

1
L

∑L
l=1 x[k, l]xH[k, l]

)−1

g[k]
(3.3)

and the second is a time-varying implementation ̂hMPDR-TV[k, l] which relies on a

recursively-smoothed covariance matrix estimate

Φ̂x[k, l] = ρΦ̂x[k, l − 1] + (1− ρ)x[k, l]xH[k, l] (3.4a)

̂hMPDR-TV[k, l] =
Φ̂
−1

x [k, l]g[k]

gH[k]Φ̂
−1

x [k, l]g[k]
, (3.4b)

with smoothing parameter ρ ∈ [0, 1]. The reason why it is implemented as a time-

varying covariance matrix is because although Γ[k] is stationary, Φ[k, l] is not, be-

cause of (2.9). This means that to take the variation of the speech and reverbera-

tion PSDs into account, the filter (3.4) should also be time-varying. To apply the

time-varying MPDR-TV filter, the stationary filter hMVDR[k] in (2.15) and (2.16) is

replaced with ̂hMPDR-TV[k, l].

Another important consideration is the initialization of the coherence estimate Γ̂(0)[k].

Without a-priori knowledge about the PDs, the choice of initializations is quite lim-

ited. In the following, a few blind coherence initializations are presented as well as

some coherence initializations which rely on oracle knowledge (i.e., access to latent

signal components which are not available in practice).

3.1.2 Coherence Initializations

Blind Coherence Initializations:

• Identity matrix (state-of-the-art in [14]):

Γ̂(0),I[k] = I . (3.5)

Initializing using the identity matrix is a safe bet, however, when referring to

(2.7), it is seen that if the coherence matrix is an identity matrix it means that
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the PDs are inifinitely large.

• Deltas

∆ = [0, δ2, . . . , δN ]T = cτ , (3.6)

with TDoAs τ = [0, τ2, . . . , τN ]T. The initial coherence estimate using ∆ is

defined as

Γ̂(0),∆[k] = sinc(
εk

K
|∆1T − 1∆T|mtx)mtx (3.7)

where |.|mtx denotes the absolute value operator applied to each entry of the

matrix and similarly, sinc(.)mtx is the sinc function applied to each entry of

the matrix.

The motivation behind this initialization is to initialize the coherence closer to

the true coherence, compared to (3.5) where the coherence represents infinitely

large PDs. For this, a distance, which is a lower-bound of the true PD is used,

directly proportional to the TDoA. An example array with labeled ds and ∆s

is presented in Fig. 3.1. Although ∆s represents a lower-bound for each PD, it

is not known exactly how close it is to the true PD because the angle between

the line connecting a pair of microphones and the axis of propagation is not

known. This means that relative to the model coherence, the coherence will

be stretched over frequency.

∆2

∆3

d12

d13

d23

Fig. 3.1: Visual representation of the entries of ∆ for a 2-dimensional array with
N = 3 microphones

Since the RDTF g[k] is assumed to be known in this work, it is assumed

that τ is available, however, in practice, τ can be blindly estimated using

GCC-PHAT as in [8].

• Recorded Signal covariance matrix:

Γ̂(0),Φx [k] =
1

L

L∑
l=1

x[k, l]xH[k, l]
1
N

Tr(x[k, l]xH[k, l])
(3.8)

Although this estimate obviously includes the direct path, the motivation be-

hind this proposed initialization is that it could be closer to the true coherence
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matrix than I.

Coherence Initializations Using Oracle Knowledge:

• sinc

Γ̂(0),sinc[k] = sinc(
εk

K
P)mtx (3.9)

with P = [da,b] the pairwise distance matrix containing the pairwise distances

da,b between each microphone combination a and b.

• Signal reverberation

Γ̂(0),rev[k] =
1

L

L∑
l=1

r[k, l]rH[k, l]
1
N

Tr(r[k, l]rH[k, l])
(3.10)

In this initialization r[k, l] is generated using the STFT of the speech signal

convolved with the complete RIR excluding the direct path.

The different coherence initializations are compared in Chapter 4.1.

3.2 Proposed Analysis of Erroneous RDTF Estimation

Since in practice, the RDTF must be blindly estimated, e.g., with TDoAs, esti-

mated using GCC-PHAT [8], the TDoAs could contain estimation errors, affecting

the estimation of parameters such as the coherence in ECM. A controlled analysis

of the influence of TDoA errors is proposed to show how well the MAG can still be

estimated with erroneously estimated RDTFs.

The TDoA, in samples, between the reference microphone and the n-th microphone,

relative to the source, τn, can be determined directly from the geometry with

τn =
fs
c

(||q− eT
nM||2 − ||q− eT

1 M||2) . (3.11)

using the difference in 2-norms ||.||2. With these TDoAs, the RDTF is estimated

using (2.2). To simulate erroneous RDTF estimation due to errors in the TDoAs,

it is proposed to add Gaussian-distributed error with a zero-mean and standard-

deviation of στ samples to each entry τn (except for τ1 = 0).

3.3 Proposed Analysis and Changes to the Coherence-Based

PD Estimation

This Chapter builds on Chapter 2.3, where the PD is estimated by finding the

model-based coherence which best fits the estimated coherence for a set of frequen-

cies. The frequency selection is an important aspect of the PD estimation, since
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the coherence estimation in (2.25) in each frequency bin depends on how well the

estimated coherence matches the model coherence.

The set of frequency bins used in the state-of-the-art in [14] contained frequency

bins which corresponded to frequencies between [1, 3] kHz. Also, in Fig. 2.8 it is

seen that even using simulated reverberant data, the data-based coherence deviates

from the model coherence which describes a diffuse sound field. This raises the need

for an analysis of the frequency range, in order to investigate how to determine the

best frequency range and whether this is dependent on the distance between two

microphones.

A modification to the model-based coherence function for hearing-aid distance esti-

mation is suggested in Chapter 3.3.1. The results of this analysis are presented in

Chapter 4.3.

3.3.1 Modifications for Hearing Aid Distance Estimation

Till now, it has been assumed that the microphones are in free-field. This means

that in a highly reverberant room, a simple coherence model Γ(k, d) could be used in

(2.33) such as the spherical isotropic model in (2.7). In [14], a cylindrical isotropic

coherence model was proposed for (shoebox) rooms where the floor and ceiling were

more absorbing/less reflective (c.f. [31]) than the other walls. To analytically model

the changes that a head between hearing-aids applies to the sinc-coherence, a modi-

fication was proposed in [2] to the sinc coherence to analytically describe the changes

to the , the so-called inter-aural coherence (IC)

Γmsinc(k, da,b) = sinc

(
α
εkda,b
K

)
1√

1 +
(
β
εkda,b
K

)4
. (3.12)

The parameter α compresses the sinc along the frequency axis and the parameter β

the sinc increasingly at high frequencies.
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Fig. 3.2: Comparison of coherence models. The free-field sinc is plotted in black
and the modified sinc is plotted in red, using α = 2.2 and β = 0.5.

3.4 Exploiting Prior Geometry Knowledge in MAG Esti-

mation with MDS

Modern hearing-aids often have more than one microphone per device. Since the

distances between microphones of a single hearing-aid are already known and do

not change, it should be possible to exploit this information in the MAG estimation.

Another situation where it could be useful to incorporate other available knowledge

than the estimated PDs is if there is a reliable TDoA estimate relative to a source

in the far-field. The far-field TDoAs are directly proportional to coordinates in one

dimension of RP so if the TDoA data is more reliable than the data from the rever-

beration (e.g. if the DRR of the recorded signal is high due to acoustically absorbing

walls, floor, and ceiling), then incorporating the more reliable spatial information

would lead to a more accurate MAG estimate. Incorporating the TDoAs also has

the added benefit that it orients one of the coordinate axes, which describe the rel-

ative MAG, relative to the source, i.e., acting as a DoA estimate.

To incorporate the prior-knowledge in a hearing-aid scenario, it is assumed that the

hearing-aids are parallel to each-other, this means that the entire MAG only has one

degree-of-freedom, i.e. only the distance between hearing-aids is variable. The idea

is that the known information is subtracted (from the Gram matrix) before applying

MDS, and then added in again afterwards. If using the TDoAs, this same procedure

can be applied by using the TDoAs to estimate the spacing between microphones,

relative to the source. These spacings are coordinates when the source is in the

far-field. Hence, similarly to using prior knowledge in the hearing-aid scenario, the
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coordinates estimated using the TDoAs are subtracted before applying MDS, and

then replaced afterwards.

In (2.40), it was seen that the Gram matrix G (related to DEDM via (2.38)) can be

decomposed via an eigenvalue decomposition. In (2.41), each root-eigenvalue multi-

plied together with its corresponding eigenvector represents the coordinates in one

dimension of RP . The way the prior knowledge about the hearing-aid geometry can

be exploited is by substituting the Gram matrices of the known coordinates in dimen-

sions, which are orthogonal to the axis of freedom (defined here as Span {e1}). This

is equivalent to truncating eigenvalues from the eigenvalue decomposition (2.40),

however, in this instance, the eigenvectors are defined based on the prior knowledge

and are not simply an outcome of computing an eigenvalue decomposition.

Starting with the relative Gram matrix Grel,c in (2.38), obtained from DEDM using

zc in (2.39), this Gram matrix is a function of the relative microphone geometry

Mrel,c which is centered at the origin and is at most rank P . Assuming that the

coordinates are known in ξ dimensions, i.e., they lie in Span {eP−ξ+1, . . . , eP} and

can as such be selected from the known columns of the MAG Mrel,c (e.g., Mrel,cep
for the p-th column). The MAG estimation can be performed similarly to (2.40)

and (2.41), except the rank ξ subtraction of the known coordinates from Grel,c is

applied before the eigenvalue decomposition by subtracting ξ orthogonal, rank 1

Gram matrices from Grel,c, i.e.,

Grel,c −
P∑

p=P−ξ+1

(Mrel,cep)(Mrel,cep)
T

︸ ︷︷ ︸
rank≤P−ξ

= WHWT . (3.13)

The remaining (P − ξ) coordinates to be determined in Span {e1, . . . , eP−ξ} can be

reconstructed as follows

̂Mrel,c,partial = W[diag(
√
η1, . . . ,

√
ηP−ξ),0(P−ξ,N−(P−ξ))]

T , (3.14)

with H the eigenvalue matrix containing eigenvalues |η1| ≥ · · · ≥ |ηP−ξ| along the

diagonal and the rest zeros, W is a matrix containing the corresponding eigenvectors,

and . If there are estimation errors in Grel,c due to estimation errors in DEDM,

then H should be truncated similar to Λ in (2.40), keeping only the largest P − ξ
eigenvalues. In order to reconstruct the whole geometry, the remaining coordinates

in Span {eP−ξ, . . . , eP} which were subtracted in (3.13) must be re-included, i.e.

M̂rel,c = [ ̂Mrel,c,partial,
[
Mrel,ceP−ξ, . . . ,Mrel,ceP ]

]
. (3.15)
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An example 3-dimensional scenario, incorporating prior knowledge of known PDs,

is shown in Fig. 3.3, where after subtracting the coordinates in Span {e2, e3} from

Grel,c, like in (3.13), the only coordinates left to estimate in (3.14) are those in

Span {e1}.

e1

e2

e3

Hearing-aid 1 Hearing-aid 2

Fig. 3.3: Example hearing-aid geometry where each hearing-aid has 3 microphones.
The coloured lines depict PDs which are estimated in (3.14). The coor-
dinates in Span {e2, e3} (with e3 coming out of the page) are known and
e1 is the axis of freedom along which the position of the hearing-aids can
change.

In order to use the prior knowledge from TDoAs, the matrix Mrel,cep in (3.13) can

be replaced with the distances shown in Fig. 3.1, i.e.

(Mrel,ceP )(Mrel,ceP )T = ∆∆T, (3.16)

which reduces the rank of the remaining Gram matrix by one. After applying MDS

to estimate the partial geometry in (3.14), the coordinates are added in again to

reconstruct the complete MAG matrix

M̂rel,c = [ ̂Mrel,c,partial,∆] . (3.17)
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4 Experimental Simulations

In order to answer the question of whether the MAG estimation is generalizable,

first, the reliability of the coherence estimation and PD estimation was analysed in

terms of PD estimation error. In Chapter 4.1, the state-of-the-art ECM initialization

(using an MVDR filter and the initial coherence estimate Γ̂(0),I[k]) was compared

with proposed alternatives suggested in Chapter 3, i.e., using an MPDR filter and/or

proposed blind and oracle coherence estimate initializations, for different frequency

ranges. To see how well the PD can be estimated for different PDs, the PD esti-

mation error was analysed for different frequency ranges and PDs in Chapter 4.2.

Since, in practice, the TDoA is not available and must be blindly estimated, the

influence of erroneous TDoA estimation is analysed in Chapter 4.3.

After finding the optimal parameter combination for PD estimation (e.g., ECM ini-

tialization parameters and frequency range), these parameters were then used for

MAG estimation in simulated scenarios inspired by real life applications. The first

scenario in Chapter 4.4.1 was a free-field scenario inspired by a real-life conference-

room scenario with an ad-hoc constellation of N = 6 microphones (e.g., representing

electronic devices such as laptops or phones). The second scenario in Chapter 4.4.2

involved estimating the distance between a pair of hearing-aids, as well as the effect

of incorporating prior knowledge, to see whether it is possible to extend the MAG

estimation framework to non-free-field scenarios.

4.1 ECM Initialization Parameter Influence

The acoustic scenarios were simulated using anechoic speech [32] originally sampled

at 48 kHz, downsampled to 16 kHz, and convolved with simulated RIRs, 4096 sam-

ples long, using a free-field RIR generator [3] based on the image method [31]. The

speed of sound in the simulations was set to c = 340 m/s. The centroid (average

position) of the microphone array with N = 2 microphones was randomly defined

within the room with dimensions 6 × 6 × 2.4 m but not located too close to the

walls nor the speech source. The reflection coefficients of each wall were equal and

determined by the T60 which resulted in a DRR of 0 dB (±1 dB) at the reference

microphone n = 1, based on [33], i.e.,

DRR = 10 log10

∑fs(τToA,1+τcut)
t=0 w1[t]∑4096
fs(τToA,1+τcut+1)w1[t]

, (4.1)

where the selection of the direct component was determined by the maximum peak

of the impulse response w1[t] at sample t plus a few samples (i.e., τcut = 8 ms) to
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capture the whole direct path.

Regarding the STFT framework, a frame length of K = 512 with a frame shift of

K/2 was used and a square-root-Hann window was used as the analysis window.

The RDTF g[k] was computed with oracle anechoic RIRs using the method de-

scribed in [34], i.e., as the principal eigenvector of the covariance matrix of the

anechoic RTF normalized by the first entry (the reference microphone).

Regarding regularization of inverse matrices in 2.28, the loading factor was set to

F = 0.05 and the lower-bound eps = 10−6.

The influence of the initial coherence estimate and the filter used to estimate the ini-

tial speech and reverberation PSDs (discussed in Chapter 3.1) on the PD estimation

error εPD, i.e.,

εPD = |d̂a,b − da,b|, (4.2)

was investigated (MAG estimation is trivial for N = 2 so it was omitted). The

analysis was carried out for frequency bins corresponding to frequencies between

[0, 4] kHz, i.e., the lower frequency flower ≥ 0 kHz, the upper frequency fupper ≤ 4

kHz, and flower < fupper. The median error of 50 scenarios was reported, where one

scenario was defined as a unique combination of an N = 2 microphone array with

a pre-determined PD but random centroid and orientation and a randomly selected

5 s speech signal convolved with the RIR corresponding to its randomly generated

source position.

In Chapter 3.1, some modifications were proposed to the ECM algorithm, namely

to the filter in (3.2) which was used to estimate the initial speech and reverberation

PSDs, as well as proposed alternative coherence initializations. In this Chapter,

these proposed modifications are compared with state-of-the-art method, i.e., using

Γ(0),I[k] and the MVDR filter to estimate the initial speech and reverberation PSDs,

in terms of PD estimation error, for different frequency ranges.

The PD estimation error was analysed using different initial coherence estimates for

a fixed PD da,b = 20 cm and using the MVDR filter in (2.18) or the MPDR filter

in (3.2) (implemented as the MPDR-S filter in (3.3) and the MPDR-TV filter in

(3.4)). The corresponding Figs. are listed in Tab. 4.1.

The results in Fig. 4.1 show that when using the MVDR filter, for da,b = 20 cm, both

the choice of the initial coherence estimate and the frequency range are important to

obtain a low estimation error. The proposed coherence initialization Γ̂(0),δ[k] which
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Tab. 4.1: Figure guide for the analysis of PD estimation error using different initial
coherence estimates and different frequency ranges.

MVDR filter MPDR-S filter MPDR-TV filter
Fig. 4.1 Fig. 4.2 Fig. 4.3

is based on the TDoAs is unreliable for all frequency ranges. The implementation

using the initial coherence estimate Γ̂(0),I[k] (together with the MVDR) represents

the state-of-the-art implementation and gives an estimation error under 5 cm using

a lower frequency flower = 1 kHz and upper frequency fupper = 3 kHz. When setting

the lower frequency to between 0.5 and 1.5 kHz, the estimation error is around 5

cm. The reason for the high estimation error when using lower frequencies smaller

than 0.5 kHz is probably because of the poor initial estimation of the speech and

reverberation PSDs in (2.15) and (2.16) using the MVDR filter. All other initializa-

tions (the proposed blind initialization Γ̂(0),Φx [k] and oracle initializations Γ̂(0),rev[k]

and Γ̂(0),sinc[k]) are far less sensitive to the selection of the lower frequency. They

mostly give an estimation error of 5 cm or lower for lower frequencies flower ≤ 1.5

kHz and appear insensitive to the upper frequency fupper. Using the coherence ini-

tialization Γ̂(0),sinc[k] shows the lowest error when using a lower frequency bound

and a frequency bound fupper < 0.5 kHz.

When using the MVDR, at da,b = 20 cm, Γ̂(0),Φx [k] is the blind coherence estimate

with the lowest PD estimation error initialization and has the benefit that it is the

most robust for different frequency ranges.

35



(4.1.1) Γ̂(0),δ[k] (4.1.2) Γ̂(0),I[k]

(4.1.3) Γ̂(0),Φx
[k] (4.1.4) Γ̂(0),rev[k]

(4.1.5) Γ̂(0),sinc[k]

Fig. 4.1: PD estimation error for different frequency ranges and coherence initial-
izations. Using an MVDR filter in the ECM initialization and for a fixed
PD da,b = 20 cm

The results in Fig. 4.2 show that when using the MPDR-S filter to estimate the

initial PSDs for da,b = 20 cm, the PD estimation is quite insensitive to the initial-
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ization of the coherence estimate. For each initial coherence estimate, there is little

variation between the PD estimation error at different frequency ranges. Using a

lower frequency flower ≤ 1.5 kHz and an upper frequency fupper > 2 kHz mostly gives

an estimation error of 5 cm or lower for each initial coherence estimate.

Comparing the results using the MVDR filter in Fig. 4.1 with those of the MPDR-S

filter in Fig. 4.2, the MPDR-S filter appears to generally either produce the same

or a smaller PD estimation error at different frequency ranges and using any initial

coherence matrix. Since poorly initialized coherence matrices are not used in the

MPDR-S filter, but instead a quantity (the covariance matrix of the recorded signal)

based on the available recorded signal is used, it makes sense that smaller/fewer

estimation errors are introduced in ECM and thus the result is a smaller PD error.

Using the MPDR-S filter, the initial speech and reverberation PSDs in (2.15) and

(2.15), respectively, rely less on the initial coherence estimate, so the improved

performance suggests that estimating the PSDs is crucial for ECM.
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(4.2.1) Γ̂(0),δ[k] (4.2.2) Γ̂(0),I[k]

(4.2.3) Γ̂(0),Φx
[k] (4.2.4) Γ̂(0),rev[k]

(4.2.5) Γ̂(0),sinc[k]

Fig. 4.2: PD estimation error for different frequency ranges and coherence initial-
izations. Using the stationary MPDR filter in the ECM initialization and
for a fixed PD da,b = 20 cm

Looking at Fig. 4.3, it is apparent that independently of the initial coherence esti-

mate, the PD estimation is mostly lower than 3 cm for a lower frequency flower ≤ 2
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kHz and an upper frequency fupper ≥ 2 kHz (if the frequency range is large enough,

i.e., fupper − flower ≥ 500 Hz).

Comparing the results of the MPDR-TV filter in Fig. 4.3 with those of the MPDR-

S filter in Fig. 4.2 and MVDR filter in Fig 4.1, it is evident that the MPDR-TV

filter results in the lowest PD estimation error regardless of the frequency range and

coherence estimate initialization. In order to reflect the highly time-varying nature

of the recorded speech signal, the covariance matrix of the recorded speech should

also be time-varying in the MPDR filter. This is because Φx[k, l] is time-varying

as it is a mixture of matrices g[k]gH[k] and Γ[k], where each matrix is weighted by

different time-varying PSDs in each time-frame l.
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(4.3.1) Γ̂(0),δ[k] (4.3.2) Γ̂(0),I[k]

(4.3.3) Γ̂(0),Φx
[k] (4.3.4) Γ̂(0),rev[k]

(4.3.5) Γ̂(0),sinc[k]

Fig. 4.3: PD estimation error for different frequency ranges and coherence initializa-
tions. Using the time-varying MPDR filter in the ECM initialization and
for a fixed PD da,b = 20 cm
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Tab. 4.2: Figure guide for the analysis of PD estimation error at different PDs and
different frequency ranges.

MVDR filter MPDR-S filter MPDR-TV filter

Γ̂(0),I[k] Fig. 4.5 Fig. 4.7 Fig. 4.9

Γ̂(0),Φx [k] Fig. 4.6 Fig. 4.8 Fig. 4.10

4.2 Influence of Pairwise Distance

In order to see how accurately the coherence estimate from ECM can estimate the

PDs for different different sized arrays, in this Chapter the PD estimation accuracy

is analysed at different PDs d1,2 = {5, 10, 20, 30, 40, 50} cm for an array with N = 2

microphones. The PD estimation error is analysed for different frequency ranges at

each PD to see how dependent the frequency range is to changes in the PD. The

two best blind initial coherence estimates with the lowest PD estimation error in

Chapter 4.1 together with either the MVDR, MPDR-S, or MPDR-TV filter were

considered. Tab. 4.2 shows an overview of compared parameters.

For the purpose of comparing the PD estimation accuracy at different frequencies

with the Figs. in Tab. 4.2 with the spherical-isotropic coherence model from (2.7),

the coherence model is plotted in Fig. 4.4 for the tested PDs.

Fig. 4.4: Model coherence over frequency for different PDs.

The results in Fig. 4.5 show the PD estimation error at different PDs using Γ̂(0),I[k]

as the coherence initialization together with the MVDR filter. Overall, using this

combination for PD estimation requires very careful tuning of the frequency range to

even be able to estimate the PD within an error of 25% of the PD. While the upper

frequency fupper has little influence on the PD estimation, the lower frequency must
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be within a certain band of frequencies in order to reliably estimate the PD. Com-

paring with Figs. 4.5 and 4.4, it seems as though setting the lower frequency flower

to the frequency corresponding to the point at which the sinc coherence Γsinc(k, d)

has an amplitude of larger than 0.5 leads to erroneous PD estimation. Since the

band of frequencies appears to be dependent on the PD itself, which makes this

combination of parameters non-generalizable for MAG estimation, because in order

to estimate the PD, the PD must be known in order to tune the frequency range!

The overall trend of the PD estimation errors indicates that as the PD increases,

the lower frequency bound flower should be reduced.
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(4.5.1) da,b = 5 cm (4.5.2) da,b = 10 cm

(4.5.3) da,b = 20 cm (4.5.4) da,b = 30 cm

(4.5.5) da,b = 40 cm (4.5.6) da,b = 50 cm

Fig. 4.5: PD estimation error for different frequency ranges and different PDs.
Using an MVDR filter in the ECM initialization and initial coherence es-
timate Γ̂(0),I[k].

The results in Fig. 4.6 show the PD estimation error at different PDs using Γ̂(0),Φx [k]

as the coherence initialization together with the MVDR filter. Compared to using
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the state-of-the-art initial coherence estimate Γ̂(0),I[k], using Γ̂(0),Φx [k] gives a lower

PD estimation error for a larger range of lower frequencies flower at each tested PD

(independently of the upper frequency bound fupper). Using Γ̂(0),Φx [k], the lower

bound frequency bound becomes less sensitive to the array size than with Γ̂(0),I[k],

which means that the PD can be estimated with a lower error using a fixed low fre-

quency bound (e.g., 300 Hz) at all tested distances. Using the MVDR filter together

with Γ̂(0),Φx [k] and using an adequate frequency range, the median PD estimation

error εPD can be estimated in the region of 20% or lower of the PD itself for all

tested distances.

When using the MVDR filter, it is important to initialize the estimated coherence

matrix as well as possible to reduce the PD estimation error, for this, Γ̂(0),Φx [k]

seems more suitable than Γ̂(0),I[k].
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(4.6.1) da,b = 5 cm (4.6.2) da,b = 10 cm

(4.6.3) da,b = 20 cm (4.6.4) da,b = 30 cm

(4.6.5) da,b = 40 cm (4.6.6) da,b = 50 cm

Fig. 4.6: PD estimation error for different frequency ranges and different PDs.
Using an MVDR filter in the ECM initialization and initial coherence es-
timate Γ̂(0),Φx [k].

The results in Fig. 4.7 show the PD estimation error at different PDs using Γ̂(0),I[k]

as the coherence initialization together with the proposed MPDR-S filter. The re-
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sults are similar to Fig. 4.6, with only minor differences. At large distances da,b ≥ 40

cm, the lower frequency bound flower should be set above 250 Hz to estimate the

PD error more accurately, whereas when using the MVDR together with Γ̂(0),Φx [k],

there are smaller variations in PD estimation error at these low frequencies.

The dissimilarity of the results to Fig. 4.5 suggests that if the initial coherence

estimate is poor, using the proposed MPDR-S filter instead of an MVDR filter can

improve the PD estimation accuracy.
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(4.7.1) da,b = 5 cm (4.7.2) da,b = 10 cm

(4.7.3) da,b = 20 cm (4.7.4) da,b = 30 cm

(4.7.5) da,b = 40 cm (4.7.6) da,b = 50 cm

Fig. 4.7: PD estimation error for different frequency ranges and different PDs.
Using an MPDR-S filter in the ECM initialization and initial coherence
estimate Γ̂(0),I[k].

The results in Fig. 4.8 show the PD estimation error at different PDs using Γ̂(0),Φx [k]

as the coherence initialization together with the proposed MPDR-S filter. Overall,
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the results are similar to Figs. 4.6 and 4.7, i.e., the regions where the PD can be

estimated to within 20% of the PD itself are very similar. This suggests that if

the coherence estimate is good enough, varying between an MVDR filter and an

MPDR-S filter does not change the PD estimation accuracy.
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(4.8.1) da,b = 5 cm (4.8.2) da,b = 10 cm

(4.8.3) da,b = 20 cm (4.8.4) da,b = 30 cm

(4.8.5) da,b = 40 cm (4.8.6) da,b = 50 cm

Fig. 4.8: PD estimation error for different frequency ranges and different PDs.
Using an MPDR-S filter in the ECM initialization and initial coherence
estimate Γ̂(0),Φx [k].

The results in Fig. 4.9 show the PD estimation error at different PDs using Γ̂(0),I[k]

as the coherence initialization together with the proposed MPDR-TV filter. This
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combination is robust at the same frequencies as when using the MPDR-S filter

together with Γ̂(0),I[k] and the PD estimation accuracy is similar.

If the lower frequency bound is set to flower = 0.3 kHz, and the upper frequency

bound fupper ≥ 3 kHz then the median PD estimation error is in the region of 10%

of the PD compared to a median PD estimation error around 20% of the PD when

using the MPDR-S filter. Thus, incorporating the time-varying recorded speech

covariance matrix into the MPDR can provide a 10% reduction in PD estimation

error.
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(4.9.1) da,b = 5 cm (4.9.2) da,b = 10 cm

(4.9.3) da,b = 20 cm (4.9.4) da,b = 30 cm

(4.9.5) da,b = 40 cm (4.9.6) da,b = 50 cm

Fig. 4.9: PD estimation error for different frequency ranges and different PDs.
Using the time-varying MPDR-TV filter in the ECM initialization and
initial coherence estimate Γ̂(0),I[k].

The results in Fig. 4.10 show the PD estimation error at different PDs using

Γ̂(0),Φx [k] as the coherence initialization together with the proposed MPDR-TV fil-
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ter. If the lower frequency bound is set to flower = 0.3 kHz and the upper frequency

bound fupper ≥ 3 kHz then the median PD estimation error is in the region of 10%

of the PD compared to when using the MPDR-S filter an estimation of around 20%

was obtained. Thus, using a time-varying estimate of the covariance matrix of the

recorded speech in the MPDR filter instead of a stationary matrix can provide a

10% reduction in PD estimation error.

Similar performance improvements were obtained by using the MPDR-TV filter

instead of the MPDR-S filter with the initial coherence estimate Γ̂(0),Φx [k], i.e.,

comparing the results in Fig. 4.10 and Fig. 4.8.
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(4.10.1) da,b = 5 cm (4.10.2) da,b = 10 cm

(4.10.3) da,b = 20 cm (4.10.4) da,b = 30 cm

(4.10.5) da,b = 40 cm (4.10.6) da,b = 50 cm

Fig. 4.10: PD estimation error for different frequency ranges and different PDs.
Using the time-varying MPDR-TV filter in the ECM initialization and
initial coherence estimate Γ̂(0),Φx [k].

Comparing the model coherence with the PD estimation errors (excluding the spe-

cific combination of initial coherence estimate Γ̂(0),I[k] with the MVDR filter in Fig.
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4.5), it can be seen that it is important to use frequencies bins corresponding to the

main lobe of the sinc. Usually, the lowest PD estimation error is achieved when the

lower frequency bound flower is set such that it is about halfway between the top

of the main lobe of the sinc and the first zero-crossing which suggests that while

including the main lobe of the sinc is important, there is a point at which including

lower frequencies is detrimental to the PD estimation (e.g., this is clearly seen in

Fig. 4.10 for lower frequencies below 150 Hz). For the tested PDs, a fixed lower

frequency bound somewhere in the region 0.1kHz ≥ flower ≥ 0.4kHz results in a low

PD estimation error corresponding to 10% of the PD.

The precise setting of the upper frequency bound fupper is not so important. Using

a frequency above 3 kHz works well for all tested PDs.

Overall, the best combination of blind estimators for all PDs is the proposed MPDR-

TV filter together with the proposed coherence initialization Γ̂(0),Φx [k].

4.3 Influence of Erroneous RDTF Estimation

In Chapters 4.1 and 4.2 it was seen that the PD estimation is sensitive to the ini-

tialization of ECM, however, it was assumed that the true RDTF was known. In

this Chapter, the influence of estimation errors in the true RDTF g[k] was analysed

using the MPDR-TV filter in (3.4) in combination with the two best-performing

blind, initial coherence estimates, Γ(0),I[k] and Γ(0),Φx [k].

The mis-estimation of the RDTF vector g[k] was analysed in terms of the MAG es-

timation error, i.e., the average 2-norm ||.||2 of difference between the aligned (using

(2.47)) and centered, estimated, coordinates and the centered, true coordinates of

each microphone of the array, is defined as

εMAG =
1

N

N∑
n=1

||M̂c,relQen −Mcen||2 . (4.3)

for a randomly generated microphone array with N = 5 microphones. Other than

the number of microphones, the simulation framework was the same as in Chapter

4.1. The microphone positions were randomly generated within a virtual cube of

0.3 × 0.3 × 0.3 m, which means that the maximal possible PD was 0.52 m. Based

on the results from Chapters 4.1 and 4.2, a fixed frequency range f ∈ [0.2, 4] kHz

was used.

To simulate estimation errors in the TDoA in (2.2), which could occur in practice
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when using GCC-PHAT [8], Gaussian-distributed errors are applied to the TDoAs

between the reference microphone and other microphones, with a zero-mean and

standard-deviation corresponding to sample t, i.e., the TDoAs are erroneously es-

timated with a standard-deviation of t samples. The TDoAs were varied between

0.01 samples and 30 samples. Each plotted MAG estimation error is the median of

20 scenarios, with N = 5 and 10 s recorded speech per scenario, i.e., the median of

100 coordinate estimation errors.

The MAG estimation error is shown over different TDoA estimation erros in Fig.

4.11. Both coherence initializations show a very similar trend over all estimation

errors. When the TDoAs are estimated with a low error (less than 0.01 samples), the

median MAG estimation error for both initializations stays low, i.e. between [1, 1.5]

cm. Increasing the TDoA error to a standard-deviation στ = 1 sample slightly raises

the estimation error to 2.5 cm. Interestingly, the MAG estimation error stays at a

similar level for higher TDoA errors, all the way upto the highest tested sample

error of στ = 30 samples.

Fig. 4.11: MAG estimation error over TDoA estimation error in samples t.

Summarizing the results, using the MPDR-TV filter and either of the initial coher-

ence estimates Γ(0),I[k] or Γ(0),Φx [k], the MAG estimation error is lowest for small

TDoA estimation errors, however, ECM is quite robust to estimation errors in the

RDTF (due to erroneously estimated TDoAs). This means that even in reverberant

environments where the TDoA estimation using GCC-PHAT may suffer, the MAG

can still be estimated using this framework.
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4.4 Simulated Practical Applications

In this Chapter, the MAG estimation capabilities are demonstrated for two types

of simulated scenarios. In the first type of scenario in Chapter 4.4.1, an array of

randomly positioned microphones was simulated. The microphones were positioned

within a virtual cube with pre-defined dimensions and the size of this virtual cube

was varied. In the second type of scenario in Chapter 4.4.2, the aim was to estimate

the inter-aural PD of a pair of hearing-aids with a head in-between as well as the

MAG of all of the available microphones in the hearing-aids.

4.4.1 Geometry Estimation of a Distributed 3D Microphone Array

To evaluate the generalizability in the context of a 3-dimensional microphone array

with N = 6 microphones, both the PD estimation error between all microphone pairs

in (4.2) as well as the MAG estimation error in (4.3) were analysed. In addition, to

see how MDS influences the estimated PDs, the PDs in the PD matrix PMDS were

analysed, similarly to (4.2), however, the estiamted PDs d̂a,b were replaced with the

square-root of the entries of the reconstructed EDM in (2.42). This variation of the

PD error is named εPD,MDS

In Chapter 4.2 it was seen that the PD of the microphones plays a role in how

well the PD can be estimated so here it is investigated how well the MAG can

be estimated using the estimated PDs. The simulated scenario remained the same

as in Chapter 4.1, except for the microphone geometry, which in this Chapter has

N = 6 microphones, whose positions were randomly generated within a virtual cube

of pre-defined dimensions. As the combination of parameters which led to the most

robust performance of ECM and the lowest PD estimation error in Chapter 4.1, the

initial coherence matrix estimate Γ̂(0),Φx [k] was used together with the MPDR-TV

filter and frequency bins within the frequency range f ∈ [0.2, 4] kHz were used. The

RDTF g[k] was computed with the method described in [34] using oracle anechoic

RIRs, i.e., as the principal eigenvector of the covariance matrix of the anechoic RTF

(discrete Fourier transform (DFT) of the RIR using the same framework as the

STFT framework), normalized by the first entry (the reference microphone).

The cubes were varied by the length of their sides, i.e., the cube-length (CL). In

each scenario, 16 s recorded speech was available. 50 scenarios were analysed per CL

and the CL was varied in the range CL ∈ 0.1, 0.2, . . . , 0.5 m. For the case CL = 0.5,

this equates to a maximal possible PD of 0.866 m. N = 6 MAG estimation errors

and
∑N−1

n=1 n = 15 PD errors were evaluated. The resulting PD or MAG estimation

errors were plotted in boxplots together with violin plots [35, 36] to show the distri-

bution of the errors. The distribution was analysed to see if stays similar for each
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Tab. 4.3: Figure guide for the analysis of PD and MAG estimation errors when es-
timating the geometry of a 3-dimensional MAG with N = 6 microphones.

εPD εPD/CL εPD,MDS εPD,MDS/CL εMAG εMAG/CL
Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.15 Fig. 4.16 Fig. 4.17

tested CL (or if, e.g., it changes for large arrays). It is possible for most PDs to be

estimated accurately, with the exception of one or two, which, if estimated with a

high error, could have a very detrimental effect on the overall MAG estimation of

all microphones (not just those whose PD is erroneously estimated). This is why it

is useful to compare both measures and their distributions, to see whether the how

many PDs are estimated with a low error and the effect on the estimated MAG.

The median is marked by the blue line, the 25% and 75% percentiles were marked

by the bottom and top edges of the boxplot, respectively, and outliers were marked

as blue circles.

Tab. 4.3 describes which error measures were plotted in which Figure. The PD

estimation errors for the tested CLs are depicted in Fig. 4.12. The low medians in

each boxplot as well as the wide violin plots at low errors indicate that most of the

estimation errors are very low, for all CLs. As the CL increases, so does the spread

of the PD estimation error εPD.

Fig. 4.12: PD estimation errors of randomly generated 3-dimensional arrays located
within a virtual cube, whose size is determined by the CL.

To more easily compare how the PD estimation errors varies over CL, the PD esti-
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mation error εPD is normalized by the respective CL in Fig. 4.13. For each CL, the

normalized distribution of εPD looks similar which indicates that within the scope of

the tested CLs, as the CL increases, the error is proportional to the size of the MAG.

Comparing with Fig. 4.10, although the results are not strictly normalized in terms

of amplitude, the colour axis is normalized to the PD which is being estimated. So

by looking at the PD estimation error for the range of frequencies which was used

in this evaluation (i.e., f ∈ [0.2, 4] kHz), it is seen that the colour is similar across

all tested PDs. This corresponds to the the trend seen in Fig. 4.13, that the PD

estimation errors normalized by the CL are similar for different PDs.

Fig. 4.13: PD estimation errors of randomly generated 3-dimensional arrays located
within a virtual cube, whose size is determined by the CL, normalized by
the respective CL.

The PD estimation errors of the reconstructed EDM in (2.42) are shown in Fig. 4.14.

Comparing these results with Fig. 4.12 it is seen that for each CL, the distribution

of the errors is slightly widened, but the density of outliers reduces. This can be

explained as large estimation errors being averaged down and small estimation errors

being averaged up in MDS. The estimated PDs with a high estimation error (outliers)

are brought closer to a PD which resembles a rank P geometry, however, this also

affects the PDs which may be estimate with a lower estimation error because they

are brought closer to PDs which form a rank P geometry with the estimated PDs

which are outliers.
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Fig. 4.14: PD estimation errors, after applying MDS, of randomly generated 3-
dimensional arrays located within a virtual cube, whose size is determined
by the CL.

Looking at the PD estimation error, normalized by the CL, in Fig. 4.15, compared

to Fig. 4.13, the same trend is observed, but more clearly, as when comparing Fig.

4.14 with Fig. 4.12, i.e., the distribution of the errors is spread out. What is has in

common with Fig. 4.13 is that the normalized distribution are similar for each CL.
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Fig. 4.15: PD estimation errors, after applying MDS, of randomly generated 3-
dimensional arrays located within a virtual cube, whose size is determined
by the CL, normalized by the respective CL.

The reconstructed MAG is evaluated in terms of MAG estimation error εMAG in

Fig. 4.16. The spread of the error increases with CL and there are more errors

closer to the median, compared to when looking at the PD estimation error in Fig.

4.12, where most of the PD errors which were below the median, were further below.

Although the PD and MAG estimation errors are not directly comparable in terms

of values, generally speaking, an array with low PD estimation errors should have

low MAG estimation errors, and vice-versa. Comparing both measures, the results

suggest that a few outliers in the PD estimation have an effect where they average

up the MAG estimation errors, which would otherwise be low.
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Fig. 4.16: MAG estimation error of randomly generated 3-dimensional arrays lo-
cated within a virtual cube, whose size is determined by the CL.

The MAG estimation error εMAG, normalized by the CL, is plotted in Fig. 4.17.

These results show the same trend is the same as Fig. 4.13 and Fig. 4.15, i.e.,

that the error normalized by the CL does not vary much. With larger distances,

however, the distribution of errors at larger distances spreads out, suggesting that

there are more outliers when larger PDs need to be estimated, and that as a result,

they increase the MAG estimation error relative to the size of the array.
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Fig. 4.17: MAG estimation errors of randomly generated 3-dimensional arrays lo-
cated within a virtual cube, whose size is determined by the CL, normal-
ized by the respective CL.

In summary, the MAG estimation framework from [14] with the proposed MPDR-

TV filter and initial coherence estimate Γ(0),Φx [k] can be used to estimate MAGs of

various sizes, however, as the PDs increase past a certain distance, the likelihood

that a PD is estimated with a high error increases, which can detrimentally affect

the estimation of the whole MAG.

4.4.2 Estimating the Geometry of a Pair of Hearing Aids

In this Chapter, the MAG of a pair of BTE hearing-aids is estimated using the pro-

posed modification to the coherence model in (3.12). The MAG estimation using

MDS, presented in Chapter 2.4 is compared with the proposed modification incor-

porating prior knowledge about the hearing-aid geometry presented in Chapter 3.4.

To simulate the head-related impulse response (HRIR) of a head, recorded impulse-

responses from the HRIR database [4] were used, from [4], which were measured

with BTE hearing-aids on a dummy-head, 16.4 cm apart, with three microphones

per device. HRIRs measured in a reverberant office scenario, with a DRR = 5 dB,

were used and the source DoA (1 m from the dummy-head, on which the hearing-

aids were sitting) was varied over the DoAs {0◦,−10◦, . . . ,−90◦}. For each DoA,

the RDTF g[k] was computed with oracle anechoic HRIRs for that DoA using the

method described in [34], i.e., as the principal eigenvector of the covariance matrix

of the anechoic RTF normalized by the first entry (the reference microphone). As-
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Tab. 4.4: Figure guide for the evaluation of MAG and inter-aural PD estimation
errors of a pair of hearing-aids

εPD εMAG

Fig. 4.18 Fig. 4.19

suming that in spherical coordinates the elevation angle is 0◦, in practice the RDTF

could be estimated by estimating the DoAs based on time-differences between in-

dividual microphones of the same hearing-aid (upto a reflection, since it can’t be

determined from one hearing-aid whether a source is to the left or right) and es-

timating the inter-aural time difference (ITD) using GCC-PHAT [8], mapping the

ITDs to a TDoA which corresponds to this ITD.

The PD estimation error εPD in (4.2) and MAG estimation error εMAG in (4.3) were

evaluated for each DoA and grouped in a boxplot and violin plot to show the error

distribution, similarly to Chapter 4.4.1. To see whether it is beneficial to incorpo-

rate more microphones to estimate the PD or MAG, the PD and MAG errors were

evaluated for the N ∈ {2, 4, 6} microphone cases. For the N = 4 and N = 6 cases,

the modification to MDS was also compared and is named MDSrank1, so overall, five

implementations were compared in terms of PD and MAG estimation error. The

N = 2 case, and for the N = 4 and N = 6 cases, both MDS and modified MDS

(MDSrank1) were compared.

In the cases where N > 2, the inter-aural PD between hearing-aids was estimated in

two ways. Either the average of the square-root of the (squared-PD) entries of DMDS,

corresponding to the PDs between adjacent microphones in opposite hearing-aids,

was used (method name: MDS), or the average of the square-root of the corre-

sponding entries of the reconstructed EDM from 2.42 were used, with the proposed

modification to MDS in Chapter 3.4 (method name: MDSrank1). In all tested imple-

mentations, wherever the PD could realistically be known beforehand (i.e., between

microphones of the same hearing-aid), the prior knowledge was incorporated into

the PD matrix to estimate the MAG.

The same frequency range as in Chapter 4.4.1, i.e., f ∈ [0.2, 4] kHz, was used in the

PD estimation and the ECM algorithm was initialized using the MPDR-TV filter

and the initial coherence matrix estimate Γ̂(0),I[k] (because it seemed like a better

fit to the modified coherence in (3.12) than using Γ̂(0),Φx [k]).

The PD estimation error results in Fig. 4.18 show that the PD estimation perfor-

mance is very similar, regardless of the method used to estimate the PD. Comparing

the results with those from Chapter 4.4.1, the difference in distribution can be at-
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tributed to the change in coherence model (also in Fig. 4.18 the axes are much

closer to the range of the distribution). Incorporating prior knowledge into the PD

estimation has virtually no effect because the small PDs between microphones on

the same device can already be estimated quite accurately. With each method, the

PD is estimated with an error between 0 and 2.5 cm, corresponding to an error

between 0 - 15% of the PD.

Fig. 4.18: PD estimation error of estimated inter-aural PD between hearing-aids

The MAG estimation error results are depicted in Fig. 4.19. In the case of N = 2,

the geometry is very simple to estimate because it is only 1-dimensional, hence the

estimation error is relatively low, i.e., 6.6 mm. In the case of N = 4, the geometry

becomes slightly more complex, i.e. it is 2-dimensional (instead of 1-dimensional).

The increased number of PDs to estimate, relative to the N = 2 geometry, intro-

duce a small amount of error in the MAG estimation, however, the estimation error

is still low, i.e., with a median error of 9 mm. For this geometry, the proposed

modification to MDS slightly decreases the median estimation error to 8.3 mm. In

the case of N = 6, the median MAG estimation error is 9.5 mm using MDS and

the proposed modification to MDS reduces the median MAG estimation error to 8.8

mm and eliminates MAG estimation errors above 12 mm, changing the shape of the

error distribution.

Comparing the results in Figs. 4.18 and 4.19, the proposed modification to incor-

porate prior knowledge in MDS provides virtually no benefit when only estimating

only the inter-aural PD, however, the MAG estimation error can be reduced when

estimating the MAG of an array with N > 2 microphones. In Chapter 4.4 it was
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seen that outliers in the estimated PD can average up the errors of the MAG esti-

mation. By incorporating prior knowledge and enforcing certain coordinates, those

coordinates which would have been negatively affected in MDS are rectified with-

out negatively impacting the PDs which are estimated accurately, hence why in

Fig. 4.19 the distribution for the condition N = 4,MDSrank1 and N = 6,MDSrank1

becomes wider for lower errors.

Fig. 4.19: MAG estimation error of estimated hearing-aid geometry

Summarizing the results of the hearing-aid PD and MAG estimation, the state-

of-the-art framework with the proposed MPDR-TV filter in ECM and psycho-

acoustically motivated, modified coherence function and frequency range f ∈ [0.2, 4]

kHz to estimate the PD, can be used to estimate the distance between hearing-aids

with an error below 2.5 cm. Increasing the number of microphones does not bring

any benefits in terms of accurately estimating the PD or MAG. Incorporating prior

knowledge (i.e., from the PDs between microphones belonging to the same hearing-

aid) can fix outliers in the MAG estimation.
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5 Conclusions and Outlook

Noisy and/or reverberant scenarios are a common problem in virtual conferenc-

ing or hearing-aid users in live scenarios. Using distributed microphones (such as

hearing-aids or phones), spatial and temporal properties of the recorded speech sig-

nals at each microphone can be exploited in multi-microphone speech enhancement

via denoising and/or dereverberation. Conveniently, the acoustical signal at the mi-

crophones can be used to estimate the MAG. In the case that the signal arriving at

the microphones is reverberant speech, the coherence is a useful signal component

which can be used to estimate the MAG, only requiring one (reverberant) source,

unlike time-based MAG estimation methods which require an impractical, minimum

number of sources. The state-of-the-art framework employs an ECM algorithm to

estimate the coherence, then estimates the PDs by finding the model coherence

which best fits the estimated coherence, and the MAG is estimated from the PDs.

In this thesis, modifications were proposed to each of these steps and the modified

implementations were compared with the state-of-the-art.

It was seen that ECM was sensitive to the initialization of the speech and reverbera-

tion PSDs and the coherence. It was also seen that the frequency range affected the

PD estimation and the optimal frequency range was dependent on the PD, which

makes it difficult to select blindly. An alternative blind initial coherence estimate

was proposed which was more robust for a wider range of frequencies, requiring

less careful tuning of the frequency range. The largest improvement in the PD es-

timation accuracy was obtained by replacing the MVDR filter which was used to

estimate the initial speech and reverberation with a proposed, time-varying MPDR

filter. This is because the coherence matrix in the MVDR filter relies on a very

poor estimate of the initial coherence, whereas the covariance matrix in the MPDR

filter can be estimated from the available recorded signal. Although the MPDR

filter still requires an estimate of the RDTF vector, whose accurate blind estimation

can be difficult in highly reverberant environments, it was shown for a simulated

3-dimensional microphone array that the MAG estimation error does not increase

much with erroneously estimated RDTFs.

For 3-dimensional microphone arrays of various sizes, it was shown that most of the

PDs were estimated with a low error, and that relative to the array size, the PD

estimation error was constant for the tested sizes. However, for applications such as

delay-and-sum beamforming, knowing only the PDs is not enough - the MAG must

be known (or the inter-microphone spacing relative to the source, which first requires

knowing the MAG). It was shown that the MAG could be estimated quite accurately

using the state-of-the-art framework with proposed modifications, however, because

of outliers in the PD estimation, the distribution of the MAG estimation errors was

66



more spread out than for the PD estimation errors, since the smaller PD errors were

averaged up.

The state-of-the-art framework with proposed modifications was also applied to

estimate the PD between hearing-aids. For this, a psycho-acoustically motivated

coherence model was suggested to model the coherence between hearing-aids. The

PD estimation error was low, regardless of the number of microphones used from the

hearing-aids. In addition to estimating the PD, the MAG estimation was also anal-

ysed, investigating the influence of incorporating prior-knowledge. Using a proposed-

modification to the MAG estimation, it was shown that the MAG could be estimated

slightly more accurately than when using the prior knowledge, but not in the pro-

posed way.

It was seen that the ECM initialization plays a large role in the robustness of the

MAG estimation framework. Perhaps a more fitting application for this framework

would be if it were initialized based on a known geometry and iterated online, up-

dating changes to the MAG over time. The framework should only require minor

adjustments such as an iteratively updated RDTF estimate, a coherence estimate

which is recursively smoothed or averaged over a short time window (instead of av-

eraged over all of the available data), and also the PD matrix and MAG should be

estimated online.

In order to see how robust the MAG estimation is in more or less reverberant envi-

ronments, the MAG estimation should be analysed for different DRRs. The influence

of the signal type (e.g., coherent noise instead of speech) on the frequency range and

smoothing in the time-varying MPDR filter could also be investigated.

The results of the frequency-range analysis showed that selection of the lower fre-

quency bound was crucial for determining the PD accurately. While the proposed

modifications to the framework made it more robust, especially for lower frequencies

than the state-of-the-art, it could be seen that the lower frequency bound which led

to the most accurate PD estimation was dependent on the PD itself. This motivates

further research - perhaps it is possible to determine the optimal frequency-range

on-the-fly based on the amplitude of the estimated coherence or in an alternating

way, estimating the PD, then the optimal frequency range for that PD, then esti-

mating the PD again, etc..

Although the psycho-acoustically motivated sinc coherence worked quite well for

estimating the distance between hearing-aids, perhaps a better model can be found

or derived to estimate the distance between hearing-aids more accurately.
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