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Abstract

In noisy and reverberant environments, speech enhancement techniques such as the multi-channel
Wiener filter (MWF) can be used to improve speech quality and intelligibility. Typically, the MWF is
implemented as the concatenation of a minimum variance distortionless response (MVDR) beamformer
and a spectro-temporal postfilter. Assuming that reverberation and ambient noise can be modeled
as diffuse sound fields, estimates of the relative early transfer function (RETF) vector of the target
speaker and of the diffuse power spectral density (PSD) are required to implement the MWF. RETF
vector and diffuse PSD estimation methods are often decoupled, i.e., one of the quantities is estimated
assuming that the other quantity is known.

First, we aim at jointly estimating the RETF vector and the diffuse PSD by minimizing the Frobenius
norm of an error matrix based on the presumed signal model. To solve this minimization problem, we
propose to use an alternating least squares approach. Simulation results using artificial and real data
show that the proposed method leads to a better performance than a state-of-the-art method based on
covariance whitening and the eigenvalue decomposition (EVD)-based diffuse PSD estimator.
Since this estimator does not require knowledge of the RETFs of the target speaker, it has been shown
to be advantageous to other state-of-the-art estimators in the presence of RETF mismatches. However,
computing the EVD can be computationally expensive, particularly when the number of microphones
is large.
This is why, second, we propose to reduce the complexity of the EVD-based PSD estimator by using
the iterative power method to compute the eigenvalues. Since the EVD-based PSD estimator only
requires the largest eigenvalues, the full EVD is not required and the power method is a well suited
computationally efficient technique to estimate these eigenvalues. Experimental results show that
using the PSD estimated via the power method in an MWF yields a very similar performance as using
the PSD estimated via the full EVD.
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Zusammenfassung

In akustischen Umgebungen, die von Rauschen und Nachhall geprägt sind, können Sprachverbesserungs-
Methoden wie der mehrkanalige Wiener Filter (MWF) benutzt werden, um Sprachqualität und
-verständlichkeit zu verbessern. Typischerweise wird der MWF als die Verkettung eines Minimum
Variance Distortionless Response (MVDR) Beamformers und eines spektral-temporalen Postfilters
implementiert. Unter der Annahme, dass Nachhall sowie Umgebungsstörgeräusche als ein diffuses
Schallfeld modelliert werden können, werden Schätzungen der relativen frühen Transferfunktionen
(RETFs) des Zielsprechers sowie der diffusen spektralen Leistungsdichte (PSD) benötigt, um den MWF
zu implementieren. Methoden zum Schätzen der RETFs und der PSDs sind üblicherweise entkoppelt,
so dass eine der Größen unter der Annahme geschätzt wird, dass die andere Größe bekannt ist.

Erstens erstreben wir, den RETF Vektor sowie die diffuse PSD gemeinsam zu schätzen, indem wir
die Frobeniusnorm einer Fehlermatrix minimieren, welche auf dem angenommenen Signalmodell
basiert. Um dieses Minimierungsproblem zu lösen, schlagen wir vor, eine alternierende Methode der
kleinsten Quadrate zu nutzen. Simulationsergebnisse mit künstlichen und realen Daten zeigen, dass
die vorgeschlagene Methode zu einer besseren Leistung führt als eine kürzlich vorstellte Methode,
welche auf Kovarianz-Whitening und dem Eigenwertzerlegung (EVD)-basierten diffusen PSD-Schätzer
aufbaut. Dieser Schätzer nutzt die EVD der vorgeweißten PSD-Matrix der Mikrofonsignale. Da er
kein Wissen über die RETFs des Zielsprechers benötigt, weist er Vorteile gegenüber anderen aktuellen
Schätzern in Anwesenheit von RETF-Schätzfehlern auf. Das Berechnen der EVD stellt jedoch aus
Gründen der rechnerischen Komplexität ein Problem dar, besonders, wenn die Anzahl der betrachteten
Mikrofone groß ist.

Aus diesem Grunde schlagen wir zweitens vor, die Komplexität des oben genannten EVD-basierten
PSD-Schätzers zu reduzieren, indem die iterative Potenzmethode eingesetzt wird, um die Eigenwerte
zu berechnen. Da der EVD-basierte PSD-Schätzer lediglich die größten Eigenwerte benötigt, ist
eine vollständige EVD nicht notwendig, und die Potenzmethode stellt eine passende und effiziente
Methode dar, diese Eigenwerte zu schätzen. Experimentelle Ergebnisse zeigen, dass das Ersetzen der
vollständigen EVD durch die Potenzmethode zu sehr ähnlichen Ergebnissen führt.
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1Introduction

1.1 Motivation

Recent developments in hand-held devices have led to an increased interaction of humans
and machines, be it as a ways of communication (e.g. Skype, Google Duo, Apple FaceTime) or
with regard to assisted living technologies, where automatic speech recognition is of utmost
importance. Commonly, these systems involve a small set of microphones used to acquire
a speech signal in a room of limited size. However, in addition to the desired speech, also
interferences are captured by the microphones, including ambient noise and reverberation.
This may result in the degradation of speech quality, a decrease in listening comfort [1, 2],
and in a performance deterioration of automatic speech recognition systems [3]. Hence,
speech enhancement techniques with the ability of suppressing both reverberation and
ambient noise are required. To this end, many single- and multi-channel techniques have
been proposed, with the latter ones being generally preferred, since they are capable of
additionally exploiting spatial information. The multi-channel Wiener filter (MWF) is a
commonly used speech enhancement technique, which minimizes the mean square error
between a target signal and the output signal [4, 5, 6]. The MWF can be implemented as a
minimum variance distortionless response (MVDR) beamformer followed by a single-channel
Wiener postfilter [7]. Modeling reverberation and ambient noise as diffuse sound fields,
the implementation of the MVDR beamformer and the Wiener postfilter requires estimates
of the relative early transfer functions (RETFs) of the target speaker and of the diffuse
power spectral density (PSD). Several RETF estimation procedures have been proposed, such
as the covariance whitening (CW) method [8, 9], the covariance subtraction method [9,
10], or the least squares (LS) method [11]. In addition, several multi-channel diffuse PSD

estimators have been proposed, such as maximum likelihood-based estimators [12, 13],
Frobenius norm-based estimators [14, 15], or the eigenvalue decomposition (EVD)-based
estimator [16]. In [17] it has been shown that using the CW method to estimate the RETFs

and the EVD-based PSD estimator to estimate the diffuse PSD results in a high dereverberation
and noise reduction performance. A major drawback of this procedure is its computational
complexity, which prevents it from being used in real-time scenarios, where computational
resources are usually limited.

The objective of this thesis is a) to propose a technique to reduce the computational com-
plexity of the EVD-based PSD estimator, and b) to couple the PSD and RETF estimation within a
joint noise reduction and dereverberation framework.

Reverberation Since the negative effects of reverberation are a major part of what motivates
the work in this thesis, a short description of reverberation is provided in the following. In
general, reverberation originates from the superposition of acoustical waves reflected at

1



(a) illustration (b) measured RIR, T60 = 610 ms

Fig. 1.1.: a), b): direct path, early reflections and late reflections

surfaces, including walls and other objects. For the purpose of illustration, and to arrive
at a more technical definition, the construct of room impulse responses (RIRs) is used. In
principle, RIRs are used to model the acoustical path between the source and the microphones
in a room as a linear time-invariant (LTI) system, or, figuratively speaking, they represent
a black box that receives an input (the source) and outputs the microphone signals. An
example of a RIR is depicted in Figure 1.1b, which depicts one channel of a measured RIR

used in this thesis. Three stages can be identified (as illustrated in Figure 1.1a):

direct path including a brief period of near-zero values1, followed by the arrival of the acoustical
waves at the microphone on a direct path

early reverberation typically said to be the first ≈ 50 ms after the direct path; contains first reflections from
the wall, which may be well distinguished (as can be seen by the distinct extrema);
said to be beneficial for speech intelligibility [18]

late reflections constitute the main negative impact of reverberation, and thus are to be avoided;
characterized by the fact that a large number of (multiple) reflections with relatively
small amplitudes arrive at the microphones simultaneously, leading to its diffuse nature

A common measure used to quantify the amount of reverberation introduced by a room is
the reverberation time T60, which is defined as the time necessary for a signal to drop by
60 dB after it is cut off. Usually, as also done in this work, the reverberation time is given as
a single number, although, to be more precise, it is a frequency-dependent quantity.

1.2 Outline

In Chapter 2, some theoretical background is provided, laying the foundation of this thesis.
The time domain signal model and the notation used throughout this work are introduced.
Since most of the methods described in this work are derived in the time-frequency domain,
the short-time Fourier transform (STFT) is presented, which is a transformation used to
obtain the time-frequency representation of time domain signals. Corresponding changes to
the signal model are described. A brief overview of the MWF is provided, which is the speech
enhancement technique that the main contributions of this thesis are dedicated to. The EVD-
based diffuse PSD estimator is the basis of one of these contributions, and hence it is explained
briefly, followed by a least squares-based competing estimator. Furthermore, a method for
the joint estimation of the RETF vector and the diffuse and target PSD is introduced. Finally,
the methods used for the objective evaluation of the MWF performance are presented.

Chapter 3 contains a description of the main contributions of this thesis. We propose an
alternating least squares (ALS) approach for the joint estimation of the diffuse and the target

1The values are not exactly zero due to sampling.
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PSDs as well as the time-varying RETF vector. Regarding the EVD-based diffuse PSD estimator,
we propose a variant with significantly reduced computational complexity.

In Chapter 4, the performance of the proposed methods is evaluated and compared to
reference approaches. The computationally more viable variant of the EVD-based diffuse
PSD estimator is compared to the original estimator in terms of run speed, PSD estimation
accuracy, as well as resulting MWF performance in different reverberant acoustical scenarios
including different types of noise. Similarly, the ALS approach is compared to a state-of-the-
art approach in terms of diffuse PSD and RETF vector estimation accuracy, both for artificial
data and in the acoustical scenarios mentioned above.

Finally, in Chapter 5, the thesis is concluded, and possibilities for further research are pointed
out.

1.2 Outline 3



2Theoretical Prerequisites

The aim of this chapter is to present the reader with the theoretical background that
is necessary to follow what is done in this work. First, the signal model is presented
in the time domain, and the reader is introduced to the used notation in Section 2.1.
Second, since all of the processing in this thesis is done in the time-frequency domain, the
short-time Fourier transform (STFT) is introduced, and the signal model is extended to the
time-frequency representation of the time domain signals in Section 2.2. A brief overview
of the multi-channel Wiener filter (MWF) is provided in Section 2.3, which is the speech
enhancement technique used throughout this work. In the considered implementation, it
requires estimates of the relative early transfer function (RETF) vector and the diffuse power
spectral density (PSD), which are the subjects in Section 2.4 and Section 2.5. To evaluate
the performance of the MWF using the various estimators, objective measures are presented
in Section 2.6.

2.1 Time Domain Signal Model

We consider a single spatially stationary speech source and M microphones in a reverberant
and noisy acoustical scenario. The signal at the m-th microphone and time index n can
be written as the superposition of the desired speech and an interference term including
reverberation and noise as

ym[n] = hm[n] ∗ s[n]︸ ︷︷ ︸
xm[n]

+im[n]. (2.1)

Here, the desired speech component xm[n] := hm[n] ∗ s[n] is obtained as the filtered
speech source, where hm[n] contains the direct path and early reflections of the room
impulse response (RIR) from the speech source s[n] to the m-th microphone, ∗ denotes
the convolution operator, and im[n] is the interference term. Note that in this model,
only one source is considered. Modeling the RIR as a finite impulse response (FIR) filter
hm = [hm(0), hm(1), . . . , hm(Lh − 1)]T with length Lh, the convolution can be expressed as

xm[n] =
Lh−1∑
l=0

hm[l]s[n− l]. (2.2)

The term im[n] contains any interference to the desired signal that is to be removed or
attenuated, i.e., late reverberation, background noise and/or sensor noise. The interference
component is further separated into a diffuse component dm[n] (that can be used to model,
e.g., babble noise and late reverberation) and a component vm[n], which is used to model
uncorrelated noise, e.g., sensor noise, such that Equation 2.1 becomes

ym[n] = xm[n] + dm[n] + vm[n]. (2.3)
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2.2 Short-Time Fourier Transform

Since a large part of this work involves inspection of the time-frequency representation of
time domain signals, this section is devoted to briefly introducing the reader to the methods
used in this context. The following derivations are mainly based on [19].

2.2.1 Discrete Fourier Transform

Recall the definition of the Fourier transform of the continuous-time signal x(t)

X(ω) =
∫ ∞
−∞

x(t)e−j2πωtdt, (2.4)

with j2 = −1, ω the continuous angular frequency, and t the continuous time variable. The
techniques described in this work focus on discrete, and hence computer-representable, sig-
nals. x(t) is replaced by a periodically sampled version, x[n] := x(nT ), where n corresponds
to the time index and T to the sample period. Analogously, the spectrum X(ω) is replaced
by the sampled version X[k] := X(ω = 2πk/N) (denoted discrete Fourier transform (DFT))
with spacing 2π/N between two samples. Thus, Equation 2.4 is modified to

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N , k = 0, ...,K − 1, (2.5)

where N is the signal length and K is the number of frequency bins of the spectrum. The
inverse DFT, which yields the time domain signal when being applied to its spectrum, is then
given as

x[n] = 1
K

K−1∑
k=0

X[k]ej2πkn/N , n = 0, ..., N − 1. (2.6)

Note that choosing the DFT length K = N is sufficient for retaining the spectral information
of x[n]; however for visualization purposes it may be useful to zero-pad the signal to length
N > K. This does not add any information, but it leads to a finer interpolation of the
spectrum and any visual spectral characteristics may become accessible more easily.

2.2.2 Application in Long Signals

In some situations, it may prove useful to obtain overall spectral characteristics of a signal,
hence requiring the application of Equation 2.5. On the other side, crucial information may
be highly localized in time. Speech, e.g., is often assumed to be stationary within time
frames of ≈ (20− 30) ms. This makes it necessary to investigate the spectrum of subsets of
the signal sequence, which are obtained via windowing. Considering different segments in
time, the signal is transformed into the time-frequency domain by applying the STFT. The
l-th segment at time n is then given by

xl[n] = w[n]x[n+ lR], n = 0, ..., Nw − 1, (2.7)

where R corresponds to the shift, i.e., the number of samples between two segments, and
w[n] is a window sequence with length Nw. As such, the representation of the l-th time
frame and the k-th bin of the signal becomes

X(k, l) =
Nw−1∑
n=0

w[n]x[n+ lR]e−j2πnk/Nw , k = 0, ...,K − 1. (2.8)

2.2 Short-Time Fourier Transform 5
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Fig. 2.1.: a) Hamming window and b) its spectrum

The window choice has a large influence on the STFT. Due to the fact that the observed
signals have finite lengths, the frequency resolution of their STFTs is limited. Indeed, a higher
spectral resolution requires more samples and hence leads to a lower temporal resolution,
and vice versa. Furthermore, signal energy concentrated at one specific frequency f may not
only be found in the corresponding frequency bin, but it may be spread to neighboring bins,
termed spectral “leakage”. This is an effect caused by the side lobes of the window spectrum,
which can be seen as the local maxima in Figure 2.1b. In addition, due to the width of the
main lobe of the window spectrum, it may occur that two separate spectral peaks may not
be resolved individually. Choosing a window function means a trade-off between frequency
resolution and leakage. In this work, w[n] represents a Hamming window of length Nw,
given by (cf. Figure 2.1a)

w[n] = 0.54 + 0.46 cos
(

2πn
Nw − 1

)
, n = 0, ..., Nw − 1 (2.9)

with the property of minimizing the nearest side lobe (cf. Figure 2.1b).

Concluding, it can be said that the STFT parameters (window type, DFT length N , shift R)
need to be chosen carefully with regard to the application in order to yield satisfying results.
For instance, in case of speech analysis, a suitable trade-off for the temporal and spectral
resolution needs to be found that satisfies both the need for large spectral resolution as well
as the assumption that speech can be considered stationary only at small time scales.

2.2.3 STFT-Domain Signal Model

Since all of the processing in this work is done in the time-frequency domain, the discussion
of the signal model is continued as such. This transition brings with it the advantages that
filtering becomes computationally less expensive (as given by the convolution theorem).
Applying the STFT to the signal components in Equation 2.3 and using the property of
linearity yields

Ym(k, l) = Xm(k, l) +Dm(k, l) + Vm(k, l), (2.10)

where k and l are the frequency and time indices, Ym(k, l) is the STFT of ym[n] and Xm(k, l),
Dm(k, l) and Vm(k, l) are defined similarly. For a more convenient notation, y(k, l) is defined
as the stacked components vector

y(k, l) = [Y1(k, l), Y2(k, l), . . . , YM (k, l)]T , (2.11)

such that Equation 2.10 can be written simultaneously for all microphones as

y(k, l) = x(k, l) + d(k, l) + v(k, l), (2.12)

2.2 Short-Time Fourier Transform 6



with x(k, l), d(k, l), and v(k, l) similarly defined.

2.3 Multi-Channel Wiener Filter

One commonly used technique with the aim of dereverberation and denoising of an input
signal is the multi-channel Wiener filter (MWF), described, e.g., in [20, 7]. It achieves
interference reduction by taking into account the statistical properties of the signals and
minimizing the mean square error between a target and the output signal [21], yielding an
optimal solution in the minimum mean square error (MMSE) sense. In this work, the MWF

is implemented as a two-stage technique, with a structure that is briefly described in the
following (cf. Figure 2.2).

In the first stage of the MWF, a beamformer with wMVDR(k, l) = [W1(k, l), . . . ,WM (k, l)]T as
its filter coefficients (cf. Section 2.3.1) is applied, exploiting spatial information of the signal.
At the output of this first stage, an enhanced single-channel signal remains, which is given
by

Z(k, l) = wH
MVDR(k, l)y(k, l), (2.13)

where ◦H denotes the Hermitian operator. To further enhance the output, a single-channel
spectral postfilter G(k, l) (cf. Section 2.3.2) is applied to the output of the minimum variance
distortionless response (MVDR) beamformer, resulting in the final target estimate

Ŝ(k, l) = G(k, l)Z(k, l) (2.14)

= G(k, l)wH
MVDR(k, l)︸ ︷︷ ︸

wH
MWF(k,l)

y(k, l), (2.15)

where wMWF(k, l) are the coefficients of the MWF. Note that the computations are done
independently for each frequency bin, which is why for the remainder of this thesis, the
frequency index k is omitted wherever possible.

+

+

+

..
.

 
𝚺

..
.

..
.

Fig. 2.2.: acoustical system configuration

2.3.1 Minimum Variance Distortionless Response Beamformer

The MVDR beamformer aims at obtaining filter coefficients solving the optimization problem

wMVDR(l) = argmin
w∈CM

{wHΦi(l)w}, s. t. wHc(l) = 1, (2.16)

where Φi(l) is the M ×M -dimensional interference PSD matrix and c(l) is an M -dimensional
constraint vector. c(l) defines the path that remains undistorted by the MVDR (addressed

2.3 Multi-Channel Wiener Filter 7



by “distortionless response”) and needs to be chosen carefully. When aiming for both
dereverberation and noise reduction, e.g., one may choose the reverberant speech component
to remain undistorted. In this work, c(l) is chosen to be the possibly time-dependent RETF

vector a(l), which results in an alignment of the direct and early reverberation paths from
the reference microphone to all microphones at the MVDR output.

The solution to the optimization problem in Equation 2.16 may be obtained using a Lagrange
multiplier λ as follows, starting with the derivative w.r.t. the filter weights w:

d

dw
(
wHΦi(l)w + λ(wHc(l)− 1)

)
=
(
Φi(l) + ΦH

i (l)
)
w + λc(l)

= 2Φi(l)w + λc(l)
!= 0↔

wMVDR(l) = −λ2 Φ−1
i (l)c(l),

(2.17)

where Φi(l) = ΦH
i (l) is exploited in the second line (cf. Equation 2.30). Setting the

derivative w.r.t. the Lagrange multiplier λ to zero and afterwards inserting wMVDR yields

d

dλ

(
wH

MVDR(l)Φi(l)wMVDR(l) + λ(wH
MVDR(l)c(l)− 1)

)
= wH

MVDRc(l)− 1

= −λ2 cH(l)Φ−Hi (l)c(l)− 1
!= 0↔

λ =
(
−1

2cH(l)Φ−Hi (l)c(l)
)
,

(2.18)

which, when inserted back into wMVDR(l), leads to the solution

wMVDR(l) =
Φ−1

i (l)c(l)
cH(l)Φ−Hi (l)c(l)

=
Φ−1

i (l)c(l)
cH(l)Φ−1

i (l)c(l)
,

(2.19)

where Φi(l) = ΦH
i (l) is exploited again in the last equality. Note that in the absence of

uncorrelated noise, Φi(l) may be replaced with the spatial coherence matrix Γ, which, in
the case of a time-independent constraint vector c, leads to stationary MVDR coefficients
(cf. Section 2.3.4).

The single-channel MVDR output Z(l), which corresponds to an estimate of the speech signal
containing the direct and early reverberation component, is then given by (cf. Figure 2.2)

Z(l) = wH
MVDR(l)y(l)

= Ze(l) + Zd(l) + Zv(l).
(2.20)

Since no perfect dereverberation and denoising can be achieved by the MVDR [22]1, in
addition to the desired direct and early reverberation output component Ze(l), the estimate
contains residual late reverberation and noise, which is represented by the diffuse output
component Zd(l) and the uncorrelated noise output component Zv(l). Additional enhance-

1One intuitive reason for this is that the MVDR depends on PSD matrices, which contain only absolute values and no complex
phases.

2.3 Multi-Channel Wiener Filter 8



ment can be achieved by applying a single-channel postfilter to the MVDR output, which is
described in the following section.

2.3.2 Single-Channel Postfilter

The performance of the beamformer described in the previous section strongly depends
on the acoustical scenario that it is applied in. While coherent noise may usually be well
suppressed, diffuse noise (such as babble noise) is reduced at a smaller degree [23], and
improvement upon the MVDR is still possible. This is why a postfilter aiming at further
signal enhancement is applied to the MVDR output. In general, the postfilter is given by a
real-valued gain function G(l), which weights the STFT bins with their significance for the
desired signal, resulting in the target estimate

Ŝ(l) = G(l)Z(l). (2.21)

Several techniques for the computation of the gain G(l) exist, which commonly depend on
the a posteriori signal-to-noise ratio (SNR)

γ(l) :=
E
{
|Z(l)|2

}
E {|Zd(l) + Zv(l)|2}

=
E
{
|Z(l)|2

}
φzi(l)

, (2.22)

which relates the estimated speech PSD (corresponding to the MVDR output) to the interfer-
ence PSD φzi(l), with E {◦} the expected value operator, and / or the a priori SNR

ξ(l) :=
E
{
|S(l)|2

}
E {|Zd(l) + Zv(l)|2}

= φs(l)
φzi(l)

, (2.23)

which relates the estimated target PSD φs(l) to the interference PSD φzi(l) at the output of
the MVDR. In this work, the gain is computed as

G(l) = max
(

ξ̂(l)
1 + ξ̂(l)

, Gmin

)
, 0 < Gmin < 1, (2.24)

where the a priori SNR estimate ξ̂(l) is obtained using the decision-directed approach [24](cf. Sec-
tion 2.3.3), such that G(l) ∈ [Gmin, 1). The minimum gain Gmin prevents a zero or negative
output, which would typically have a negative influence on subjective signal quality [25]
(termed “spectral flooring”).

2.3.3 A Priori SNR Estimation

As can be seen in Equation 2.24, the single-channel spectral postfilter requires an estimate
of the a priori SNR ξ(l). A common method used to obtain an estimate of this quantity is the
decision-directed approach. In the following, the method will be described in a qualitative
fashion; for a more detailed description, please refer to [24].

To arrive at the estimate, a statistical model of the STFT coefficients is assumed. In particular,
the coefficients are modeled as independent Gaussians with a zero-mean and a time-varying
variance, which originates from the strong non-stationary character of speech. The assump-
tion of independent coefficients is valid only in the extreme case of an infinitely long STFT

analysis window. Since in practice the windows have a length in the range of 64 ms, this
assumption does not hold. However, by applying a Hamming window to the signal during
the STFT analysis, this problem is mitigated to some extent due to its small side lobe at the
cost of a large main lobe (cf. Figure 2.1).

2.3 Multi-Channel Wiener Filter 9



As mentioned above, the decision-directed approach aims at estimating the a priori SNR

ξ(l) (defined in Equation 2.23). A simple calculation, again assuming that the interference
component and the speech component are uncorrelated, leads to its relation to the a
posteriori SNR (cf. Equation 2.22):

ξ(l) = φs(l)
φzi(l)

=
E
{
|Z(l)|2

}
− φzi(l)

φzi(l)
=
E
{
|Z(l)|2

}
φzi(l)

− 1 = γ(l)− 1. (2.25)

Hence, using a linear combination of the definition in Equation 2.23 and the result from
above, the a priori SNR can be written as

ξ(l) = β
φs(l)
φzi(l)

+ (1− β)(γ(l)− 1), β ∈ R. (2.26)

In the decision-directed approach, a practical estimate of Equation 2.26 is obtained by
substituting the expectation values (cf. Equation 2.22 and Equation 2.23) with the estimates
of the previous frame, where the MVDR output corresponds to an estimate of the target signal,
resulting in

ξ̂(l) = β
|Z(l − 1)|2

φ̂zi(l − 1)
+ (1− β) max {γ̂(l)− 1, 0} , (2.27)

where β is called “smoothing factor”. The max operation is used to ensure a non-negative
second term. In the original paper proposing this algorithm [24], the smoothing factor
β = 0.98 is suggested.

Intuitively, by smoothing, the decision-directed approach reduces overly rapid PSD estimate
changes, resulting in a larger subjective quality of the filter output.

2.3.4 Spatial Coherence Matrix

To describe the effect of a particular microphone array geometry on the coherence of the
individual microphone signals, the spatial coherence matrix Γ is used, which is often assumed
to be time-invariant, since microphone arrays commonly have a fixed arrangement. Several
noise types can be modeled as a diffuse noise field [14, 26, 13, 27, 12, 15] including, e.g.,
late reverberation and babble noise. In the scope of this work, a spherically diffuse noise
field1 is assumed, such that the spatial coherence matrix can be computed as [28]

Γij(k) = sinc (2πfklij/c) . (2.28)

Here, the entry Γij(k) describes the coherence between the i-th and j-th microphone (which
have a distance of lij) in the k-th frequency bin with center frequency fk, and c ≈ 340.29 m/s
is the speed of sound. Note that for further processing (cf. Section A.3), Γ(k) needs to be
symmetric and positive definite. Under the used assumption, its symmetry is inherent, which
is easily seen in Equation 2.28 (Γij(k) = Γji(k), since lij = lji).

Remark At this point, it should be emphasized that the considered implementation of the
MWF requires several quantities. Its first stage, the MVDR beamformer, relies on estimates of
the interference PSD matrix Φi(l) (or, in case the model includes only diffuse noise, the spatial
coherence matrix Γ), as well as the RETF vector a(l). Its second stage, the spectro-temporal
postfilter relying on the decision-directed approach, requires an estimate of the diffuse PSD
φd(l).

1A spherically diffuse noise field models the sound as coming from all directions, distributed equally.
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2.4 Power Spectral Density Estimation

Subject of this section is the estimation of PSDs and PSD matrices, which are required for the
implementation of the MWF (cf. Equation 2.19 and Equation 2.24). In general, the scalar
PSD φx(l) of a stacked vector x(l) = [X1(l), . . . , XM (l)]T is defined as the expected value of
signal energy in an STFT bin averaged over the microphones, i.e.,

φx(l) = 1
M
E
{
xH(l)x(l)

}
= 1
M
E

{
M∑
m=1

X∗m(l)Xm(l)
}
,

(2.29)

while the M ×M -dimensional PSD matrix Φx(l) is defined as

Φx(l) = E
{
x(l)xH(l)

}
= E



X1(l)XH

1 (l) . . . X1(l)XH
M (l)

...
. . .

...
XM (l)XH

1 (l) . . . XM (l)XH
M (l)


 = ΦH

x (l). (2.30)

Since it is common to model STFT coefficients as zero-mean Gaussian random variables [24],
“signal energy” and “variance” (within a bin) have the same definition and are used inter-
changeably in literature. The methods used for the estimation of the relevant PSDs in this
work are briefly outlined in the following sections.

2.4.1 Microphone and Uncorrelated Noise PSD Matrices

The microphone PSD matrix is estimated directly from the microphone signals, where the
expectation operation is approximated using recursive averaging with one signal realization
as

Φ̂y(l) =

(1− α)Φ̂y(l − 1) + α y(l)yH(l), l > 0

y(l)yH(l), l = 0,
(2.31)

where α is referred to as “forgetting” or “smoothing” factor.

The estimation of the uncorrelated noise PSD matrix Φv(l), which contains sensor noise in
the performed simulations, is based on the assumption that it is slowly time-varying [22].
Hence, in the considered scenarios, it is sufficient to estimate it in noise-only phases of the
signal using, e.g., recursive averaging as described above.

In both cases, the associated smoothing factor α depends on how the STFT coefficients are
obtained; in this work we use

α = exp
(
−R
fsτ

)
(2.32)

with the window shift R (in samples), the sampling frequency fs, and the time constant τ
(influenced by the STFT settings).

2.4.2 Diffuse Noise PSD

In contrast to the uncorrelated noise PSD matrix described above, the assumption of a slowly
varying diffuse noise PSD matrix is not valid. An intuitive reasoning for this is the fact that
late reverberation, which is modeled as a diffuse noise field1, originates from the (speech)

1The intuition behind modeling late reverberation as a diffuse sound field results from the fact that it usually consists of the
combination of reflections arising from all directions.
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source, which in general is highly time-varying. Hence, more sophisticated approaches are
required to obtain reasonable approximations of the diffuse noise PSD. This work focuses
on the eigenvalue decomposition (EVD)-based approach [17, 29], which is described in the
following section. As an alternative, the Frobenius norm-based approach [15] is discussed
in Section 2.4.3.

Eigenvalue Decomposition-Based Approach

Many of the state-of-the-art diffuse PSD estimators, e.g. [14, 13, 27, 12, 15], require accurate
estimates of the RETF vector, which may be difficult to obtain. Especially in reverberant
scenarios, RETF vector mismatches are likely to occur, leading to PSD estimation errors
and hence a worse MWF performance. The EVD-based diffuse PSD estimator described and
evaluated in [17, 29] circumvents this by not relying on RETF vector estimates, leading to
advantages especially in scenarios with RETF estimation errors.

To simplify the derivation, only diffuse noise is considered in the following, i.e., uncorrelated
sensor noise is neglected. Note, however, that, as long as an estimate of the uncorrelated
noise PSD matrix Φv(l) is available, the approach may be applied to the general case as well
(cf. Section 2.4.1). Thus, the stacked microphone vector can be written as

y(l) = x(l) + d(l) + v(l)︸︷︷︸
=0

= x(l) + d(l).
(2.33)

Assuming that both components are uncorrelated, the corresponding M ×M -dimensional
PSD matrix may be written as

Φy(l) = E
{
y(l)yH(l)

}
= Φx(l) + Φd(l).

(2.34)

Note that this assumption is clearly not fulfilled, since late reverberation contains a trans-
formed version of the target signal, and thus is indeed correlated with it to some extent.
Still, this model leads to good results and hence is common in literature.

The speech component is modeled as the target signal filtered with the RETFs, which are
defined as the RIRs mentioned in Equation 2.1, normalized w.r.t. one of the microphone
paths, i.e., x(l) = S(l)a(l). Hence, we can rewrite Φx(l):

Φx(l) = E
{
x(l)xH(l)

}
= E

{
S(l)a(l) [S(l)a(l)]H

}
= E

{
S(l)a(l)aH(l)S∗(l)

}
= E

{
|S(l)|2

}︸ ︷︷ ︸
=:φs(l)

E
{
a(l)aH(l)

}
(S(l), a(l) uncorrelated)

= φs(l)a(l)aH(l),

(2.35)
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where the expectation operator disappears in the last equality because the RETF vector a(l)
is deterministic. The diffuse PSD matrix Φd(l) can be represented as the (assumed-to-be
time-invariant) scaled spatial coherence matrix Γ (cf. Section 2.3.4) as

Φd(l) = φd(l)Γ, (2.36)

with the scaling factor given by the diffuse PSD φd(k, l). Using Equation 2.35 and Equa-
tion 2.36, Equation 2.34 can be rewritten as

Φy(l) = φs(l)a(l)aH(l)︸ ︷︷ ︸
Φx(l)

+φd(l)Γ︸ ︷︷ ︸
Φd(l)

. (2.37)

To obtain an estimate of the diffuse PSD, a prewhitened version of the microphone PSD matrix
Φy(l) is obtained using the inverse of the Cholesky decomposition Γ = LLH of the spatial
coherence matrix:

Φw
y(l) = L−1Φy(l)L−H

= L−1Φx(l)L−H + L−1Φd(l)L−H

= φs(l) L−1a(l)︸ ︷︷ ︸
=:b(l)

aH(l)L−H︸ ︷︷ ︸
=bH (l)

+φd(l) L−1ΓL−H︸ ︷︷ ︸
=IM

= φs(l)b(l)bH(l)︸ ︷︷ ︸
rank-1

+φd(l)IM

(2.38)

The Cholesky decomposition, which is briefly described in Section A.3, requires Γ to be
symmetric and positive definite.

As can be seen in the last line, the prewhitened microphone PSD matrix is the sum of a rank-1
matrix and a scaled identity matrix, which is exploited to obtain a diffuse PSD estimate as
follows. Regarding the rank-1 matrix, it can easily be shown that it has only a single non-zero
eigenvalue σ > 0 (cf. Theorem A.2.1).

Now, the contribution of the scaled identity matrix is considered.

Theorem 2.4.1. If a matrix A ∈ CM×M has eigenvalues λi, 1 ≤ i ≤M , then B = A + µIM
has eigenvalues λi + µ, 1 ≤ i ≤M .

Proof. Consider the eigenvalue problem Aui = λiui. Define B := A + µIM , then:

Bui = (A + µIM )ui
= Aui + µIMui
= λiui + µIMui
= λiui + µui
= (λi + µ)ui

Combining these two results, it can be concluded that the eigenvalues of the prewhitened
microphone PSD matrix are given by

{
λ1{Φw

y(l)} = σ(l) + φd(l)

λi{Φw
y(l)} = φd(l) ∀i ∈ {2, ...,M}.

(2.39)

(2.40)
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Here and in the remainder of this work, λi{◦} denotes the i-th eigenvalue of ◦ arranged in
descending order.

In [29] it is proposed to make use of either the first or the second eigenvalue in estimating
the diffuse PSD φd(l). Conferring with Equation 2.40, we have

φEIG2
d (l) := λ2{Φw

y(l)}. (2.41)

Alternatively, Equation 2.39 can be exploited by using the trace equality to estimate the
diffuse PSD as follows:

trace{Φw
y(l)} =

M∑
m=1

λi(l)

= λ1(l) +
M∑
m=2

λi(l)

= λ1(l) + (M − 1)φd(l)

(2.42)

→ φEIG1
d (l) :=

trace{Φw
y(l)} − λ1(l)
M − 1 (2.43)

In the case that all assumptions made in this model are perfectly valid, it is clear that both
diffuse PSD estimates are equal, i.e., φEIG1

d (l) = φEIG2
d (l). In practice, however, the model

described in Equation 2.37 does not perfectly hold, since the rank-1 term describes a point
source, which does not exist in practice, and the assumption of a diffuse noise field is merely
an approximation. Thus, the prewhitened diffuse PSD matrix in Equation 2.38 cannot be
written as a scaled identity matrix, and Equation 2.40 loses its exactness.

Note that the EVD-based PSD estimator does not yield the speech PSD φs(l) by itself. Instead,
the decision-directed approach, which is described in Section 2.3.3, is used to obtain a
corresponding estimate.
Furthermore, in Algorithm 3.2, a computationally more efficient variant of the EVD-based PSD

estimator is proposed, which does not rely on computing a full EVD in each time-frequency
bin.

2.4.3 Joint Diffuse and Target PSD Estimation

As an alternative to the EVD-based method described in Section 2.4.2, the least squares (LS)-
based method proposed in [15], which provides an estimate of both φs(l) and φd(l) at the
cost of requiring an estimate of the RETFs, is to be presented in this section. Starting from
the model discussed above, i.e.,

y(l) = x(l) + d(l) + v(l)︸︷︷︸
=0

Φy(l) = φs(l)a(l)aH(l)︸ ︷︷ ︸
Φx(l)

+φd(l)Γ︸ ︷︷ ︸
Φd(l)

+ Φv(l)︸ ︷︷ ︸
=0

,
(2.44)

a cost function J(l) is defined in order to fit the observed data Φ̂y(l) to the model as

J(l) =
∥∥∥Φ̂y(l)−

(
φs(l)a(l)aH(l) + φd(l)Γ

)∥∥∥2

F
, (2.45)
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where ||A||F is the Frobenius norm of A ∈ CM×M , defined as

||A||F =

√√√√ M∑
i=1

M∑
j=1
|aij |2. (2.46)

The above cost function J(l) provides a set of M2 equations, M(M + 1)/2 of which are
independent due to the symmetry of the considered matrices, with only 2 unknowns φs(l)
and φd(l). Hence, for

M(M + 1)
2 ≥ 2, M ∈ N → M > 2, (2.47)

i.e., for a microphone array comprising more than 2 microphones, the equation can be solved
in a least squares sense. Stacking the unknowns in a vector and redefining as

φ(l) :=
[
φs(l)
φd(l)

]
,A(l) :=

[(
a(l)Ha(l)

)2 aH(l)Γa(l)
aH(l)Γa(l) trace{ΓHΓ}

]
,b(l) :=

[
Re
{

aH(l)Φ̂y(l)a(l)
}

Re{trace{ΦyΓH}}

]
,

(2.48)
the estimates φ̂s(l) and φ̂d(l) are obtained by minimizing J(l), which is rewritten using
A(l), b(l), φ(l) as

φ̂(l) = argmin
φ

J(l)

= argmin
φ

(
φT (l)A(l)φ(l)− 2bT (l)φ(l) + C

)
,

(2.49)

with C an independent constant. Setting the derivative w.r.t. φ to 0 yields the solution

φ̂(l) = A−1(l)b(l). (2.50)

2.5 Relative Early Transfer Function Estimation

Assuming that reverberation and ambient noise can be modeled as diffuse sound fields, the
implementation of the MVDR beamformer and the Wiener postfilter require, in addition to
the diffuse PSD, an estimate of the RETF vector of the target speaker. In the past, several
RETF vector estimation procedures have been proposed, e.g., based on the least squares
method [30, 11], the covariance subtraction method [10, 9, 31], or the covariance whitening
(CW) method [9, 32, 8].

The CW method [8] for estimating the (time-varying) RETF vector is briefly outlined in the
following. For a more detailed derivation, it is referred to the literature.

Consider again the decomposition of the prewhitened microphone PSD matrix in Equa-
tion 2.38:

Φw
y(l) = φs(l) L−1a(l)︸ ︷︷ ︸

=:b(l)

aH(l)L−H︸ ︷︷ ︸
=bH (l)

+φd(l)L−1ΓL−H

= φs(l)b(l)bH(l) + φd(l)IM ,

where it can be seen that the rank-1 term is constructed as the outer product of a transformed
version of the RETF vector a(l) with itself. Computing the EVD of Φw

y (l), as is required for the
diffuse PSD estimation described in Section 2.4.2, also yields its eigenvectors, which hence
do not need to be computed in an extra step. A simple calculation (cf. Theorem A.2.4) shows
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that the dominant eigenvector indeed corresponds to the vector b(l), from which the RETF

vector a(l) may be extracted through inverse transformation and normalization w.r.t. its first
component as

âCW(l) = Lb(l)
eT1 Lb(l)

, (2.51)

where e1 is a selection vector with its first component1 equal to one and the others equal to
zero.

2.6 Performance Measures

In this section, the instrumental performance measures used for the evaluation of the
considered speech enhancement procedures are briefly presented. Note that to evaluate
the effectiveness of a technique, improvements in performance measures are computed,
corresponding to the difference of the measures before and after processing. All of the
considered measures are intrusive, i.e., they require a reference signal which the target signal
is compared to. In the scope of this work, the reference is given by the target component S(l).

2.6.1 Perceptual Evaluation of Speech Quality

Being the ITU-T-recommended method for predicting subjective quality of speech signals
(P.862) [33], the perceptual evaluation of speech quality (PESQ) measure is widely used in
the speech enhancement community. Like the measures described in the following sections,
PESQ takes into account the human perception of speech. To achieve this, first both signals
are brought into a representation that is motivated by human perception. The obtained
representations of the reference and the target signal are then used to compute difference
measures, which are mapped to a single number in [−0.5, 4.5], although values in [1.0, 4.5]
result in typical situations. A higher PESQ-value corresponds to a higher perceptual speech
quality.

2.6.2 Frequency-Weighted Segmental SNR

In signal processing, the signal-to-noise ratio (SNR) is a commonly-used measure, in which the
energy level of a signal is compared to that of its noise background. There are several variants,
only one of which is used in the scope of this work, since it incorporates information on
human perception, i.e., the frequency-weighted segmental SNR (fwsSNR) [34]. This measure
yields a single number, which is computed as

fwsSNR = 10
K

K∑
k=1

∑L
l=1 W (k, l) log10

(
|S(k,l)|2

(|S(k,l)|−|Ŝ(k,l)|)2

)
∑L
l=1 W (k, l)

, (2.52)

in which W (k, l) gives the weight of the (k, l)-th time-frequency bin, L corresponds to the
number of time frames, and K gives the number of frequency bins. As a more qualitative
description, the measure involves the following steps:

(i) For the STFT, a Gaussian window is used [34].

(ii) The windowed spectra are distributed into 25 frequency bands, whose spacing is
determined by human perception.

1The selection vector is constructed based on the choice of the reference microphone.

2.6 Performance Measures 16



(iii) The windowed, distributed spectra are normalized such that the sum over the absolute
values in all frequency bands equals one, followed by summing the absolute values in
each band over the time frames.

In [34], the weighting function W (k, l) = |X(k, l)|γ is proposed, with γ chosen so as to
achieve maximum correlation between this measure and subjective experiments. Further-
more, to ensure that the resulting value is not biased due to noise-only frames or no-noise
frames, the individual summands log10

(
|X(k,l)|2

(|X(k,l)|−|X̂(k,l)|)2

)
are constrained to be within

[SNRmin, SNRmax], with, e.g., SNRmin = −10 dB and SNRmax = 35 dB [35].
These combined modifications to the standard SNR make the fwsSNR a more suitable tool for
the evaluation of perceptual speech quality, as demonstrated in [34], where a high correla-
tion between perceived signal distortion and the fwsSNR is shown. The implementation used
in this work is the one distributed by the REVERB challenge organizers [36].

2.6.3 Cepstral Distance
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Fig. 2.3.: visualization of cepstrum, from [37]

To understand the concept of the cepstral
distance (CD), and how it relates to hu-
man perception, firstly the cepstrum itself
is briefly described [38]. To be exact, the
power cepstrum c[n] of a signal y[n] is dis-
cussed, since it is commonly used in audio
processing:

c[n] := IDFT{log |DFT{y[n]}|2}, (2.53)

with (I)DFT{·} denoting the (inverse) dis-
crete Fourier transform (cf. section 2.2).
Clearly, any phase information is lost due to
the absolute-value operation.
To motivate this definition, recall the fil-
tered source component in the signal model
in Equation 2.1 and apply the widely-known
convolution theorem to it:

DFT{y[n]}︸ ︷︷ ︸
=:Y (w)

= DFT{h[n] ∗ s[n]} = DFT{h[n]}︸ ︷︷ ︸
=:H(w)

·DFT{s[n]}︸ ︷︷ ︸
=:S(w)

⇔ Y (ω) = H(ω) · S(ω)

⇒ |Y (ω)|2 = |H(ω) · S(ω)|2

⇔ log |Y (ω)|2 = log |H(ω) · S(ω)|2

⇔ 2 log |Y (ω)| = 2 log |H(ω) · S(ω)|

⇔ log |Y (ω)| = log (|H(ω)|) + log (|S(ω)|)

⇒ IDFT{log |Y (ω)|}︸ ︷︷ ︸
=:ỹ[n]

= IDFT{log (|H(ω)|)}︸ ︷︷ ︸
=:h̃[n]

+ IDFT{log (|S(ω)|)}︸ ︷︷ ︸
=:s̃[n]

⇔ ỹ[n] = h̃[n] + s̃[n]

(2.54)

It can be seen that computing the cepstrum resembles a deconvolution operation, where
the cepstra of the convolved sequences h[n] and s[n] are added. If the frequency ranges of
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both log-spectra are well-distinguished, deconvolution can easily be performed by linear
separation, e.g., through liftering. To explain the attractiveness of CD in terms of being
a perceptually viable quality measure, consider Figure 2.3. Signals containing voiced
speech exhibit approximately periodic waveform repetitions leading to local maxima in the
corresponding log-spectra, as is highlighted in the left part of the figure. The cepstrum
responds to these "periodic ripples" [39] with a peak as seen in the right part. These peaks
can hence be used for the identification of frames including voiced speech, and as such
represent information which is relevant to human perception.

To motivate the definition of the CD, consider two sequences s1[n] and s2[n] with cepstra
s̃1[n] and s̃1[n], which are both convolved with the sequence h[n], resulting in yi[n] =
h[n] ∗ si[n], i = {1, 2}. Remembering the last line in Equation 2.54, an intuitive explanation
of the CD can be given by noting that the difference between both cepstra, i.e., ỹ1[n]− ỹ2[n] =
s̃1[n]− s̃2[n], is described without taking the transfer function h[n] into account. This leads
to the definition of the (Euclidian) CD

dcep =
N∑
n=1

(ctar[n]− cref[n])2
, (2.55)

with ctar and cref representing the cepstral coefficients of the target and the reference signal,
respectively. A larger value corresponds to a larger distortion of the target signal w.r.t. the
reference, usually constrained to satisfy dcep ∈ [0 dB, 10 dB]

2.6.4 Log-Likelihood Ratio

As a fourth performance measure, the log-likelihood ratio (LLR) is used in this work. Being a
linear predictive coding (LPC)-based measure, first the LPC vectors aref and atar of both the
reference and the enhanced signal are computed. Afterwards, the difference between those
vectors is computed as [34]

dLLR(aref,atar) = log
(

arefΦrefaTtar

atarΦrefaTref

)
(2.56)

with the target autocorrelation matrix Φref. Since LPC is not otherwise a part of this work, it
is referred to the literature for a more detailed description.

Remark on Performance Measures The measures above were chosen because they are the ob-
jective measures1 that correlate the most with subjective “overall quality”, “signal distortion”
and “background distortion” as reported in [34]. In this context, it needs to be said that
performance evaluations relying on those or other methods should still be treated with
caution, since no measure is “perfect” in the sense that it correlates with human perception
in all scenarios.

1I.e., not including hybrid approaches, in which multiple objective performance measures are combined.
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3Contributions

In this chapter, the original contributions of this thesis are presented. First, an alternating
least squares (ALS) approach to jointly estimate the RETF vector and the diffuse and target
PSDs based on the minimization of a model-derived cost function is proposed. Second, a
computationally efficient variant of the EVD-based diffuse PSD estimator is presented.

3.1 Frobenius Norm-Based Joint Estimation of RETF Vector and Diffuse
PSD

Although the diffuse PSD estimator described in Section 2.4.2 does not directly depend on an
estimate of the RETF vector a(l), the preceding MVDR beamformer, which is a crucial part of
the MWF, does. This means that in practice, estimating a(l) is not circumvented by relying on
the EVD-based PSD estimator, since it is usually incorporated in an MWF framework for larger
effectiveness.

3.1.1 Coupling the RETF Vector and the Diffuse PSD Estimation

Many RETF vector and PSD estimation methods are decoupled, i.e., a) the RETF vector is
estimated either assuming that the diffuse PSD is known [11] or without requiring knowledge
of the diffuse PSD [30, 10, 8, 9, 31, 32]; b) the diffuse PSD is estimated either assuming
that the RETF vector is known [12, 13, 40, 15] or without requiring knowledge of the RETF

vector [16]. In [17] it has been shown that jointly estimating both the RETF vector and the
diffuse PSD based on CW results in a high dereverberation and noise reduction performance.

As an extension of the Frobenius norm-based PSD estimator in [15] (cf. Section 2.4.3), in
this section a method to jointly estimate the (time-varying) RETF vector and diffuse PSD by
minimizing the Frobenius norm of an error matrix constructed from the presumed signal
model is described. Since no closed-form solution exists for the RETF vector and the diffuse
PSD to the best of our knowledge, the minimization is performed in an iterative fashion
using an ALS approach. By coupling the RETF vector and PSD estimation procedures, they are
expected to yield estimates which fit the signal model in Equation 2.37 more accurately.

To arrive at an iterative procedure which aims at improving the accuracy of the estimates
φ̂s(l), φ̂d(l) and â(l), it is necessary to evaluate the synergy of the utilized methods, i.e.,
whether or not the estimates are interdependent. Specifically, the considered systems
comprise

(i) a method estimating φd(l) and φs(l) based on the estimate â(l).

(ii) a method estimating the RETF vector a(l) based on the estimates φ̂d(l) and φ̂s(l).
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Thus, an improvement at the output of one method may result in an improvement at the
output of the other method for each iteration, which can be considered an ALS approach.

For this purpose, the following combinations are used:

OPT Frobenius norm-based diffuse PSD estimation (Section 2.4.3) and Frobenius norm-based
RETF vector estimation using unconstrained optimization (Section 3.1.2)

LS Frobenius norm-based diffuse PSD estimation (Section 2.4.3) and Frobenius norm-based
RETF vector estimation using rank-1 approximation (Equation 3.6)

estimate
RETFs using
(3.6) or OPT

estimate
PSDs using (2.50)

repeat until convergence

Fig. 3.1.: schematics of OPT and LS method

These combinations are depicted in Figure 3.1, where the only difference is given by the
implementation of the second block.

As a baseline approach, the EVD-based diffuse PSD estimator (cf. Section 2.4.2) is used in
conjunction with the CW-based RETF vector estimator (cf. Section 2.5), both of which make
use of the eigenvalue decomposition of the prewhitened estimated microphone PSD matrix
Φ̂y(l). In [17] it was shown that this combination leads to a high dereverberation and
denoising performance, especially when using the mean of the last M − 1 eigenvalues for
the diffuse PSD estimate (i.e., φEIG1

d , cf. Equation 2.41).

Simulation results, in which the performance of the considered methods is compared in
terms of artificial and real data, are presented in Section 4.2.1.

3.1.2 Frobenius Norm-Based RETF Vector Estimation

Quite intuitively, and in analogy to the Frobenius norm-based PSD estimator mentioned
in Section 2.4.3, the RETF estimator in this section is based on the minimization of the cost
function J(l) in Equation 2.45, which is a measure of the difference between the observed
data and the model in Equation 2.44. Hence, the estimate is given by

â = argmin
a

J

= argmin
a
||Φy − φdΓ︸ ︷︷ ︸

=:A

−φsaaH ||2F

= argmin
a

trace
{

(A− φsaaH)H(A− φsaaH)
}
,

(3.1)

where Theorem A.2.2 is used in the last step and the time index l is omitted for brevity.

Unconstrained Optimization

Since an analytical solution of this problem is rather hard to find (in case that one does exist),
a numerical unconstrained minimization procedure is utilized based on the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [41]. As a member of the quasi-Newton methods, the
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BFGS algorithm relies on the gradient of J(l) to be zero, where the used implementation
either accepts a gradient function, or it estimates the gradient numerically. Thus, to lower
the chance of converging to a local optimum due to gradient inaccuracies, the analytical
gradient is computed in the following.

Since the BFGS implementation expects real-valued inputs and outputs, it is necessary to
separate the involved quantities into their respective imaginary and real parts, denoted with
superscripts ◦R and ◦I for brevity. For the Frobenius norm, the possibility of separating the
real and the imaginary part, which is applied in deriving the gradient, is shown in Theo-
rem A.2.3. In this fashion, also the gradient itself is separated, resulting in the four following
terms contributing to the full gradient:

∇aR ||Re{J}||2F = −4φsARaR+4φ2
s(aRaR,TaR − aIaI,TaR)

∇aI ||Re{J}||2F = 4φsARaI −4φ2
s(aRaR,TaI − aIaI,TaI)

∇aR ||Im{J}||2F = 4φsAIaI −4φ2
s(aIaR,TaI − aRaI,TaI)

∇aI ||Im{J}||2F = −4φsAIaR +4φ2
s(aIaR,TaR − aRaI,TaR),

yielding

∇a||J ||2F = ∇aR

(
||Re{J}||2F + ||Im{J}||2F

)
+ j∇aI

(
||Re{J}||2F + ||Im{J}||2F

)
, (3.2)

where the linearity of the gradient operator is exploited. As a starting vector, a vector with
normally distributed complex-valued components (except for its first component, which is
equal to 1 by definition) is chosen. The successful1 optimization result is then normalized
w.r.t. its first component and accepted as the current estimate âOPT. If, on the other hand,
the optimization fails, the estimate of the last frame is used instead, which is assumed to be
at least equally fitting as the random starting vector.

Rank-1 Approximation

Another possible route to solving the minimization problem in Equation 3.1 is seeing it as a
rank-1 approximation problem. Thus, the problem becomes finding a rank-1 matrix B̃ that
solves the problem

B̃ = argmin
B
‖A−B‖2

F . (3.3)

The solution to this problem in the MMSE sense is given in [42], where it is shown to
correspond to a part of its singular value decomposition (SVD)

A ≈ B̃ = σ1t1v1, (3.4)

where σ1 is its first singular value, and t1 as well as v1 are its first left-singular and right-
singular vectors, respectively. Considering that A is Hermitian in this application, and
assuming that it is also positive-definite (which is not always the case in practice, possibly
leading to estimation errors), the SVD of A merges with its EVD, such that

A ≈ B̃ = σ1t1v1 = λ1u1uH1 , (3.5)

1”Successful” in this case denotes that the 2-norm of the gradient is below some limit, which, in the computations within this
work, is chosen to be the square root of machine precision.
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with λ1 (∈ R, cf. Theorem A.2.2) and u1 the first eigenvalue and eigenvector of A. Hence,
by comparing Equation 3.1 and Equation 3.5, we find λ1u1uH1

∧= φsaaH , and thus the first
eigenvector is a scaled version of the RETF vector:

âLS =
√
λ1

φ̂s
u1 (3.6)

The full algorithm utilizing this estimate is presented in the following, where the RETF vector
initialization is done using normally distributed complex-valued components, and 1 as the
first component.

Algorithm 3.1: ALS approach to jointly estimate the RETF vector and PSDs

1 Input: Γ(k), Φ̂y(k, l), num. iterations N, init. â(1)(k, 1)
2 Output: â(k, l), φ̂LS = [φ̂s,LS, φ̂d,LS]T
3 for all k do
4 for all l do
5 for i = 1 : N do
6 compute A(i)(k, l) and b(i)(k, l) ; // (2.48)

7 φ̂
(i)(k, l) =

(
A(i))−1 (k, l)b(i)(k, l) ; // (2.50)

8 constrain φ̂
(i)(k, l) ; // (4.2)

9 Φ̂(i)
x (k, l) = Φ̂y(k, l)− φ̂(i)

d (k, l)Γ(k)
10 Φ̂(i)

x (k, l) = U(i)(k, l)Λ(i)(k, l)U(i),H(k, l) ; // EVD

11 â(i)(k, l) =
√
λ

(i)
1 (k, l)/φ̂(i)

s (k, l)u(i)
1 (k, l) ; // (3.6)

12 â(1)(k, l + 1) = â(N)(k, l)/(eT â(N)(k, l)) ; // for next frame

3.2 Complexity Reduction of EVD-Based Diffuse PSD Estimator

The diffuse PSD estimator discussed in Section 2.4 relies on the eigenvalues of an M ×M -
dimensional Hermitian matrix Φ̂

w

y . Since the number of sensors in a microphone array M
may be large, a closed-form solution as discussed in Section 3.2.4 is not viable in practice,
and approximative schemes need to be applied. We choose the first one that is presented here
— termed “power method” — to be the most suitable method as discussed in Section 4.1.2. To
list alternatives and their drawbacks when compared to the power method in the considered
application, additionally some of the most common methods for the determination of the
eigenvalues (and eigenvectors) of Φ̂w

y are discussed, i.e., the Arnoldi iteration and the QR
method.

3.2.1 Power Method

One of the first — and simplest — numerical eigenvector/eigenvalue approximation algo-
rithms is the power method, which is explained briefly in this section. In its most basic form,
it may be utilized to find the dominant eigenvalue, i.e., the eigenvalue λ1 for which

|λ1| > |λi| ∀i ∈ {2, ...,M}. (3.7)

It is instructive, however, to begin with the Rayleigh quotient.
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Rayleigh Quotient

To obtain the eigenvalue corresponding to the dominant eigenvector acquired in the next
section, the Rayleigh quotient may be utilized [43].

Theorem 3.2.1. If u is an eigenvector of A, its associated eigenvalue λ is given by the Rayleigh
quotient

λ = uHAu
uHu .

Proof. A has eigenvector u associated with eigenvalue λ, hence

Au = λu↔

uHAu = uHλu↔
uHAu
uHu = λ

uHu
uHu = λ.

Algorithm

The power method is implemented as shown in Algorithm 3.2. At the start of every iteration,
first the starting vector u(0) is initialized. In this work, the following initialization schemes
are considered:

(i) complex-valued normally distributed components

(ii) deterministic components, i.e., u(0) = [1, 0, . . . , 0]T

(iii) the estimated dominant eigenvector from the previous time frame

Afterwards, u(0) is multiplied from the left with the input matrix Φ̂w
y (l), resulting in the

transformed vector t(0). The current eigenvalue estimate is then obtained by computing
the Rayleigh quotient using a normalized version of t and the input matrix Φ̂w

y (l). This
process is repeated with the transformed vector as the starting vector of the next iteration,
i.e., u(1) = t(0)

‖t(0)‖2
, until a convergence criterion is reached, which is chosen to be a fixed

number of iterations N (cf. Section 4.1.4).

Algorithm 3.2: power method for computing the first P largest eigenvalues

1 In: Φ̂w
y (l) ∈ CM×M , number N of iterations, number P of eigenvalues to be estimated

2 Out: P eigenvalue estimates
{
λ̂1{Φ̂w

y (l)}, . . . λ̂P {Φ̂w
y (l)}

}
3 for p = 1 to P do
4 initialize u(0)

p ∈ CM ;
5 for n = 1 to N do
6 t = Φ̂w

y (l)u(n−1)
p ;

7 u(n)
p = t/||t||2; // normalization

8 λ
(n)
p = u(n),H

p Φ̂w
y (l)u(n)

p ; // Rayleigh quotient

9 λ̂p{Φ̂w
y (l)} = λ

(N)
p ; // matrix rank reduction

10 Φ̂w
y (l) = Φ̂w

y (l)− λ̂p{Φ̂w
y (l)}u(N)

p u(N),H
p ;

The Rayleigh quotient reduces to u(n),H
p Φ̂w

y (l)u(n)
p due to the fact that u(n)

p is normalized
and, as such, the denominator is always equal to 1. For P > 1, Algorithm 3.2 includes
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an extension that allows obtaining more than the dominant eigenvalue, which is based on
Wielandt deflation [44]. Once the largest eigenvalue has been computed, the column space
of the input matrix Φ̂w

y (l) is reduced using the corresponding estimated eigenvector and
the same iterations as for computing the largest eigenvalue are repeated. This process can
be continued to obtain all M eigenpairs of Φ̂w

y (l) as shown in Algorithm 3.2. One has to
note, however, that this algorithm has limitations that become apparent especially when not
focusing on the dominant eigenpair, as is shown in the next section.

Convergence Analysis

In this section, the convergence properties of the power method are discussed, and Wielandt
deflation is proven to be a means of gaining access to the inner eigenvalues.

First Eigenpair For this convergence proof [43], it is assumed that the input matrix is not
defective and hence that it has M linearly independent eigenvectors. Thus, this set of
eigenvectors spans RM . By choosing a vector b(0) ∈ RM with normally distributed real-
valued components, it can be expressed as a linear combination of the eigenvectors xm
(sorted according to the absolute values of their associated eigenvalues) as

b(0) =
M∑
m=1

cmxm (3.8)

with some coefficients cm. Multiplying from the left with A yields

Ab(0) = A
M∑
m=1

cmxm =
M∑
m=1

cmλmxm

→ Anb(0) =
M∑
m=1

cmλ
n
mxm

= λn1

M∑
m=1

cm

(
λm
λ1

)n
xm.

(3.9)

As a side note, the span1 of the set of vectors
{
A0b(0), A1b(0), . . . , ANb(0)} is called the

Krylov subspace KN+1(A,b(0)), which reappears in the Arnoldi iteration in Section 3.2.3.

By increasing the number of maximum iterations N and considering that the algorithm has
its benefit in finding the dominant eigenpair, the fractions

{(
λm

λ1

)n}
, 2 ≤ m ≤M , approach

zero for larger n, yielding the eigenvector estimate

lim
n→∞

Anb(0) = λn1

M∑
m=1

cm

(
λm
λ1

)n
xm

= λn1

c1

(
λ1

λ1

)n
︸ ︷︷ ︸

=1

x1 +
M∑
m=2

cm

(
λm
λ1

)n
︸ ︷︷ ︸
→0

xm


≈ λn1 c1x1.

(3.10)

1The span is the set of all possible linear combinations of the arguments, i.e.,
span{x1,x2, . . . ,xN} =

{∑N

n=1
anxn|an ∈ C,xn ∈ CM

}
.

3.2 Complexity Reduction of EVD-Based Diffuse PSD Estimator 24



Note that a multiple of an eigenvector is still an eigenvector. This also shows that when
|λ1| ' |λ2|, convergence may be slow, especially when one aims at finding all eigenpairs.
Furthermore, the algorithm fails if there is no dominant eigenvalue, which is assumed not to
be the case in the application within this work.

Wielandt Deflation This proof is developed based on the convergence properties in the pre-
vious section. In Wielandt deflation [44], the input matrix A is modified such that the
application of additional power iterations on it yields the subsequent eigenvalue of A.
Assume that the non-defective, Hermitian matrix A ∈ CM×M has eigenvalues λi and
eigenvectors xi, ||xi||2 = 1, 1 ≤ i ≤M , sorted according to the magnitude of the corre-
sponding eigenvalue. Hence, any vector b can be written as a linear combination of said
eigenvectors (cf. Equation 3.8). Multiplying from the left with (A− λ1xxH1 ) yields

(A− λ1xxH1 )b = (A− λ1xxH1 )
M∑
m=1

cmxm

= A
M∑
m=1

cmxm − λ1xxH1
M∑
m=1

cmxm

=
M∑
m=1

cmλmxm − λ1x1

M∑
m=1

cm xH1 xm︸ ︷︷ ︸
=δ1m

=
M∑
m=1

cmλmxm − c1λ1x1

=
M∑
m=2

cmλmxm,

(3.11)

where δ1m is the Kronecker-δ, defined as

δij =

1 if i = j

0 if i 6= j.
(3.12)

xH1 xm = δ1m results from the fact that the considered matrices A are Hermitian and hence
its eigenvectors are orthogonal (cf. proof in A.2.1). The result in Equation 3.11 shows that

span{A− λ1xxH1 } = span{x2,x3, . . . ,xM}, (3.13)

such that the eigenpair corresponding to the first eigenvalue is removed, and the second
eigenpair becomes the dominant one. Note that this derivation is based on the exactness of
λ1 and x1; in case of deviations, the first eigenpair is not completely removed, resulting in
an increased error in the estimation of the second eigenpair.

Deterministic Initialization Since we propose to use a non-Gaussian, deterministic initialization
of the vector b(0) later in Section 4.1.4 to further reduce the computational complexity, the
corresponding convergence behavior and some additional information is provided in this
paragraph. Specifically, we have

b(0) =


1
0
...
0

. (3.14)
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Because the eigenvectors of the input matrix A ∈ CM×M do not generally correspond to
the M Cartesian unit vectors, b(0) is given as a linear combination of the eigenvectors with
non-zero coefficients as in Equation 3.8, which means that the same convergence proof can
be applied to this case. Investigating the steps in the power method, one small difference
can be made out: In the first matrix-vector multiplication, we have

(
Ab(0)

)
i

=
M∑
k=1

Aikbk =
M∑
k=1

Aikδ1k = Ai, (3.15)

such that the multiplication results in the first column of A and does not need execution,
reducing the computational complexity by an (insignificant) amount. Since the first column
of A in general consists of nonzero components, the deterministic and Gaussian initialization
do not differ significantly from this point on.

3.2.2 QR Method

As the method of choice for the eigenvalue decomposition of a “not too large” matrix
A ∈ CM×M [45], the QR method, which produces a full set of eigenvectors and eigenvalues,
is outlined briefly in this section. Note that, while it may be used in conjunction with other
techniques to increase efficiency (cf. Arnoldi iteration in the following section), it can also
be utilized on its own. It is based on the Schur decomposition of A:

QHAQ = T, (3.16)

which is a unitary similarity transform with Q ∈ CM×M a unitary matrix (i.e., QHQ =
QQH = IM), and T an upper triangular matrix. Hence, as proven in Theorem 3.2.2,
extracting the eigenvalues of T yields the eigenvalues of A. This is computationally much
less complex, as is demonstrated in Theorem A.2.5.

In the QR method, which is an iterative method, a sequence of unitary transformations is
desired that yields the Schur form of the transformed matrix:

Tk = (QH
k . . .

=:T1︷ ︸︸ ︷
QH

1 )A(Q1 . . .Qk︸ ︷︷ ︸
=:Tk

)

= QH
k Tk−1Qk,

(3.17)

where Tk approaches triangular form with larger k.

Since the aim is computing the eigenvalues of A, it is important for the second stage that
the following is true:

Theorem 3.2.2. If A and T ∈ CM×M are unitarily similar, they have the same eigenvalues.

Proof. Assume that A has eigenvalue λ and eigenvector u. Then

T = QHAQ, with QHQ = QQH = IM and Au = λu

↔ TQHu = QHA QQH︸ ︷︷ ︸
=I

u = QHAu

= QHλu = λQHu︸ ︷︷ ︸
:=v

↔ Tv = λv.
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Hence, T possesses the same eigenvalues and corresponding multiplicities as A with associ-
ated eigenvectors that are versions of the eigenvectors of A modified by the transform Q
(i.e., rotated).

The unitary transformation matrices are obtained using the QR decomposition (which gives
the method its name):

Tk−1 = QkRk, (3.18)

with Qk a unitary and Rk an upper triangular matrix. The next iterate Ak can then be
obtained by reversing the multiplication order in Equation 3.18, since (using the unitarity of
Qk and the definition of Qk and Rk)

Tk = (Q1 . . .Qk)HA(Q1 . . .Qk)

= QH
k Tk−1︸ ︷︷ ︸

=QkRk

Qk

= QH
k Qk︸ ︷︷ ︸

=IM

RkQk

= RkQk,

(3.19)

where, comparing with Equation 3.17, it can be seen that the current iterate Ak and
the input A are unitarily similar. What remains to be shown is that the elements on the
strictly lower triangle approach zero, and hence Ak approaches upper triangular form, for
which it is referred to [43]. The implementation used in this work (in addition to the
MATLAB implementation) is shown in Algorithm 3.3. Note that there is a number of ways

Algorithm 3.3: simple QR algorithm to obtain eigenvalues of matrix A
1 Input: matrix A ∈ CM×M , number of iterations N
2 Output: eigenvalues λi of A
3 init A0 = A;
4 for k = 1 : N do
5 [Q,R] = qr{A}; // QR decomposition
6 Ak = RQ; // tends to triangular form

7 λ = diag{AN}// after convergence: λ is vector of eigenvalues

to check for convergence, e.g., the size of elements on the strict lower triangle of Ak or
the change in the norm of the eigenvalue vector, i.e., ||λ||2. For reasons of comparison,
however, a fixed iteration number N is chosen. Furthermore, this implementation is used to
demonstrate the functionality of the QR method. Variants exist that are far superior in terms
of convergence rate (from linear to cubic) and overall computational efficiency (working,
e.g., with shifts). To include these optimized variants in the simulations in Section 4.1, the
MATLAB implementation is used.

3.2.3 Arnoldi Iteration

The Arnoldi iteration [46] is a two-stage approach to finding the eigenvalues of a matrix
A ∈ CM×M . In the first stage, a unitary similarity transform is applied to A (similar to the
previous section), such that

UHAU = H, UHU = UUH = IM (U unitary), (3.20)
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where H has Hessenberg form, i.e.,

H =



h11 h12 h13 · · · h1M

h21 h22 h23 · · · h2M

0 h32 h33 · · · h3M
...

. . .
. . .

. . .
...

0 · · · 0 hMM−1 hMM


.

To arrive at an algorithm (modified from [43]) that can be used to obtain the Hessenberg
form H of A, the unitarity of U is used to rewrite Equation 3.20:

UHAU = H

↔ UUHAU = UH

↔ AU = UH

(3.21)

Defining uk as the columns of U such that U = [u1,u2, . . . ,uM ], and having hij as the
ij-th element of H, Equation 3.21 can be rewritten to obtain the transformation matrix
column-wise as

Auk =
k+1∑
i=1

hikui, 1 ≤ k ≤M − 1

= hk+1,kuk+1 +
k∑
i=1

hikui

↔ uk+1 = 1
hk+1,k

(
Auk −

k∑
i=1

hikui

)
︸ ︷︷ ︸

=:rk

= rk
hk+1,k

.

(3.22)

Here, the vectors uk, also termed “Arnoldi” vectors, form an orthonormal basis for the Krylov
subspace K{A,q1, k} = span{q1,Aq1, . . . ,Ak−1q1} (cf. Section 3.2.1). This leads to the
algorithm presented in Algorithm 3.4, in which the Arnoldi vectors are made orthonormal
using the Gram-Schmidt process. A break condition is introduced to test for convergence

Algorithm 3.4: Arnoldi iteration to compute the Hessenberg form of A
1 Input: matrix A ∈ CM×M , max. iteration number N ≤M , tolerance
2 Output: unitarily similar Hessenberg matrix H ∈ RM×M

// initialization
3 init u1 = 0M ,H = 0M×M , r1 ∈ CM ;
4 for k = 2 : N do
5 hk,k−1 = ||rk−1||2;
6 qk = rk−1/hk,k−1;
7 rk = Aqk;
8 for j = 1 : k do

// Gram-Schmidt process
9 hjk = qH

j rk;
10 rk = rk − hjkqj;

11 if ||rk||2 < tolerance then
// checks whether approximate Hessenberg form is achieved

12 break
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even before N iterations are executed1. The initialization of r1 ∈ CM is an important aspect
to consider when aiming for quick convergence, especially in the case of high-dimensional
matrices [47]. However, since the investigated matrices in this work are of rather small
dimensionality, a vector with normally distributed real coefficients is chosen.

Having brought A into Hessenberg form, the computational complexity of the second stage
is reduced, which consists of using the QR method (cf. previous section) to bring H to upper
triangular form, from which the eigenvalues can readily be extracted.

3.2.4 Closed-Form Solution

Obtaining a closed-form solution for the eigenvalues of an M -dimensional matrix A is based
upon finding the roots of a corresponding M -th degree polynomial, implying a restriction on
the allowed matrix dimension M ≤ 4, since the matrices concerned here are of no particular
structure (cf. Abel–Ruffini theorem, [48]). For the case M = 2, the solution is acquired as
follows (starting from the eigenvalue equation).

Ax = λx↔

(A− λIM )x = 0,

where the identity matrix IM is introduced to write the problem as a set of linear equations.
A non-trivial solution (i.e., x 6= 0) exists iff (A− λIM ) is singular and hence

det{A− λIM} = 0, (3.23)

which is called the characteristic equation of A. Its M roots correspond to the eigenvalues of
A. Hence, for M = 2, they are obtained as

det{A− λIM} = λ2 + λ(a22 − a11) + (a11a22 − a12a21) != 0

↔λ1,2 = a11 − a22

2 ±

√(
a22 − a11

2

)2
+ a12a21 − a11a22

For the case M = 3, Cardano’s method [49] can be used. For M = 4, there are several
solution schemes, though none was investigated in this work.

3.2.5 Computational Complexity Comparison

To motivate the use of power iterations in Section 4.1 instead of the full EVD obtained
using the MATLAB function eig or the mentioned alternatives, this section deals with the
theoretical complexity of this problem. The computational complexity is given in terms of
the number of floating point operations (flops), with each real basic arithmetic operation
counted as 1 flop.

For the power method, one iteration of the inner for loop requires 8M2 − 2M − 3 additions,
8M2 + 2M multiplications, 2M divisions, and 1 square root operation, which results in total
in 16M2 +2M−2 flops. Hence, if only the largest eigenvalue is computed using N iterations,
N(16M2 + 2M − 2) flops are required. If the second largest eigenvalue is computed as well,
additional operations are required for the matrix rank reduction and N iterations of the
inner for loop should be repeated. Reducing the rank of Φ̂w

y (l) requires 2M2 additions and
3M2 multiplications, yielding in total 5M2 flops. Hence, using the power method to estimate

1Note that the Arnoldi iteration is a method that may provide sufficient results even before going through all M columns,
which is why the maximum iteration number N should be chosen to be smaller than or equal to the number of columns M .
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λ2{Φ̂w
y (l)} requires N(16M2 + 2M − 2) + 5M2 flops. Overall, the complexity of the power

method is O(M2).

Although many algorithms exist for computing the full EVD, the QR decomposition-based
algorithm [43] is considered here, which is one of the most widely used algorithms to com-
pute eigenvalues. The complexity of the QR decomposition-based algorithm for Hermitian
matrices is O(M3) [50], also when the matrix is first transformed into real tridiagonal form
using Householder reflections [43] (cf. Section 3.2.3).

Hence, using the power method to compute the eigenvalues of interest instead of the full EVD

reduces the complexity from O(M3) to O(M2), which can be advantageous for a real-time
implementation of the diffuse PSD estimator, particularly when the number of microphones
M is large. For an experimental validation, see Section 4.1.2.
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4Experimental Results

This chapter deals with the experimental validation of the proposed methods. First, in Sec-
tion 4.1, the performance of the computationally less expensive variant of the EVD-based
diffuse PSD estimator is evaluated in terms of its runtime, its convergence behavior, as
well as the performance of the MWF using its estimates in different reverberant acoustical
scenarios. As a baseline, the diffuse PSD estimator utilizing the full EVD is chosen. Second,
in Section 4.2, the ALS approach to jointly estimate the RETF vector and the diffuse and target
PSDs is compared to a state-of-the-art approach, i.e., the CW approach. The convergence
behavior, estimation accuracy, as well as the resulting MWF performance are investigated
using the same acoustical scenarios mentioned above.

4.1 PSD Estimation using EVD

In this section, the performance of the EVD-based approach laid out in Section 2.4.2 is
evaluated, and the different methods to obtain an EVD described in Section 3.2 are briefly
compared in terms of their accuracy and runtime. The acoustical systems used in this
evaluation are presented, along with the corresponding algorithm settings. Afterwards, the
resulting improvements in terms of the quality measures discussed in Section 2.6 are shown,
where the improvements are always computed w.r.t. the target signal.

4.1.1 Evaluation Setup and Algorithmic Settings

In this evaluation, three different acoustical scenarios are investigated, each consisting
of a single spatially stationary speech source and a microphone array with M ∈ {4, 6}
microphones. The first microphone is considered as the reference microphone. The details
for each system are summarized in Table 4.1. The reverberant microphone signals are
obtained by convolving a 38 s long anechoic speech signal with the measured RIRs at a
sampling frequency of 16 kHz. All acoustical systems are investigated without any additional
noise in Section 4.1.3. Further, they are considered including additive diffuse babble noise
at different input SNRs, and with uncorrelated noise in addition to reverberation and diffuse
noise at different input SNRs, in Section 4.1.4. In the latter case, the noisy signal is preceded

array geometry mic. distance θ T60

AS1 [51] linear d = 8 cm 45 ◦ 0.61 s
AS2 [36] circular r = 10 cm 45 ◦ 0.73 s
AS3 [52] linear d = 6 cm −15 ◦ 1.25 s

Tab. 4.1.: configuration of considered acoustical scenarios; d: inter-microphone distance, r: circle radius, θ:
speaker direction of arrival, reverberation time T60 (cf. Section 1)
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by a 1 s noise-only signal used for the estimation of the uncorrelated noise PSD matrix Φv(l).
Note that in the following, the time frame index l is omitted wherever possible.

The spatial coherence matrix Γ is computed assuming spherically diffuse noise, such that
the (i, j)-th component is given by Equation 2.28. For the spatial coherence matrix to be
invertible (cf., e.g., Equation 2.38, Equation 4.6), it needs to be non-singular. However, when
computed as shown in Equation 2.28, numerical imprecisions especially in the case of low
frequencies may lead to a singular Γ(k) (depending on the microphone array geometry)1.
Hence, regularization of the matrices is performed as

Γ = (1− ρ)Γ + ρIM , (4.1)

where the regularization constant ρ = 0.1 is used in this work.

Since PSDs can only assume positive values, the PSD estimates are lower-bounded by the
machine precision eps. Furthermore, since neither the diffuse nor the target PSD can have
larger values than the microphone signal PSD, also an upper bound is applied, i.e.,

eps ≤ {φ̂s, φ̂d} ≤
1
M

yHy. (4.2)

The RETF vector a necessary for the MVDR filter computation is assumed to be known. It is
obtained from the first 8 ms of the measured RIRs. The transformation of the time domain
signals to the time-frequency domain (cf. Section 2.2) is done using the dgtreal function
from the LTFAT MATLAB toolbox [53]. The fast Fourier transform (FFT) length is set to
1024 with an overlap of 75 % between successive frames, and a tight Hamming window
is used. Recursive averaging (as described in Equation 2.31; α = 0.6703) is utilized to
estimate the microphone PSD matrix Φy. In the scenarios including uncorrelated noise, the
uncorrelated noise PSD matrix Φv is estimated using recursive averaging with forgetting
factor α = 0.5 during the noise-only phase at the beginning, and the estimate of the last
time frame is subtracted from the microphone PSD matrix, i.e., it is assumed to be stationary.
In the next step, the diffuse PSD φd is estimated using the EVD-based approach as described
in Section 3.2, using either the full EVD obtained via the eig function of MATLAB or the
eigenvalue(s) computed using a given number of power iterations. This leads to four
variations that are discussed in the following sections:

EIG1 denotes the approach utilizing the first eigenvalue as estimated with the eig function and
the trace of the pre-whitened estimated microphone PSD matrix to compute the diffuse PSD:

φ̂EIG1
d = 1

M − 1

(
tr{Φ̂

w

y } − λ1{Φ̂
w

y }
)

(4.3)

PI1 uses the above equation for the PSD estimate, replacing λ1{Φ̂
w

y } with the estimate λ̂1{Φ̂
w

y }
obtained via N = 2 power iterations.

EIG2 makes use of the second eigenvalue as estimated with MATLAB’s eig function, resulting in

φ̂EIG2
d = λ2{Φ̂

w

y }, (4.4)

1More intuitively, for small microphone distances and low frequencies / large wavelengths, the microphone signals are extremely
coherent, leading to only minute differences between the entries of Γ(k).
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which is — in theory — equal to φ̂EIG1
d . In practice, however, the individual eigenvalues are

distinct1, i.e.,
λi{Φ̂

w

y } 6= λj{Φ̂
w

y }, i, j ∈ [2,M ]; i 6= j. (4.5)

PI2 uses a power iteration-based procedure to obtain an estimate λ̂2{Φ̂
w

y } of the second
eigenvalue, which is then used to estimate the diffuse PSD as in Equation 4.4.

Following the decision-directed approach described in Section 2.3.3, the diffuse PSD estimate
φ̂d is used to estimate the target PSD φs.
The MWF coefficients are computed — depending on the investigated scenario — as

wMWF = Γ−1a
aHΓ−1a︸ ︷︷ ︸

wMVDR

φ̂s(l)
φ̂s(l) + φ̂d(l)/(aHΓ−1a)︸ ︷︷ ︸

G(l)

(4.6)

in the case of either no noise or diffuse noise, and for additional uncorrelated noise as

wMWF =

(
φ̂d(l)Γ + Φ̂v(l)

)−1
a

aH
(
φ̂d(l)Γ + Φ̂v(l)

)−1
a︸ ︷︷ ︸

wMVDR(l)

φ̂s(l)

φ̂s(l) +
(
aH(φ̂d(l)Γ + Φ̂v(l)−1a

)−1

︸ ︷︷ ︸
G(l)

(4.7)

yielding time-independent MVDR coefficients in Equation 4.6 and time-dependent ones
in Equation 4.7. The minimum gain of the single-channel postfilter is set to Gmin = −10 dB
(cf. Section 2.3.2).

Typical Eigenvalues Since the method is based on computing the eigenvalues of the prewhitened
estimated microphone PSD matrix, the actual values that are typically encountered in practi-
cal scenarios are of interest due to the possibility of numerical precision problems. For this
reason, typical eigenvalues of Φ̂

w

y are displayed in this section, including the first, second
and last eigenvalue, averaged over all time frames. Acoustical scenario AS1 with M = 4 is
considered at different input SNRs, with added diffuse babble noise in Figure 4.1 and added
uncorrelated noise in Figure 4.2. It can be observed that the eigenvalues (especially the
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Fig. 4.1.: typical eigenvalues of prewhitened microphone PSD matrix, AS1, diffuse noise at different input SNRs

first and second one) behave similarly for the same frequencies, with only a constant scaling
between them2. This hints at the fact that there is always a dominant eigenvalue, which

1For more details see Section 2.4.2.
2Note that the y-axis is plotted logarithmically.
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Fig. 4.2.: typical eigenvalues of prewhitened microphone PSD matrix, AS1, uncorrelated noise at different input
SNRs

justifies the use of the power method in the computation of the eigenvalues. Furthermore,
the plot reveals, as already mentioned above, that the signal model in Equation 2.44 is not
perfectly true, and hence the last M−1 eigenvalues are not equal, with the relative difference
between the second and the last eigenvalue larger than the relative difference between the
first and second eigenvalue. Comparing the eigenvalues in the diffuse noise and uncorrelated
noise scenarios, it becomes apparent that for a low input SNR (cf. Figure 4.2a) and high
frequencies (i.e., f > f200 = 200 8000 Hz

513 ≈ 3100 Hz, with fk = k 8000 Hz
513 the center frequency

in the k-th frequency bin with the used STFT settings), the eigenvalues remain approximately
constant. This is to be expected, since the diffuse noise includes late reverberation (i.e.,
filtered speech) such that it will have low energy at high frequencies. Thus, it will become
hidden in the uncorrelated noise floor at low input SNRs.

4.1.2 Comparison of EVD Algorithms

In this section, the various EVD algorithms presented in Section 3.2 are compared in terms
of their PSD estimation accuracy and their runtime on an Intel i7-2600 processor running
Linux Mint 18.3 (64 Bit) measured using MATLAB’s tic toc function. Note that none of
the implementations are optimized in terms of their computational efficiency except for
the MATLAB function eig; however, the presented values can be used to get a general idea
of their complexity relative to each other. The closed-form solutions, which exist up to a
sensor number M = 4, are not included due to their limited use and the fact that they are
not iterative like the other algorithms. In order for the comparison to be representative,
this evaluation is done in different scenarios, and the average values are presented. To
be able to compare the estimated diffuse PSDs with the “true” ones1, reverberant scenarios
{AS1, AS2, AS3} with diffuse noise at 20 dB input SNR are chosen (cf. Section 4.1.1). The
“true” PSD is then computed intrusively using recursive averaging (cf. Equation 2.31) as

φ̂d(l) =

(1− α)φ̂d(l − 1)+ α
M dH(l)d(l), l > 1
1
M dH(l)d(l), l = 1,

(4.8)

1A “true” diffuse PSD is not defined, since it is arbitrary where exactly to split a RIR into its early and late reverberation part,
hence influencing what the diffuse PSD describes. A common choice is 8 ms (corresponding to 128 samples at fs = 16 kHz), which
is adopted here.
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φd estimation error / dB av. time per computation / 10−5 s
iteration number 2 its 5 its 2 its 5 its

Arnoldi Iteration 5.389 5.632 17.935 22.517
Power Method, First Eigenvalue 5.663 5.714 2.331 2.426

Power Method, Second Eigenvalue 4.653 4.603 2.090 2.253
QR Method 5.682 5.716 5.391 10.426

QZ Method (MATLAB’s eig function) 5.721 5.721 3.583 3.583
Tab. 4.2.: accuracy and speed comparison of considered EVD algorithms

where the diffuse component vector d(l) contains late reverberation and diffuse babble noise.
The PSD estimation accuracy is evaluated using the average PSD estimation error over all
time-frequency bins [54] (denoted “total error”), i.e.,

ε = 1
KL

K∑
k=1

L∑
l=1

10 log10
φ(k, l)
φ̂(k, l)

. (4.9)

For all but MATLAB’s method, a fixed number of iterations N = 2 is chosen, which is
determined to be a suitable compromise between speed and accuracy in case of the power
method (see Figure 4.5). In addition, the comparison is repeated for N = 5, since the
number of power iterations required for a suitable PSD estimation accuracy is increased in
the presence of uncorrelated noise.

Without giving extensive meaning to the exact values, the results in Table 4.2 demonstrate
that both power method variants at both iteration numbers N = {2, 5} are slightly faster
than the eig function and significantly faster than the Arnoldi iteration and QR method1.

The PSD estimation error is determined using the first eigenvalue, i.e., following Equa-
tion 2.42; the result in “Power Method, Second Eigenvalue” obtained via Equation 2.41 is
given only for reference, since computing the second eigenvalue with the power method
involves a larger computational complexity.

4.1.3 Dereverberation Performance

The dereverberation performance of the MWF using either the full EVD (using the MATLAB
function eig) or the more tractable power method in noiseless, reverberant scenarios is
investigated in this section. For reasons of comparison, also the performance of the MVDR

without the additional postfilter as depicted. The choice of parameters for these simulations
(random initialization, N = 2 power iterations, M = 4 microphones) is derived from the
following section.

The results, which are displayed in Figure 4.3, demonstrate that two power iterations are
sufficient for providing the same MWF performance as the full EVD using eig in the evaluated
scenarios and performance measures. Informal listening tests confirm this observation.

1The measured time per computation for the power method using the second eigenvalue is smaller than for the power method
using the first eigenvalue, which is a sign of the non-exactness of the measurement, since the computation of the second eigenvalue
requires the first one and hence should take longer in every case.
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Fig. 4.3.: dereverberation performance in noiseless scenarios, M = 4, N = 2; left to right column: AS1, AS2, AS3
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4.1.4 Joint Dereverberation and Denoising

As an extension of the previous section, in this section the performance of the MWF is
evaluated in scenarios containing noise in addition to reverberation. Following the model
in Equation 2.3, the investigation is split into a part dealing with diffuse noise, which the
derivation of the EVD-based MWF is based upon, and a part in which additional uncorrelated
noise is considered as well.

Diffuse Noise

Acoustical systems {AS1,AS2,AS3} with additional diffuse babble noise generated as de-
scribed in Section 4.1.1 are evaluated in this section. First, the influence of using an increased
number of microphones is shown. Next, different power method initialization schemes are
compared, presented in terms of convergence speed and accuracy. After obtaining a suitable
set of parameters, the method is applied to the acoustical scenarios mentioned above, and
the resulting MWF performance is compared to that of the full eigendecomposition.

Influence of Number of Used Microphones In this section, the performance of the MWF is com-
pared for different numbers of used microphones (M = {4, 6}). The acoustical system
AS1 with diffuse babble noise at input SNR 10 dB is considered, and the number of power
iterations is set to N = 2 as suggested in Figure 4.5. The results show that the MWF with
M = 6 consistently outperforms the one with M = 4, which can be explained by the fact
that more spatial information is exploited. Simulations for acoustical system AS2 confirm
this finding (cf. Figure A.1).
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Fig. 4.4.: MWF performance for M = {4, 6}, AS1, diffuse babble noise at 10 dB input SNR
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Initialization and Convergence Speed of Power Method Since the power method is an iterative
procedure, a termination criterion needs to be imposed that, in general, ensures a sufficient
estimation accuracy. While there is a variety of options to consider, such as the angle
between successive estimated dominant eigenvectors or the relative incremental change
in the dominant eigenvalue, setting a fixed iteration number remains a computationally
cheap and easily comparable alternative. To investigate the required number of iterations,
in this section the diffuse PSD estimation accuracy versus the number of power iterations is
evaluated in terms of the total PSD estimation error (cf. Equation 4.9) and compared to a
benchmark. This benchmark is chosen to be MATLAB’s eig function, since it is thoroughly
tested.

In addition, the influence of the initialization of b(0)
p (cf. Algorithm 3.2) is tested. On the

one hand, a random initialization using normally distributed real-valued vector components is
chosen, marked with “-R”. On the other hand, a deterministic variant b(0)

p = [1, 0, . . . , 0]T

is tested, marked with “-D”. As a last option, initializing with the estimated eigenvector of
the previous time frame is evaluated1, which aims at exploiting the temporal correlation of
neighbored STFT bins (marked “-P” and termed “previous initialization” from here on).

For the random and previous initialization, five simulations are carried out with the same set
of parameters, and the corresponding mean and standard deviation values are displayed.
The same is provided for the deterministic initialization as a proof of concept, although it is
clear that the standard deviation equals zero, since no random number generator is involved
in this case. To reduce the number of plots, only the results in the acoustical system AS1 with
diffuse babble noise at input SNRs {10, 40}dB and using M = 4 microphones are presented
(see Figure 4.5), although the other tested diffuse noise scenarios exhibit the same results.

First and foremost, it can be seen that in all instances the power method converges to the
same diffuse PSD estimation accuracy as the eig function after maximally N = 2 power
iterations (N = 1 for previous initialization). Note that the error in case of PI2 − {R,D}
after exactly one iteration is very large, which is why the corresponding line is cut off.
As expected from the discussion in Section 3.2.1, there is no significant difference between
using either the random or the deterministic initialization scheme. In addition, the variance
when using random initialization is close to zero, which points to the robustness of the
algorithm with regard to the starting values. Although these methods already perform quite
well, exploiting the correlation of STFT bins in the previous initialization seems beneficial,
since the required number of iterations can be reduced from N = 2 to N = 1 at no significant
additional computational complexity. In summary, the three tested initialization schemes all
lead to quick convergence to the expected solution as dictated by the MATLAB function eig,
with the previous initialization performing the best.

MWF Performance In this section, the parameters determined in the previous sections (i.e.,
M = 4 microphones, N = 2 power iterations) are chosen to evaluate the performance of
the MWF utilizing the different diffuse PSD estimates more thoroughly. Random initialization
is chosen to describe the convergence behavior in a “worst-case” scenario. In addition to
the previously used fwsSNR and PESQ, also the CD is considered (cf. Section 2.6.3). Figure 4.4
depicts the denoising performance of the MWF using the different PSD estimates described
in Section 4.1.1 in the presence of diffuse babble noise. It can be observed that no significant
discrepancy between using either the full EVD or the power method occurs in any of the

1Note that for the first time frame, where no previous estimate is available, random initialization is chosen.
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Fig. 4.5.: convergence speed of power method with random, deterministic and previous initialization; input SNRs:
left: 10 dB, right: 40 dB

considered scenarios, as expected when considering the convergence discussion above. Only
when comparing the PESQ values, the differences become visible, which are, however, fairly
small. Here, the power method-based variants lead to an even higher quality increase, which
can also be seen in the STFT representations of the MWF output signals, depicted in Figure A.3,
showing a higher contrast between the noise floor and the speech components when using
the power method-based diffuse PSD estimate. This may be a random occurrence, since no
better performance is expected.

Furthermore, the Wiener postfilter adds to the performance of the MVDR beamformer in
every case, with, e.g., additional improvements in terms of fwsSNR of about 2 dB in AS1.
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Fig. 4.6.: joint dereverberation and diffuse noise reduction at different input SNRs, M = 4, N = 2; left to right
column: AS1, AS2, AS3
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Uncorrelated Noise

Initialization and Convergence Speed of Power Method To demonstrate the convergence behavior
of the power method with its different initializations in scenarios containing uncorrelated
white noise, the discussion in Section 4.1.4 is repeated. However, note that access to the
true interference PSD is not available here, and hence a different measure to evaluate the
convergence speed is required. For this purpose, the performance of the MWF utilizing the
diffuse PSD estimates φ̂d(l) as given by the PESQ improvement is chosen. The remaining
performance measures used above are not included in this discussion, since they show the
same behavior.

The results, which are displayed in Figure 4.7, show a different convergence behavior for the
power method, when uncorrelated noise is present. In case of a lower input SNR (10 dB), the
power method-based variants converge to different PESQ improvements than the eig-based
ones. The methods based on the second eigenvalue seem to be affected by this to a larger
extent, which can be explained by the fact that estimation of the second eigenvalue in the
power method requires an estimate of the first eigenvalue, which itself is error-prone. In
addition, there is a noticeable but still rather small variation between simulations as shown
by the error bars, which is different in the diffuse noise case.

Initializing the power method deterministically yields similar results. Also for the previous
initialization, convergence to a different limit can be observed, however faster than in the
other variants. It may be interesting to note that independent of the initialization method,
the level that the power method-based variants converge to is approximately the same.

Although power method-based variants using the second eigenvalue seem to perform better
in the case of 10 dB input SNR than the eig-based methods, it needs to be noted that the
reason for using the power method is complexity reduction, not increasing the performance.
Indeed, a different performance only hints at an inaccurate estimate, which is why the
deterministic initialization receives a lower rating in this scenario. To check this finding, the
simulation is repeated for a different scenario, i.e., using AS2 instead of AS1 and otherwise
using the same parameters. This simulation confirms the previously mentioned results
(see Figure A.2).

Another finding, which is recurring throughout the simulations including uncorrelated noise,
is that the estimates based on the second eigenvalue tend to a better MWF performance
than the ones based on the mean of the smallest M − 1 eigenvalues in case of a high
input SNR, and vice versa for a lower input SNR. This may be explained by the fact that, as
λ2{Φ̂

w

y } ≥ 1
M−1 (trace{Φ̂

w

y }) − λ1{Φ̂
w

y }, using λ2 leads to a more aggressive postfilter. In
case of a lower input SNR and hence larger estimation error, the less aggressive filter may be
preferred, since it introduces fewer signal distortions at the cost of providing smaller noise
reduction.

In conclusion, additive uncorrelated noise at a significant input level makes a larger number
of power iterations (N ≈ 3 for previous initialization, otherwise N ≈ 5) necessary in
order to provide a sufficient accuracy. There is no significant difference between the
investigated initialization schemes after convergence, although using previous initialization
seems to be the preferable choice due to its faster convergence speed. Since the intention
behind using the power method is reducing computational complexity, it is noted here
that even for N = 5, the power method is significantly faster than the other evaluated
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algorithms, and that its use hence is still advantageous in terms of computational complexity.
(cf. Section 3.2.5, Table 4.2).
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Fig. 4.7.: power method convergence speed with random, deterministic and previous initialization at different
uncorrelated noise input SNRs evaluated using MWF performance; AS1

MWF Performance Similar to the discussion in Figure 4.1.4, in this section the overall perfor-
mance of the considered methods is discussed, again making use of the fwsSNR, PESQ and CD

measures. Instead of using N = 5 power iterations, as suggested in the previous convergence
discussion, N = 2 iterations are chosen here as well, in order to allow a better comparison
to the results in Figure 4.1.4.

In contrast to the scenarios with diffuse noise, significant differences between using the full
EVD-based or the power method-based diffuse PSD estimates can be detected using fwsSNR

and CD. This is especially the case, when the input SNR is low, i.e., when the observed data
differ from the model to a larger extent. However, there is no clear trend as to whether
this difference leads to a higher or lower MWF performance. Considering the convergence
discussion above, in which it was shown that for uncorrelated noise, the power method
converges to a different solution at a slower pace, this behavior is expected. However, note
that in practical scenarios, uncorrelated noise such as sensor noise does not usually reach
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critical levels such as 10 dB input SNR, and hence the small number of iterations N = 2 is
still justified.
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Fig. 4.8.: joint dereverberation and noise reduction, M = 4, N = 2; left to right column: AS1, AS2, AS3

4.1.5 Summary

In the previous sections, the performance of the EVD-based methods for estimating the
diffuse PSD φd is investigated in different reverberant acoustical scenarios with and without
uncorrelated white noise or diffuse babble noise. The results show that the extension of the
MVDR beamformer to the MWF increases the performance consistently, with a larger number
of utilized microphones corresponding to larger improvements. Considering the initialization
method, it can be observed that all used variants converge to the same estimation error,
although utilizing the dominant eigenvector from the previous time frame results in the
fastest convergence.

While the behavior of the full EVD-based methods is without significant differences to the
power iteration-based ones in the noiseless as well as diffuse noise scenarios, there are such
differences in the uncorrelated noise cases. However, under the assumption of a large SNR

(i.e., ' 20 dB), these differences become negligible, such that the power method can still be
used for complexity reduction.
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4.2 Iterative Joint Estimation of PSDs and RETFs

This section deals with validating the performance of the methods for joint RETF vector and
diffuse PSD estimation discussed in Section 2.5 and Section 3.1. First, the RETF vector and
diffuse PSD estimation accuracy of the considered methods is evaluated for different input
diffuse-to-noise ratios (DNRs) using simulated data. Considering the Frobenius norm-based
RETF vector estimators, it is decided whether to follow the unconstrained optimization (OPT)
or the rank-1 approximation approach LS. In addition, the performance of an MWF in
realistic acoustical scenarios when using the various RETF vector and diffuse PSD estimates is
compared.

4.2.1 Validation Using Artificial Data

To evaluate the estimation accuracy and the convergence speed of the discussed methods,
artificial data is generated according to the assumed signal model in Equation 2.44, such
that oracle information is available. In total, M = 4 microphones are simulated for K =
513 frequency bins and L = 100 time frames. Specifically, the target and diffuse PSDs at
each time-frequency bin are drawn from a scaled and squared normal distribution, i.e.,
φs(k, l), φd(k, l) ∼ 10−7 (N (µ = 0, σ = 1))2. The scaling is chosen to be in the range of
real data (cf. Figure 4.1, Figure 4.2). The RETF vectors a(k) are assumed to be time-invariant
and are generated using normally distributed complex-valued components, and the first
element is set equal to 1. For the spatial coherence matrix Γ(k), a random positive-definite
matrix is added to a random diagonal matrix with positive values, and the resulting matrix
is scaled such that the diagonal elements are equal to 1.

Since in typical acoustical scenarios the late reverberation and the ambient noise are not
perfectly diffuse, and since the early reverberation and diffuse components are not perfectly
uncorrelated, the signal model in Equation 2.44 is typically violated. In order to evaluate the
robustness of the proposed method to model mismatches, an M ×M -dimensional scaled
error matrix Ξ is added, i.e.,

Φy(k, l) = φs(k, l)a(k)aH(k) + φd(k, l)Γ(k) + δΞ(k, l); δ = 10−7

10input DNR / 10 , (4.10)

where δ determines the strength of the model mismatch, and with the diffuse-to-noise
ratio (DNR). The error matrix Ξ(k, l) is generated as Ξ(k, l) = n(k, l)nH(k, l), with n(k, l)
an M -dimensional vector with complex-valued normally distributed components. The
considered DNR values range from -50 dB to 50 dB.

For the PSD estimation accuracy, the error defined in Equation 4.9 is considered again. The
RETF vector estimation accuracy is evaluated using the average Hermitian angle between the
oracle vector a(k, l) and the RETF vector estimate â(k, l) as [31]

∆θ = 1
KL

K∑
k=1

L∑
l=1

arccos
( ∣∣âH(k, l)a(k)

∣∣
‖â(k, l)‖2‖a(k)‖ 2

)
360 ◦

2π , (4.11)

which is a measure disregarding the length difference of both vectors. Figure 4.9 depicts
the diffuse PSD estimation error and the Hermitian angle versus the number of ALS iterations
for a DNR of 0 dB. In addition, the performance of the CW method is depicted for reference.
For the LS method, it can be observed that, while there is no significant change in the
Hermitian angle for an increasing number of ALS iterations, the diffuse PSD estimation error
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Fig. 4.9.: diffuse PSD and RETF vector estimation errors vs. the iteration index (M = 4, DNR = 0 dB)
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Fig. 4.10.: diffuse PSD and RETF vector estimation errors vs. input DNR for different numbers of iterations (M = 4)

is decreased by about 2 dB after convergence, which is reached after approximately 5 ALS

iterations. Furthermore, the figure shows that using the LS method, lower PSD and RETF

vector estimation errors are obtained than using CW. What is more, using unconstrained
optimization to estimate the RETF vector (OPT) results in no performance increase for more
iterations.

For different DNRs, Figure 4.10 compares the diffuse PSD and RETF vector estimation accuracy
of the CW, OPT and LS method for {1, 2, 5, 50} ALS iterations. In terms of the diffuse PSD

estimation error, it can be observed that for only a few ALS iterations (i.e., 1 or 2), the LS as
well as the OPT method perform significantly worse than the CW method. After convergence,
however, the LS method clearly outperforms the CW and the OPT method for low input DNRs,
while resulting in a similar estimation accuracy as CW at high input DNRs. 5 ALS iterations
is observed to be a good compromise between computational complexity and estimation
accuracy (note that the only significant difference between 5 and 50 iterations is observable
for low input DNRs < −10 dB, cf. Figure 4.10a).

In terms of the Hermitian angle, there is no significant difference between the LS and the
CW approach for all considered DNRs, with OPT again showing the worst accuracy. Hence,
the ALS approach utilizing rank-1 approximation improves the PSD estimation accuracy with
increasing number of ALS iterations, while one ALS iteration seems to suffice in terms of RETF

vector estimation accuracy.
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Concluding, the LS method exhibits a large robustness to model noise in artificial data,
outperforming both the CW as well as the OPT method in terms of the diffuse PSD estimation
accuracy, while leading to a comparable performance as CW in terms of the RETF vector
estimation accuracy. Thus, utilizing the rank-1 approximation for the Frobenius norm-based
RETF vector estimation proves superior to using unconstrained optimization1, which is why
OPT will not be considered in the validation using recorded data.

4.2.2 Validation Using Recorded Data

To evaluate the performance of the ALS and CW approaches on measured data, the acoustical
scenarios that were already used in the evaluation of the power method-based diffuse PSD

estimators are utilized (cf. Table 4.1). This enables a closer comparison with the results
in Section 4.1, in which the RETF vector is assumed to be known. As mentioned above, the
OPT method will not be considered in this validation, since it does not exhibit any advantages
w.r.t. the LS method while aiming at minimizing the same cost function.

A spatially stationary speech source is considered in the presence of reverberation and diffuse
babble noise. The reverberant multi-channel speech signals are obtained by convolving an
8.8 s long anechoic speech signal with the measured RIRs corresponding to AS1−3. As for the
simulated data, M = 4 microphones are used. Diffuse babble noise is generated as described
in [28] and added at 10 dB input SNR w.r.t. the reference microphone.

As already mentioned, it should be noted that in realistic acoustical scenarios, deviations
from the signal model in Equation 2.44 are to be expected, since the perfectly diffuse sound
field model is generally violated and since the individual components are not perfectly
uncorrelated. To investigate the impact of additional model mismatch, spatially uncorrelated
noise is added to the microphone signals at different input DNRs ranging from 10 dB to
40 dB.

The signals are processed in their STFT representation, which is obtained using the parameters
described in Section 4.1.1. The estimated microphone PSD matrix Φ̂y(l) is obtained using
recursive averaging as described in Equation 2.31 with a smoothing constant α = 0.67,
corresponding to approximately 40 ms. Note that in the first part of this investigation,
the uncorrelated noise PSD matrix is not estimated and subtracted from the microphone
PSD matrix, as, e.g., done in [15, 16, 40] and Section 4.1.1, such that the sensitivity to
uncorrelated noise can be evaluated. In a second part, it is estimated and subtracted from
the microphone PSD matrix (cf. Section 4.1.1) to be able to compare the performance of both
approaches in a more realistic setting.

The performance comparison is done by using the obtained RETF vector and diffuse PSD

estimates in an MWF.

It was shown in [55, 15] that using the decision-directed approach [24] to obtain an estimate
of the a priori SNR results in a better MWF performance than directly utilizing the Frobenius
norm-based target PSD estimate. For this reason, the target PSD estimation accuracy has not
been evaluated in Section 4.2.1, and the decision-directed approach is used to implement the
MWF in this section (as also done in the simulations in Section 4.1). The a priori SNR ξ(l) is
estimated using Equation 2.27 with the smoothing constant ρ = 0.98. The MVDR beamformer
coefficients wMVDR(l) are computed as in Equation 4.6 when not subtracting the noise PSD

1Furthermore, the rank-1 approximation-based variant is far less computationally complex than the unconstrained optimization-
based variant.

4.2 Iterative Joint Estimation of PSDs and RETFs 46



matrix, and as in Equation 4.7 when subtracting the noise PSD matrix. The postfilter G(l) is
computed using the a priori SNR estimate as

G(l) = ξ̂(l)
1 + ξ̂(l)

, (4.12)

with a minimum gain of -10 dB. The corresponding simulations are performed 5 times using
one noise realization, such that the influence of the random initialization in case of the LS

method is reduced. The mean values are displayed in addition to the standard deviation as
error bars.
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Fig. 4.11.: joint dereverberation and noise reduction without subtracting noise PSD matrix, M = 4, 5 ALS iterations;
left to right column: AS1, AS2, AS3

Without Subtraction of Noise PSD Matrix The quality of the MWF output signal, which is evalu-
ated with fwsSNR, PESQ and CD using the target signal as the reference, is presented in Fig-
ure 4.11 for several input DNRs. 5 ALS iterations are used, as determined in the simulations
using artificial data in the previous section. It can be observed that the LS method out-
performs the CW method for all considered DNRs in terms of the considered performance
measures, except for the PESQ values in AS1 at 30 dB and 40 dB input DNR.
In terms of PESQ, a better performance of up to 0.16 is obtained using the LS method, whereas
in terms of fwsSNR, a better performance of up to 0.4 dB is obtained. Also in terms of fwsSNR,
the performance difference between both methods decreases for larger input DNRs, which
is in line with the results from Figure 4.10. In terms of PESQ, the differences become most
apparent.

4.2 Iterative Joint Estimation of PSDs and RETFs 47



Comparing the MVDR performance, which only depends on the RETF estimation accuracy
when the noise PSD matrix is not subtracted (cf. Equation 4.6), confirms the result from Fig-
ure 4.10b, which demonstrated a similar Hermitian angle between the ground truth and the
estimates. Noting that in almost all cases, the performance is increased when the postfilter
is added, also the higher diffuse PSD estimation accuracy of the LS method is confirmed.

The error bars are invisible in almost all cases, leading to the conclusion that random
initialization of the RETF vector in case of the LS method does not have a significant impact.

In summary, if strong model deviations are present, the proposed LS method yields a
significantly better performance than the CW method when used in an MWF, confirming the
advantages of coupling the RETF vector and diffuse PSD estimation in an ALS approach.

With Subtraction of Noise PSD Matrix The results when subtracting the uncorrelated noise
PSD matrix from the microphone PSD matrix are presented in Figure 4.12. Otherwise, the
simulation settings are equal to those from the previous section.

When compared to the results without noise PSD matrix subtraction, some differences can be
observed. Considering the performance of the MVDR only, no significant difference between
the methods can be made out. This confirms the results from the validation using artificial
data (cf. Section 4.2.1), in which the Hermitian angle between the estimates and the
reference was approximately the same for the LS and the CW method. Note, however, that
the MVDR implementation here also includes the diffuse PSD estimate (cf. Equation 4.7).
Focusing on the performance of the MWF, the CW method tends to slightly better results
(although mostly insignificant). Hence, in the case of real data, the diffuse PSD estimate of
the LS method seems to be slightly more inaccurate than the one of the CW method, which
contradicts the results from the validation using artificial data. A possible explanation of this

observation is a faulty scaling of the RETF vector during the ALS iterations (â =
√
λ1/φ̂su1),

which depends on the target PSD estimate φ̂s. During the simulations, φ̂s tends to take on
values in the range of machine precision, which may lead to numerical inaccuracies and
thus to wrongly scaled RETF vector estimates. While such a faulty scaling does not affect the
direction of the vector (and hence not the Hermitian angle), it does affect the PSD estimation
(note, e.g., the first element of A(l) in Equation 2.48).
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Fig. 4.12.: joint dereverberation and noise reduction with subtracting noise PSD matrix, M = 4, 5 ALS iterations;
left to right column: AS1, AS2, AS3
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Summary

In this section, the evaluation results for the joint estimation of the RETF vector and diffuse
PSD estimates are summarized. Firstly, in the case of artificial data, it is shown that the LS

method leads to a higher PSD estimation accuracy than the CW method, when uncorrelated
noise is present. For the RETF vector estimation accuracy, no difference can be made out.
This result is confirmed for real data, as long as the noise PSD matrix is not subtracted,
hinting at the larger robustness of the LS method to model deviations.

On the other hand, when the noise PSD matrix is subtracted, and hence the strength of the
model deviations is decreased, the LS method has a similar RETF vector estimation accuracy
as the CW method (leading to a similar MVDR performance), while its diffuse PSD estimation
accuracy is slightly lower (leading to a slightly lower MWF performance). This discrepancy
may be caused by numerical imprecisions during the scaling of the RETF vector.

As in the previous section, there is no significant variation between independent simulations,
confirming that the LS method does not depend on favorably initialized RETF vectors.

In conclusion, the CW method seems to have a higher potential for joint dereverberation and
denoising, as long as the model deviation is low. However, with increasing model deviation,
the LS method will become advantageous, depending on the scenario.
Since it is possible to estimate the noise PSD matrix in noise-only phases, it is reasonable to
prefer the CW method in this state. For future research, however, it remains interesting to
incorporate the PSD estimator described in [55] in the LS method, which can additionally
provide an estimate of the uncorrelated noise PSD, possibly improving the performance.
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5Conclusion and Outlook

In this chapter, the main contributions of this thesis are summarized, and opportunities for
further research are pointed out.

5.1 Conclusion

Recent developments in hand-held devices have led to an increased interaction of humans
and machines, be it as a ways of communication or with regard to assisted living technologies,
where automatic speech recognition is of utmost importance. Commonly, these systems
involve a small set of microphones used to acquire a speech signal in a room of limited
size. However, in addition to the desired speech, also interferences are captured by the
microphones, including ambient noise and late reverberation. A commonly used technique
for joint dereverberation and denoising is the MWF. Modeling late reverberation and ambient
noise as a diffuse sound field, it requires estimates of the RETFs and the diffuse PSD.

The first aim of this thesis was to reduce the computational complexity of an existing diffuse
PSD estimator, such that its practical implementation becomes more feasible. For this problem,
we have proposed to use the power method. Regarding the initialization method, it was
shown that using the estimated dominant eigenvector from the previous time frame results
in the fastest convergence. In terms of estimation error, however, no significant difference
between the different initialization methods could be observed.
In the case that no, or only diffuse, noise is present, even a small number of iterations, i.e.,
N = 2, is sufficient to obtain the same diffuse PSD estimation accuracy as the full EVD. In
the presence of additional non-diffuse noise, the required amount of iterations increases,
and for a low input SNR, the diffuse PSD estimation accuracy of the full EVD and the power
method diverges to a small extent. Considering that in many realistic scenarios the input
SNR does not fall too low, the power method remains a suitable and computationally more
efficient variant of obtaining the required eigenvalues.

The second aim was to jointly estimate the RETFs and the diffuse PSD, since the implementation
of the considered speech enhancement framework, i.e., the MWF, requires both of these
quantities. For this purpose, we proposed an ALS approach to jointly estimate the RETFs as
well as the diffuse and target PSDs. It was shown that using these estimates in an MWF leads
to a high dereverberation and denoising performance. When compared to a state-of-the-art
approach based on CW, a higher robustness against model deviations could be observed even
for a small number of ALS iterations. In the case that these model deviations were estimated
in noise-only segments and then subtracted from the microphone signal, however, a similar
performance of both techniques was obtained.
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5.2 Further Research

The signal model used throughout this work includes any noise that may be represented by
a diffuse sound field. Hence, any noise which does not satisfy this assumption, embodies a
deviation from the signal model, leading to a decrease in the performance of the proposed
estimators.

While it is not straightforward to extend the EVD-based diffuse PSD estimator such that it
includes non-diffuse noise inherently, the case for the ALS approach based on the minimization
of the Frobenius norm of an error matrix is different. Modeling the noise PSD matrix as a
spatially homogeneous coherence matrix with time-varying PSD, it is possible to incorporate
non-diffuse noise into the model, which is highly interesting for future work. Furthermore,
since the ALS approach yields the time-varying RETFs, the performance in the case of a moving
speaker is subject of possible further investigation.
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AAppendix

A.1 Supplementary Plots

In this section, figures are depicted that support the findings made in the experimental
analysis in Section 4.

A.1.1 PSD Estimation Using EVD
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Fig. A.1.: MWF performance for M = {4, 6}, AS2, diffuse babble noise at 10 dB input SNR

53



0 5 10 15 20

# of power iterations

0.2

0.4

0.6

 P
E

S
Q

10dB

EIG
1

PI
1
-R

EIG
2

PI
2
-R

0 5 10 15 20

# of power iterations

0.2

0.3

0.4

0.5

 P
E

S
Q

40dB

EIG
1

PI
1
-R

EIG
2

PI
2
-R

0 5 10 15 20

# of power iterations

0.2

0.4

0.6

 P
E

S
Q

10dB

EIG
1

PI
1
-D

EIG
2

PI
2
-D

0 5 10 15 20

# of power iterations

0.2

0.3

0.4

0.5

 P
E

S
Q

40dB

EIG
1

PI
1
-D

EIG
2

PI
2
-D

0 5 10 15 20

# of power iterations

0.2

0.4

0.6

 P
E

S
Q

10dB

EIG
1

PI
1
-P

EIG
2

PI
2
-P

0 10 20

# of power iterations

0.38

0.4

0.42

0.44

0.46

 P
E

S
Q

40dB

EIG
1

PI
1
-P

EIG
2

PI
2
-P

Fig. A.2.: power method convergence rate with random, deterministic and previous initialization at different
uncorrelated noise input SNRs evaluated using MWF performance; AS2

100 200 300 400 500

time frame

100

200

300

400

500fr
e
q
u
e
n
c
y
 b

in

(a) reference microphone signal

100 200 300 400 500

time frame

100

200

300

400

500fr
e
q
u
e
n
c
y
 b

in

(b) output of MWF using
diffuse PSD estimate φ̂EIG2

d

100 200 300 400 500

time frame

100

200

300

400

500fr
e
q
u
e
n
c
y
 b

in

(c) output of MWF using
diffuse PSD estimate φ̂PI2

d

Fig. A.3.: comparison of STFTs for AS1; diffuse babble noise at 10 dB input SNR

A.1 Supplementary Plots 54



A.2 Some Proofs

In this section, proofs are presented that would otherwise have disturbed the reading flow.

Theorem A.2.1. If a matrix A ∈ CM×M has a rank equal to 1 — i.e., it can be written
as A = uuH with u being an M -dimensional non-zero vector — it has only one non-zero
eigenvalue σ.

Proof. Knowing that u is an eigenvector of the matrix A = uuH , the non-zero eigenvalue of
A is easily obtained as

Au = uuHu = u (uHu)︸ ︷︷ ︸
=:σ>0

= σu.

For the other eigenvalues, by the rank-nullity theorem we have

dim(ker(A)) = M − 1,

where dim(◦) and ker(◦) are the dimensionality and kernel of ◦, respectively. Noting the
definition of the kernel

ker(A) = {x ∈ CM |Ax = 0} =: x0 ↔ Ax0 = 0 = 0x0,

we can see that it corresponds to the eigenspace of A corresponding to the eigenvalue 0, i.e.,
the eigenspace of A corresponding to the eigenvalue 0 has dimensionality M − 1. Hence,
A has one non-zero eigenvalue σ, with the eigenvalue 0 having an algebraic multiplicity of
M − 1.

Theorem A.2.2. The squared Frobenius norm ||A||2F of matrix A ∈ CM×M may be rewritten
using the trace as ||A||2F = tr

{
AHA

}
= tr

{
AAH}.

Proof.

tr{AHA} =
M∑
i=1

(AHA)ii

=
M∑
i=1

M∑
k=1

a∗kiaki

(
=

M∑
i=1

M∑
k=1

akia
∗
ki = tr{AAH}

)

=
M∑
i=1

M∑
k=1
|aki|2 ≡ ||A||2F

(A.1)

Theorem A.2.3. The squared Frobenius norm ||A||2F of matrix A ∈ CM×M may be separated
into its imaginary and real part according to ||A||2F = ||Re{A}||2F + ||Im{A}||2F.
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Proof.

||A||2F =
M∑
i=1

M∑
j=1
|aij |2

=
M∑
i=1

M∑
j=1

aija
∗
ij

=
M∑
i=1

M∑
j=1

(aRij + jaIij)(aRij − jaIij)

=
M∑
i=1

M∑
j=1

(aR,2ij −ja
R
ija

I
ij + jaIija

R
ij︸ ︷︷ ︸

=0

+aI,2ij )

=
M∑
i=1

M∑
j=1

aR,2ij +
M∑
i=1

M∑
j=1

aI,2ij

= ||Re{A}||2F + ||Im{A}||2F,

(A.2)

where aRij and aIij denote the real and imaginary part of the (i, j)-th component of A,
respectively.

Theorem A.2.4. The matrix A = φsbbH + φdIM with φs, φd ∈ R+, b ∈ CM has b as its
dominant eigenvector.

Proof. The proof starts by showing that b satisfies the eigenvalue equation.

(φsbbH + φdIM )b = φsb

=:b∗>0︷︸︸︷
bHb +φdIMb

= (φsb∗ + φd)b
(A.3)

Now, using that the eigenvalues of A can be identified as λ1{A} = σ + φd > λi{A} =
φd, i = {2, . . . ,M} (see Section 2.4.2), b is shown to be the eigenvector of A corresponding
to its largest eigenvalue.

Theorem A.2.5. If a matrix A ∈ CM×M is (upper) triangular, then its eigenvalues λi and the
corresponding multiplicities are given as its diagonal entries aii.

Proof. We use that the determinant of any (upper) triangular matrix is given by the product
of its diagonal entries, i.e.,

det{A} =
M∏
i=1

aii.

Since the eigenvalues of A are given by the solutions of its characteristic polynomial, we
have

det{A− λIM} =: det{B} B (also (upper) triangular)

=
M∏
i=1

bii

= (b11)(b22) . . . (bMM )

= (a11 − λ)(a22 − λ) . . . (aMM − λ),
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where the roots are clearly given by the diagonal entries themselves.

Lemma A.2.1. If a matrix A ∈ CM×M is Hermitian, i.e., AH = A, then its eigenvectors are
orthogonal.

Proof. Assume that the matrix A has eigenvalues λi, λj and corresponding eigenvectors ui,
uj . Using that the eigenvalues of the above Hermitian matrix A are real yields

λj(uHj uk) = (λjuj)Huk = (Auj)Huk = uHj AHuk = uHj Auk = uHj λkuk = λkuHj uk
→ λjuHj uk = λkuHj uk

↔ uHj uk = 0, since 0 6= λj 6= λk 6= 0, j 6= k.

The above proof uses the fact that Hermitian matrices have real eigenvalues:

Lemma A.2.2. The eigenvalues of a Hermitian matrix A ∈ CM×M with eigenvector u are real.

Proof.

λ(uHu) = uHλu = uHAu = uHAHu = (Au)Hu = (λu)Hu = λ∗uHu

→ λ = λ∗ ↔ λ ∈ R

A.3 Cholesky Decomposition

Since the Cholesky decomposition, which is an example for a square root decomposition
of matrices, is an important step in obtaining a favorable structure for the microphone PSD

matrix, the technique is outlined briefly in this section, based on [43].

Theorem A.3.1. If a matrix A ∈ CM×M is symmetric and positive definite, it can be decom-
posed as A = LLH , where L ∈ CM×M is a lower triangular matrix.

Proof. See [43].

There is a variety of algorithms achieving the Cholesky decomposition, with the most efficient
ones requiring M3/3 flops. As an example, the so-called “general matrix A times vector x
plus vector y (GAXPY)” version is presented in the following, since it relies heavily on GAXPY

operations, which are computed efficiently in MATLAB. To arrive at the algorithm, which has
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been slightly modified from [43] to account for Hermitian instead of symmetric matrices
(i.e., complex instead of real), we first write explicitly the j-th column of A as

A(:, j) =
j∑

k=1
L(:, k)LH(k, j)

=
j∑

k=1
L(:, k)L∗(j, k)

=
j−1∑
k=1

L(:, k)L∗(j, k) + L(:, j)L∗(j, j)

↔ L(:, j)L∗(j, j) =: v = A(:, j)−
j−1∑
k=1

L(:, k)L∗(j, k).

(A.4)

Hence, knowing the input matrix A and the first j − 1 columns of L, and noting that
L∗(j, j) =

√
v(j), its j-th column can be computed, resulting in the following algorithm:

Algorithm A.1: Cholesky decomposition (GAXPY variant)

1 Input: Hermitian and positive definite matrix A ∈ CM×M

2 Output: lower triangular matrix L such that A = LLH

3 init v ∈ 0M ,L ∈ 0M×M ;
4 for j = 1 : M do
5 v(j : M) = A(j : M, j);
6 for k = 1 : j − 1 do
7 v(j : M) = v(j : M)− L(j, k)L(j : M,k);

8 L(j : M, j) = v(j : M)/
√

v(j);

A.4 Derivatives

To obtain the gradient in Equation 3.1.2, a number of matrix derivatives w.r.t. vectors is
required. To this end, modified results from [56] are presented in this section which are
used in the computations.

Tab. A.1.: gradients modified from [56], A ∈ RM×M ,A = AT , x, a ∈ RM

f(x) ∇xf(x)
tr{AxxT} 2Ax
tr{xxTA} 2Ax

tr{xxTxxT} 4xxT x
tr{ATxaT} Aa
tr{ATaxT} AT a
tr{xaTaxT} 2xaT a
tr{axTaxT} 2axT a
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