
Carl von Ossietzky

University of Oldenburg

Bachelor Thesis

Combination of RTF Vector Estimates

in Acoustic Sensor Networks

Bachelor of Engineering Program

Engineering Physics

Submitted by

Wiebke Middelberg

Supervisor

Prof. Dr. ir. Simon Doclo

Co-Supervisor
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Abstract

One of the main goals in audio signal processing is the suppression of background noise

to increase the intelligibility of speech. A common noise reduction method is the so-

called minimum variance distortionless response (MVDR) beamformer, which preserves

the speech component in a reference microphone while minimizing the output noise power

spectral density (PSD). In multi-channel noise reduction, this beamformer requires an

estimate of the relative transfer function (RTF) vector, which contains the acoustic trans-

fer functions (ATFs) relative to a reference microphone. In the past, several RTF vector

estimators have been developed, amongst them, the spatial coherence (SC) -based RTF

vector estimator, which uses a spatially separated external microphone to guide a local

array’s RTF vector estimate. In this thesis, an extension of the SC method is considered:

A second external microphone is used and thus a second RTF vector estimate is obtained.

Two approaches are proposed for an optimal linear combination, namely, the orthogonal

projection of the true RTF vector on the plane spanned by the two estimates and the max-

imization of the output signal-to-noise ratio (SNR). The results show that the orthogonal

projection (which is a purely theoretical, ideal solution) performs well in terms of both,

noise reduction and speech distortion. The approach which maximizes the output SNR

leads to similar results, but can be applied in practice when the biased output SNR is

maximized.

Zusammenfassung

Eines der Hauptziele der Audiosignalverarbeitung ist die Unterdrückung von Hintergrund-

geräuschen, um die Sprachverständlichkeit zu erhöhen. Ein gängiges Verfahren zur Stör-

geräuschunterdrückung ist der so genannte Minimum Variance Distortionless Respon-

se (MVDR)-Beamformer, der die Sprachkomponente in einem Referenzmikrophon be-

wahrt und gleichzeitig die spektrale Leistungsdichte (PSD) des Störgeräuschs am Aus-

gang minimiert. Dieser Beamformer benötigt eine Schätzung des Vektors der relativen

Übertragungsfunktionen (RTFs), in dem die akustischen Übertragungsfunktionen (ATFs)

auf ein Referenz-Mikrophon bezogen sind. In der Vergangenheit wurden mehrere Ansätze

der RTF-Schätzung entwickelt, darunter der auf räumlicher Kohärenz (SC) basierende

RTF-Schätzer, der ein räumlich separiertes externes Mikrophon verwendet, um die RTF-

Schätzung eines lokalen Arrays zu steuern. In dieser Arbeit wird eine Erweiterung der SC-

Methode in Betracht gezogen: Ein zweites externes Mikrophon wird verwendet und somit

eine zweite RTF-Vektor-Schätzung erhalten. Als Ansätze für eine optimale lineare Kom-

bination werden die orthogonale Projektion des wahren RTF-Vektors auf der von den bei-

den Schätzungen aufgespannten Ebene und die Maximierung des Signal-Rausch-Abstandes

(SNR) vorgeschlagen. Die Ergebnisse zeigen, dass die orthogonale Projektion (die eine rein

theoretische, ideale Lösung ist) sowohl in Bezug auf Störgeräuschunterdrückung als auch
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auf Sprachverzerrung gute Ergebnisse liefert. Der Ansatz, der den Ausgangs-SNR maxi-

miert, führt zu ähnlichen Ergebnissen, kann allerdings in der Praxis angewendet werden,

wenn der verzerrte Ausgangs-SNR maximiert wird.
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1 Introduction

The intelligibility of speech in acoustic signals is often reduced by background noise.

Especially at low signal-to-noise ratios (SNRs) or for people with hearing impair-

ment, understanding a desired speaker can become difficult or even impossible. An

example is the so-called ”cocktail-party” scenario [1], where a desired speech signal

is corrupted by other interfering speakers. Noise reduction is therefore one of the

essential tasks in audio signal processing to increase speech intelligibility.

In principle, it can be distinguished between single- and multi-channel noise reduc-

tion techniques. Using only one channel merely allows the use of spectro-temporal

information, whereas multi-channel techniques also allow exploration of the spatial

information about the target and/or noise component in the signal [2]. The latter

yields, in general, better results than using only spectro-temporal information.

Since most modern devices like smart phones, hands-free systems, or hearing aids,

are equipped with more than one microphone, multi-channel noise reduction is the

method of choice in this thesis.

Especially in acoustic sensor networks (ASNs), where microphones are distributed

over a larger area and can therefore gather even more diverse information about the

ambient sound field, multi-channel algorithms for noise reduction, speech recogni-

tion and source localization are of high interest in current research [3].

One method of multi-channel noise reduction is the minimum variance distortion-

less response (MVDR) beamformer, which perfectly preserves the speech compo-

nent in the reference microphone (i.e. distortionless) while minimizing the noise at

the output. The beamformer can be steered by means of a relative transfer func-

tion (RTF) vector [4], which represents the relative position which is to be preserved.

The RTF vector relates the desired source’s acoustic transfer function (ATF) of all

microphones to a reference microphone and is easier to estimate than ATFs [5].

The state-of-the-art RTF estimators are covariance subtraction (CS) and covari-

ance whitening (CW) [6]. It has been shown that among these two estimators CW

performs best in terms of the estimate’s accuracy, but has a high computational

complexity due to the required eigenvalue decomposition (EVD) [6, 7].

In [8, 9] a novel RTF estimator was proposed which exploits the spatial coher-

ence (SC) properties of a diffuse noise field between a microphone array (e.g. bin-

aural hearing aid devices) and a spatially separated external microphone. Under

the assumption of a diffuse noise field and a sufficiently large distance between local

array (L) and external microphone (E), only the speech components in the signals

of L and E are correlated, which allows the use of an external microphone to guide
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the RTF estimate of the local array. A configuration like this can be interpreted

as an ASN with one (external) node and a fusion center where all information is

collected and processed [10, 11]. This estimator obviously requires the availability

of an external microphone, but yields comparable results to CW in terms of noise

reduction, while exhibiting a much lower computational complexity. Furthermore,

the real-time implementation of the SC method in [12] shows robust results and

applicability in practice, even in dynamic scenarios with a moving desired source.

In this thesis, the SC estimator is extended with a second external microphone E2.

By making the same assumptions as with only one external microphone E1 (ideally

only the desired speech in L and E2 is correlated), a second RTF vector estimate

can be obtained using E2. Hence, the question arises which estimate should be used

or how they can be optimally combined. This problem is examined in the course of

this thesis, where two (mostly theoretical) approaches are presented. Both optimal

solutions are based on a linear combination of the two RTF vector estimates with

a complex weighting factor. In the first approach (Subsection 5.1), the Hermitian

angle - the angle between the true RTF vector (which is in general unknown) and

the combination of estimates - is minimized, for which it can be shown that the

orthogonal projection of the true RTF vector on the plane spanned by the estimates

solves this problem. The second approach (Subsection 5.2) is the maximization of

the output SNR. In principle, this problem is based on oracle knowledge about

the speech component (i.e. information that is unknown in practice). However, the

optimization of the biased output SNR yields, in theory, the same result and does

not require information about the speech component directly. The solutions of these

optimization problems are derived and evaluated.

This thesis is structured as follows: In Section 2, the notation used throughout

this thesis, as well as the multi-channel signal model are introduced. Subsequently,

the MVDR beamformer is introduced in Section 3, which is steered by the RTF

vectors obtained from the SC method presented in Section 4. In Section 5, both the

minimization of the Hermitian angle and the maximization of the output SNR are

derived and discussed. The evaluation of the proposed optimal solutions is carried

out in Section 6 using signals recorded with a binaural hearing aid device and several

external microphones available. Firstly, the effect of the distance dependence of the

two external microphones on the weighting of the RTF vector estimates is observed

(Subsection 6.3). To this end, artificial levelling is required. The same holds for the

experiment performed in Subsection 6.4, where the influence of the input SNR in

2 Wiebke Middelberg Bachelor Thesis



1 Introduction

E1 and E2 is investigated. In Subsection 6.5, no artificial levelling is performed and

thus both influences are taken into account. All experiments are performed with

oracle knowledge. As performance measures, the output SNR of the filter and the

speech distortion (SD), i.e. the undesired effects of the filter on the desired speech

signal, are considered. Finally, the work presented in this thesis is concluded and

an overview of further research is provided (Section 7).

Bachelor Thesis Wiebke Middelberg 3



2 Signal Model and Notation

In the following, an ASN with a local array (for simplicity here chosen to be linear)

with M microphones and two spatially separated external microphones (E1 and E2)

is considered, as depicted in Fig. 2.1.

E2

E1desired source S local array L

Fig. 2.1: Configuration with M = 3 local microphones and two external micro-
phones.

The desired source (S) is placed some distance from the local array and is related

to each microphone by the respective room impulse response (RIR). The recorded

discrete time signal in the local array (indicated with the index L) yL,m[t] (with

m ∈ {1, ...,M}) is given as the sum of the desired signal xL,m[t] and the noise

component nL,m[t] with the sampling index t, that is

yL,m[t] = xL,m[t] + nL,m[t] . (2.1)

The signals for the external microphones yE,1 and yE,2 are defined similarly.

Using the short-time Fourier transform (STFT), the frequency domain signal YL,m[k, l]

is obtained as

YL,m[k, l] =

LFFT−1∑
t=0

yL,m[l · LR + t]w[t] e−j2πkt/LFFT , (2.2)

where k is the frequency bin index, l the frame index, LFFT the frame length (here

equal to the fast Fourier transform (FFT) length), LR the hop size, and j the imag-

inary unit (j2 = −1). The samples in each frame are weighted with the window

function w[t]. The frequency domain signals for the external microphones YE,1[k, l]

and YE,2[k, l] are also obtained using (2.2) and are denoted with the index E. In the

following, k and l are neglected for a simpler representation.

The frequency domain signals of all local microphones are stacked into one vector y

y = [YL,1, ..., YL,M ]T (2.3)

and the extended vector ¯̄y is defined as
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¯̄y = [yT , YE,1, YE,2]
T . (2.4)

For the (extended) speech and noise the vectors x and n (¯̄x and ¯̄n respectively)

similar definitions are used. Here, (·)T denotes the transpose operator and in the

following (·)H is used for the Hermitian operator.

Using (2.2) and the property that the speech vector x corresponds to the clean

speech signal S multiplied by the ATFs (of the source to each microphone of the

local array) which are stacked in the vector a (similar to (2.3)), the signal model is

given as

y = x + n

= aS + n .
(2.5)

The multiplication aS corresponds to the convolution of the RIR with the speech

signal s[t] in the time domain.

The ATF vector, which is in general not known and difficult to estimate, can be

replaced with the RTF vector h by relating a to a reference microphone, which can

be chosen freely without loss of generality, i.e.

h =
a

eTa
, (2.6)

with the selection vector e being a M×1-dimensional column vector which contains

all zeros except for the entry corresponding to the reference microphone. With Xref

being the speech signal in the reference microphone, the speech component x in

(2.5) is given by

x = hXref . (2.7)

Using the signal model in (2.5) and the assumption of statistical independence of x

and n, the covariance matrix of the noisy signal can be written as the sum of the

covariance matrices of speech and noise, i.e.

Ry = E{yyH}

= E{xxH}+ E{nnH}

= Rx + Rn ,

(2.8)

where E{·} denotes the expectation operator, for which the cross terms E{xnH} and

E{nxH} fade due to the independence of x and n. The covariance matrices extended

Bachelor Thesis Wiebke Middelberg 5



2 Signal Model and Notation

with two external microphones are given by ¯̄Ry, ¯̄Rx and ¯̄Rn, respectively, and are

defined similarly with the extended signal vectors. The dimensions of the extended

covariance matrices are therefore (M+2)×(M+2) instead of M×M . If only one ex-

ternal microphone is available (as in the original RTF estimator reviewed in Section

4), only one over-bar is used, i.e. R̄y, R̄x and R̄n.

The output signal Z of the input signal y, filtered with the filter vector w ∈ CM , is

defined as the sum of all filtered signals of the local microphones, that is

Z = wHy . (2.9)

In the next section, the MVDR beamformer is briefly reviewed, which yields a filter

vector that depends on the noise covariance matrix and the RTF vector.

As an objective measure for noise reduction, the SNR improvement ∆SNR, i.e.

∆SNR = SNRout − SNRin , (2.10)

is considered, where SNRin is the input SNR in the reference microphone, which is

given by

SNRin =
eTRxe

eTRne
. (2.11)

The output SNR SNRout, which depends on the filter vector is given by

SNRout =
wHRxw

wHRnw
. (2.12)

Another measure used in this thesis is speech distortion SD, which is the ratio of

the speech power spectral density (PSD) φx in the reference microphone and the

speech PSD , wHRxw, in the output signal, i.e.

SD =
φx

wHRxw
. (2.13)

6 Wiebke Middelberg Bachelor Thesis



3 MVDR Beamforming

The minimum variance distortionless response (MVDR) beamformer aims to mini-

mize the output noise PSD, while preserving the speech component in the reference

microphone. It must therefore be ”steered” correctly towards the desired source,

which can be done either by means of the ATF vector or with the RTF vector,

which is easier to estimate. Therefore, in the following the RTF-steered MVDR

beamformer is considered.

Mathematically, the MVDR beamformer is formulated as the constrained optimiza-

tion problem [5]

min
w

wHRnw , s.t. wHh = 1 . (3.1)

The constraint ensures the preservation of the desired source’s signal in the reference

microphone and the cost function itself is the residual noise PSD, which is to be

minimized with respect to w.

To derive the solution (as in [2, 13]) for the complex valued filter vector w, the

method of Lagrangian multipliers is used. The Lagrangian function then reads

L(w) = wHRnw + λ(wHh− 1) , (3.2)

where λ is the Lagrangian multiplier. According to the rules for vector derivation

(for proofs see [2])

J = vHu,
dJ

dv
= u (3.3)

and

J = vHuuHv,
dJ

dv
= 2uuHv , (3.4)

where u and v are defined as complex valued vectors and J is a scalar, taking the

derivative of L(w) with respect to w gives

dL(w)

dw
= 2Rnw + λh . (3.5)

To find the stationary point, (3.5) is set equal to the M ×1 zero vector 0M×1, which

yields

2Rnw + λh = 0M×1 . (3.6)
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Rearranging (3.6) to w gives

w = −1

2
λR−1

n h , (3.7)

with (·)−1 denoting the inverse operator for matrices. Substituting (3.7) into the

constraint in (3.1) gives

(−1

2
λR−1

n h)Hh = 1 . (3.8)

From (3.8), the Lagrangian multiplier

λ = −2
1

hHR−1
n h

(3.9)

is obtained. Re-substituting (3.9) into (3.7) then yields the solution for the filter

vector

w =
R−1

n h

hHR−1
n h

. (3.10)

To use this filter in practice, an estimate of the noise covariance matrix Rn and

the RTF vector h is needed. Former can be obtained in noise-only frames, which

requires the availability of a voice activity detection (VAD), such as the speech pres-

ence probability (SPP) estimator in [14].

For the RTF vector estimation, several approaches exist that either assume a fixed

direction of the desired source (fixed beamforming) or adaptively estimate the RTF

vector. In the next section, an adaptive RTF vector estimator is reviewed that as-

sumes the availability of an external microphone and a diffuse noise field.

8 Wiebke Middelberg Bachelor Thesis



4 RTF Estimation Exploiting Spatial Coherence

The RTF estimation using the spatial coherence (SC) method (in [8, 9]) requires an

external microphone to guide the local array’s RTF estimate. In this section, this

estimator is presented for the case that only one external microphone is available.

The extended covariance matrices therefore have the dimensions (M+1)×(M+1).

The assumption under which this estimator was proposed are a diffuse noise field

and a sufficiently large distance between the local array and the external micro-

phone. The coherence of diffuse noise between two microphones can be modeled

with the normalized Γ-function [15]

Γ(ν, d) = sinc

(
2πνd

c

)
, (4.1)

which is a function of the frequency ν and the distance d between two microphones.

c denotes the speed of sound.

In Fig. 4.1, the Γ-function is shown as a function of frequency for three different

distances. It is clearly visible that for larger spacing between microphones, the

coherence is lower, especially at high frequencies.

Fig. 4.1: Γ-function for the distances d = {0.05, 0.2, 1} m in a frequency range of
0-8 kHz.

The last column of the extended noisy covariance matrix is simply the correlation

between L and E, which can be written as

E{yY ∗
E} = E{(x + n)(X∗

E +N∗
E)}

= E{xX∗
E}+ E{nN∗

E} ,
(4.2)
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using the signal model in (2.5) and the assumption of statistical independence of

noise and speech. Now assuming sufficient distance between L and E, the correlation

of the noise signals becomes negligibly small and is thus assumed to be zero, i.e.

E{nN∗
E} = 0M×1 , (4.3)

according to the noise model in (4.1). Therefore, the extended noise covariance

matrix can be written as

R̄n =

[
Rn 0M×1

0TM×1 φn

]
. (4.4)

The last element of the last column is the noise PSD φn, which is the same in all

microphones in a homogeneous diffuse noise field.

With (2.8) also holding for the extended covariance matrices and (4.4), the first M

entries of the last column of R̄y only consist of the speech correlation of the local

array and the external microphone, that is

[IM×M ,0M×1] R̄yeE = E{xX∗
E} . (4.5)

eE is a selection vector corresponding to the external microphone, i.e. eE = [0TM×1, 1]T ,

and IM×M denotes the M×M identity matrix. Dividing this column by the entry

corresponding to the reference microphone, subsequently gives an RTF vector esti-

mate

ĥ = [IM×M ,0M×1]
R̄yeE

ēT R̄yeE

=
E{xX∗

E}
E{X1X∗

E}
.

(4.6)

Estimates are denoted by (̂·) throughout this thesis. In (4.6), the RTF vector is esti-

mated using the first microphone as the reference, and thus, the extended selection

vector ē having a 1 as its first entry, that is ē = [1,0TM×1]
T .

10 Wiebke Middelberg Bachelor Thesis



5 Proposed Optimization Problems

In the following, an extension of the RTF estimator described in Section 4 is con-

sidered. Instead of using only one external microphone, a second one is used, which

consequently yields a second RTF vector estimate for the local array. The problem

arising from the availability of two estimates is in deciding which one to use or how

to best combine them. This is especially relevant if one estimate is much less accu-

rate than the other.

In this section, two optimization problems are proposed which aim to optimally

combine the two RTF vector estimates ĥ1 and ĥ2 by means of a linear combination,

i.e.

ĥ = αĥ1 + (1− α)ĥ2 , (5.1)

with the weight α. Equivalently, in terms of the matrix Ĥ = [ĥ1, ĥ2] containing

the RTF vector estimates and the vector α = [α, 1− α]T = [α1, α2]
T containing the

weights, (5.1) can be written as

ĥ = Ĥα , (5.2)

where the sum of all elements in α is constrained to equal 1, that is

1T2×1α = 1 . (5.3)

The idea of combining several RTF vectors (or respectively steering vectors) is mo-

tivated by the work presented in [16], where a linear combination of steering vectors

(in a Bayesian framework) for MVDR beamforming was proposed. In the following,

for the mathematical representation, only the matrix notation in (5.2) is used. The

constraint in (5.3) is in either optimization problem not directly taken into account,

but rather applied subsequently as a normalization.

5.1 Orthogonal Projection

Commonly, a measure for the accuracy of an RTF vector estimate is the so-called

Hermitian angle Θ [17], which is the angle between the true RTF vector and its esti-

mate. It follows that in general a smaller Hermitian angle leads to a more accurate

(and subsequently an objectively better) RTF vector estimate. As a consequence

of this, one approach to obtain an optimal combination of two estimates is to find

the vector that minimizes Θ. However, the Hermitian angle is difficult to optimize,
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since it is given by

Θ = arccos

(
|hHtrueĥ|

‖htrue‖2‖ĥ‖2

)
, (5.4)

where |·| denotes the absolute value and ‖·‖2 is the 2-norm of a vector, with ‖·‖2 =√
(·)H(·).

This problem can, in fact, be solved as a generalized Rayleigh quotient (see Appendix

A). However, to obtain a compact solution, orthogonal projection is considered

(equivalence of the solutions is shown in Appendix A): The normalized orthogonal

projection of the true RTF vector onto the plane spanned by the two estimates

(referred to as the estimation plane) yields the vector with the smallest angle to

the projected true RTF vector. An example for the orthogonal projection in the

real-valued 3D-space is depicted in Fig. 5.1. The notation h(n) refers to the n-th

element of the vector h. The true RTF vector (red) is projected on the blue plane

spanned by ĥ1 and ĥ2 (dark blue). The projection is represented by the green line

in the plane and the rejection (error vector) is the line orthogonal to the plane.

When the normalization constraint is fulfilled, the projection ends on the solution

subspace, i.e. the blue line which connects the two estimates.

Fig. 5.1: Visualization of orthogonal projection (green) of htrue (red) on the plane
spanned by the two RTF vector estimates (blue) in a real-valued 3D-space.
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The weighting of the vectors (here ĥ1 and ĥ2) spanning the estimation plane for the

orthogonal projection can be written as

vortho = (ĤHĤ)−1ĤHhtrue , (5.5)

according to [18]. The solution vortho represents the actual orthogonal projection.

The resulting RTF vector, however, is in general not normalized to the entry cor-

responding to the reference microphone. Dividing vortho by the constraint in (5.3)

then yields

αortho =
vortho

1T2×1vortho

(5.6)

as the normalized result.

5.2 Maximization of Output SNR

The maximization of the output SNR is motivated by one of the overall goals in

speech enhancement: Reducing as much noise as possible while preserving the de-

sired speech signal without distortion.

For the optimization, the solution of the MVDR beamformer in (3.10) is considered

as the filter and substituted into the output SNR defined in (2.12), which yields

SNRout =
hHR−1

n RxR
−1
n h

hHR−1
n h

. (5.7)

To this end, the property of Rn being Hermitian is used, i.e. Rn = RH
n and thus

(R−1
n )H = (RH

n )−1 = R−1
n . Using the definition of the RTF vector estimate ĥ in

(5.2), (5.7) can be written as

SNRout =
αHĤHR−1

n RxR
−1
n Ĥα

αHĤHR−1
n Ĥα

. (5.8)

With the condensed matrices

A = ĤHR−1
n RxR

−1
n Ĥ (5.9)

and

B = ĤHR−1
n Ĥ , (5.10)

the output SNR can be written as
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SNRout =
αHAα

αHBα
, (5.11)

from which it becomes evident that the problem has the form of the generalized

Rayleigh quotient of the matrices A and B. The solution for stationary points

of (5.11) is given by the generalized eigenvalue decomposition (GEVD) of A and

B, that is the EVD of B−1A [19]. A maximum then corresponds to the largest

eigenvalue, thus, the solution for the weighting vector α is given by the principle

eigenvector vmax which corresponds to the principle eigenvalue, that is

vmax = P{B−1A}, (5.12)

where P{·} is the principle eigenvector operator, which obtains the principle eigen-

vector of an EVD.

There are now three things to note about this solution: Firstly, it is not normalized,

which means that the entry of the RTF vector in (5.2), corresponding to the refer-

ence microphone, is not necessarily equal to 1, such that the constraint in (5.3) is

not fulfilled. Here, it is worth mentioning that for this specific constraint it does not

matter if the optimization problem is solved as a constrained one or solved uncon-

strained (as done above) and then normalized afterwards. This can easily be argued,

since the constraint would only be a division of numerator and denominator in the

cost function with a constant, which would therefore cancel out, i.e. the problem is

invariant to scaling. To ensure this normalization, the obtained solution is divided

by the sum of its elements, i.e.

αoptSNR =
vmax

1T2×1vmax

. (5.13)

Secondly, the results are not constrained to be real-valued. Of course, the solutions

for a combination of vector estimates are not explicitly required to be real-valued and

can even be better if complex solutions are permitted, since complex-valued solutions

introduce an additional degree of freedom. Nevertheless, if a real-valued solution

is desired (which is not considered in this thesis), it must hold that αH = αT .

Considering now the numerator and denominator of (5.11) separately, the numerator

reads

αHAα = αTAα

= αT<{A}α + jαT={A}α ,
(5.14)
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and similarly for the denominator. <{·} and ={·} are the real- and imaginary-

part operator, respectively. Since the matrices A and B are Hermitian, their real

part is symmetric (<{A}T = <{A}) and their imaginary part is anti-symmetric

(={A}T = −={A}). These properties are used in the following.

The expression in (5.14) is a scalar and must therefore be equal to its transpose.

Applying the transpose operator, (5.14) yields

αTAα =
(
αTAα

)T
=
(
αT<{A}α + jαT={A}α

)T
=
(
αT<{A}α

)T
+
(
jαT={A}α

)T
= αT<{A}Tα + jαT={A}Tα

= αT<{A}α− jαT={A}α ,

(5.15)

which is only equal to (5.14) if jαT={A}α = −jαT={A}α = 0. Therefore, only

the real parts of A and B must be considered for the real-valued solution of α,

which is given by the principle eigenvector of the EVD of <{B}−1<{A}.

Thirdly, the matrix A contains Rx. Therefore, information that is generally not

given is still required to compute the solution. In addition to using the true Rx, the

biased output SNR SNRbias
out can also be considered, i.e. Ry is used instead of Rx.

Maximizing SNRbias
out yields, in principle, the same result as the maximization of the

output SNR, since

SNRbias
out =

wHRyw

wHRnw

=
wH(Rx + Rn)w

wHRnw

= SNRout + 1 ,

(5.16)

where the bias does not influence the stationary points, i.e. the optimum in the

weighting vector α. This approach has also been proposed in [20].
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In this section, the combinations of RTF vector estimates introduced in Section 5

are evaluated objectively in terms of noise reduction and speech distortion, using

∆SNR in (2.10), or here only in terms of SNRout in (2.12), and SD in (2.13), re-

spectively. Furthermore, the results for the true RTF vector htrue obtained from

the RIR, each RTF vector estimate alone (i.e. the vectors obtained from E1 and E2

respectively), and the averaged RTF vector (i.e. both estimates are weighted with

0.5) are considered.

All in all, the RTF vector estimates, referred to as noted in Table 6.1, are eval-

uated. The respective weighting factors α1 and α2 corresponding to ĥ1 and ĥ2

(eventually stacked in the vector α), are stated additionally.

Table 6.1: Overview of used RTF estimates, including the corresponding val-
ues/equations for α1, α2, or α.

Notation Method α1, α2, α

htrue True RTF vector obtained from the RIR /

ĥ1 RTF vector estimate obtained from E1 α1 = 1, α2 = 0

ĥ2 RTF vector estimate obtained from E2 α1 = 0, α2 = 1

ĥAV Averaged vector of ĥ1 and ĥ2 α1 = α2 = 0.5

ĥortho Orthogonal projection of htrue on estimation plane From (5.6)

ĥoptSNR Maximized SNRout using true Rx in (5.7) From (5.13)

ĥbias Maximized biased SNRout using Ry in (5.16) From (5.13)

6.1 Set-up and Configurations

The recordings for the evaluation with real-world signals were done in the Variable

Acoustics Laboratory at the Carl von Ossietzky University of Oldenburg at a rever-

beration time T60 of about 300 ms. The noise signal was created by four loudspeakers

facing the corners of the room and playing back different versions of multi-talker

noise.

The used local microphone array L consisted of behind-the-ear hearing aid devices

with two microphones (with a distance of 7 mm) at each side of the head mounted

to a KEMAR (G.R.A.S.) dummy head. The external microphones (six in total)

were placed in ”look direction” of the dummy head with a distance d ranging ap-

proximately from 0.7 m to 1.9 m. For the desired signal, a loudspeaker playing

back a speech signal, uttered by an English speaking male, was placed about 15 cm

away from the external microphone furthest away from the dummy head. In the
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following, the first four channels (referred to as Ch. 1-4 ) are the microphones of

the hearing aid devices, while Ch. 5-10 are the external microphones, where Ch. 5

is the microphone furthest away from the dummy head and each microphone up to

Ch. 10 is located closer to it, as depicted in Fig. 6.1.

Background noise and desired signal were recorded separately and mixed afterwards.

The original recordings were sampled at 48 kHz, however, for the processing the sig-

nals were down-sampled to 16 kHz.

Ch. 5 . . . Ch. 10

Ch. 1-4

Fig. 6.1: Schematic set-up with dummy head (equipped with a binaural hearing aid
device) and six available external microphones (indicated in red).

In the following, the different proposed RTF estimation methods are evaluated with

regard to different aspects: The first experiment (Subsection 6.3) deals with the

influence of the distance between the local array and the external microphones. To

this end, the input SNRs in the two external microphones which were used, were

leveled beforehand, adjusting the speech power and keeping the noise signal con-

stant. In the second experiment (Subsection 6.4), the influence of the input SNR is

investigated. There, the distance between the external microphones and the dummy

head was held constant and the speech signals were scaled, so that different input

SNRs were obtained in the two external microphones. In a last experiment (Sub-

section 6.5), a realistic scenario without artificial leveling is considered.

Please note that the artificial levelling only affects the external microphones and

not the local microphone array. In all experiments, the input SNR in the reference

microphone, here the first on the left side of the head (Ch. 1 ), was set to 0 dB and

the other signals of Ch. 2-4 were scaled accordingly. From this it follows that the

true RTF vector is the same for all considered scenarios. The corresponding scores

are therefore also constant, but they are still given as a reference value for ”ideal”

performance in all representations.

6.2 Implementation and Parameters

As the parameters of the weighted overlap add (WOLA) framework an FFT size

LFFT of 1024 samples per frame and an overlap of 50 %, that is a hop size LR of
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512 samples, were chosen. As the window function for both, analysis and synthesis,

a square-root-Hann window was used.

The whole signal was analyzed ”batch”, i.e. with oracle knowledge about speech and

noise separately and with the complete signal being available prior to the process-

ing. In practice, this means that the (extended) covariance matrices are calculated

as the mean over all frames, from which it follows that there is only one RTF vector

estimate (per method) over the whole signal and subsequently also only one filter

vector. Speech presence was determined via an ideal VAD per frame. The noisy and

speech covariance matrices, ¯̄Ry and ¯̄Rx (containing Ry and Rx, respectively), were

calculated in frames where speech was present, while the noise covariance matrix,
¯̄Rn (containing Rn), was calculated over all frames.

6.3 Experiment 1 - Distance Dependence

In this experiment, the input SNR in E1 and E2 was held fixed at 0 dB. To examine

the influence of the distance of the external microphones to the local array, one

microphone (E1) was set to a fixed position, once Ch. 5 and once Ch. 10 are used

as E1, while E2 is varied over all other available channels.

In the following the results are presented. In Fig. 6.2 - 6.4, the results for for Ch. 5

being set as E1 are shown, while the results for Ch. 10 being set as E1 are shown

in Fig. 6.5 - 6.7. For both conditions, the three graphs show the real part of the

weighting factor α (i.e. the first entry of the vector α, favoring E1 if equal to 1 and

favoring E2 if equal to 0), the SD, as well as the SNRout scores. All scores are either

averaged over frequency (α and SD) or computed via the shadow-filtered time signal

of speech and noise signal (SNRout), where shadow-filtering means applying the filter

vector to each signal component separately. For the weighting factor α, additionally

the standard deviation is represented by error bars. The imaginary part of α is not

taken into consideration, since it weights both, E1 and E2 with the same absolute

value but opposite sign and therefore only affects the phase.

For clarity, the performance in terms of SD is considered better, when lower scores

are obtained, while higher scores in SNRout are desired.

Fig. 6.2 depicts the averaged real part of the weighting factor α for the case that Ch.

5 is fixed as E1 while E2 is varied (Ch. 6 - Ch. 10 ). It can be seen that for all three

methods (ĥortho, ĥoptSNR, and ĥbias), an almost constant value of <{α} is obtained,

which lies around 0.5. This result can be explained, when considering that for all
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available channels (with a minimal distance of 70 cm to the local array) the spacial

coherence assumption from Section 4 is mostly fulfilled. The standard deviation,

however, seems to decrease on average (especially for the orthogonal projection)

over an increasing distance between E1 and E2.

Fig. 6.2: Average of real part of the weighting factor α (i.e. weighting E1) obtained
by ĥortho, ĥoptSNR and ĥbias over different E2 with Ch. 5 set as E1, including
the standard deviation as error bars and orientation lines at <{α}=0 and
<{α}=1.

The weighting factor from Fig. 6.2 alone does not fully describe the performance of

all channels, even though they are weighted almost equally for all channels for E2.

For further analysis of performance, SD and SNRout are considered (Fig. 6.3 and

Fig. 6.4). As references, the constant performance of E1 and the true RTF vector

htrue, respectively, is visualized as lines.

In Fig. 6.3, it can be seen that the true RTF vector yields by far the lowest SD scores

(approximately 0.5 dB). E1 alone shows in general the highest speech distortion.

This result seems unexpected, since the microphone furthest away from L is expected

to yield the best results, because a larger distance assures more safely that the SC

assumption is fulfilled. However, even this ”high” SD score (about 2.7 dB) is barely

noticeable in informal listening tests.

The weighting approaches (ĥAV, ĥortho, ĥoptSNR, ĥbias) all yield lower SD scores

than either external microphone alone (between 1.5 and 2 dB). The results show

a rather constant performance, even with varying performance of E2. The biased

optimization of the output SNR has slightly higher SD scores than the orthogonal

projection and the oracle optimization of the output SNR.
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Fig. 6.3: SD in dB for all RTF vector estimates in Table 6.1 over different E2 with
Ch. 5 set as E1.

Fig. 6.4: SNRout in dB for all RTF vector estimates in Table 6.1 over different E2

with Ch. 5 set as E1.

Considering SNRout in Fig. 6.4, it can clearly be seen that especially the SNR-based

optimal solutions (ĥoptSNR and ĥbias) exhibit a good performance. Both yield scores

of around 9 - 9.2 dB which is about 0.5 dB better than the best external microphone

(E1) alone. The orthogonal projection ĥortho does not perform as well as the two

other optimal solutions. When Ch.6 - Ch. 8 are used as E2, the SNRout scores of

ĥortho are in the range of E1 alone or just slightly better. For Ch. 9 and Ch. 10,
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the performance of ĥortho gets similar to those of ĥoptSNR and ĥbias. The averaging

approach ĥAV always performs worse than the best external microphone alone and

sometimes even worse than both (when the performances of E1 and E2 are similar).

This is a first indicator that the averaging approach is not suitable and could be

dismissed due to its poor performance.

In the following, a second scenario is considered: E1 is set to Ch. 10 and Ch.

5 - Ch. 9 are varied as E2. The aim of this second step is to observe how the op-

timal solutions behave if one of the ”worst performing” channels is combined with

all others (”worst” in terms of SNRout as shown in Fig. 6.4).

In Fig. 6.5, the real part of α is depicted over the channels for E2. Similar to the

results in Fig. 6.2, the mean value for all weighting methods lies around 0.5 for all

considered configurations. Another similarity is that the standard deviation is the

highest if the channel next to the fixed one (here Ch. 9 ) is used. This implies that

the weighting is less distinct and that large weighting factors are required to obtain

for example phase corrections.

Fig. 6.5: Average of real part of the weighting factor α (i.e. weighting E1) obtained
by ĥortho, ĥoptSNR and ĥbias over different E2 with Ch. 10 set as E1, includ-
ing the standard deviation as error bars and orientation lines at <{α}=0
and <{α}=1.

The resulting SD scores are depicted in Fig. 6.6. It can be seen that for most config-

urations the score is lower than both external microphones alone for all combination

approaches (except for the averaging approach that once has a slightly higher score

than E1). Again, the results lie in a range of 1.5 - 2 dB.
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The SNRout scores shown in Fig. 6.7 exhibit that, again, the averaging approach

yields the worst performance, i.e. it always yields lower output SNRs than the better

external microphone alone. The three other weighting approaches show much better

results, even though for one configuration ĥoptSNR and ĥbias perform slightly worse

than the better external microphone. The orthogonal projection shows a similar

performance.

Fig. 6.6: SD in dB for all RTF vector estimates in Table 6.1 over different E2 with
Ch. 10 set as E1.

Fig. 6.7: SNRout in dB for all RTF vector estimates in Table 6.1 over different E2

with Ch. 10 set as E1.
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From this experiment, it can be concluded that there are distance dependencies for

each external microphone alone, but that the optimized solution is rarely affected

by this as long as there is one good estimate available. When both estimates are

obtained by microphones that are close to L (i.e. the case where Ch. 9 and Ch.

10 are used), the results obtained by all weighting approaches get slightly worse.

In general, it can be said that as long as the SC assumption is fulfilled for at least

one microphone (here this was the case for all available external microphones), all

weighting approaches, except for the simple averaging (ĥAV), yield better results

than the best external microphone alone. Furthermore, ĥoptSNR and ĥbias always

perform very similarly, which supports the theoretical finding that these two solu-

tions are equivalent.

6.4 Experiment 2 - Input SNR Dependence

In this experiment, the influence of the input SNR in the external microphones is

investigated. To this end, Ch. 7 and Ch. 8 are chosen as E1 and E2 respectively,

since they performed most uniformly in terms of SD and SNRout at an identical in-

put SNR of 0 dB, as shown in Subsection 6.3. A distance dependence of the results

can therefore be neglected in the following.

The input SNR in E1 is set to 0 dB, while it is varied from -30 to +30 dB in steps

of 3 dB in E2.

In Fig. 6.8, the dependence of the real part of the weighting factor α and its

standard deviation are depicted. As expected, for lower input SNRs in E2 than in

E1, latter is weighted stronger, i.e. <{α} goes to 1. The same behaviors can be

observed when the input SNR in E2 increases. At approximately 15 dB input SNR

in E2, the weighting favors this microphone almost completely, i.e. <{α} goes to

0. In the center of the graph, where the input SNRs in both channels only differ

by some dB, the weighting is almost equal, i.e. in the range of 0.5. Interestingly,

for input SNRs of around -5 dB, the standard deviation for the output SNR-based

approaches becomes fairly large while strongly decreasing for high input SNRs in E2.

The standard deviation for the orthogonal projection exhibits an opposite behavior:

It increases with increasing input SNR in E2. An explanation for these observations

can not easily be given.
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Fig. 6.8: Average of real part of the weighting factor α (i.e. weighting E1) obtained
by ĥortho, ĥoptSNR and ĥbias over different input SNRs in E2 with a fixed
input SNR of 0 dB in E1, including the standard deviation as error bars
and orientation lines at <{α}=0 and <{α}=1.

Fig. 6.9: SD in dB for all RTF vector estimates in Table 6.1 over different input
SNRs in E2 with a fixed input SNR of 0 dB in E1.
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The SD scores are shown in Fig. 6.9. It is clearly visible that at low input SNRs

the performance of E2 strongly diminishes (SD ≈ 6 dB at SNRin = -30 dB). The SD

scores then improve to around 3 dB (i.e. the same as for E1) at about 0 dB input

SNR, until E2 outperforms E1 at high input SNRs. The optimized solutions (ĥortho,

ĥoptSNR and ĥbias) always perform better than (or the same as) the best external

microphone alone, although at high input SNRs, the gain is negligibly small. In that

region, the averaging approach performs slightly worse than the best microphone

alone.

The SNRout scores in Fig. 6.10 show similar tendencies as for SD above. E2 per-

forms much worse than E1 at low input SNRs, but does not perform much better at

high ones. The averaging approach always yields lower scores than E1 alone and is

therefore fairly sub-optimal. All approaches based on optimization yield comparable

results that are slightly better than the best external microphone alone. However,

the gain only measures around 0.5 dB and is thus not significant.

Fig. 6.10: SNRout in dB for all RTF vector estimates in Table 6.1 over different input
SNRs in E2 with a fixed input SNR of 0 dB in E1.

From this experiment, it can be concluded that the input SNR in the external

microphones has a much stronger influence on the weighting than the distance of

the external microphones to the local array. Furthermore, it can be said that all

three optimization problems (ĥortho, ĥoptSNR and ĥbias) yield reliable results if one

good estimate is available, which is highly interesting in terms of applicability in
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practice, since the biased output SNR optimization is in principle also possible in

blind implementations as long as a VAD is available. Moreover, in this experiment it

was shown that the averaging approach, again, does not yield good results, especially

if one estimate is significantly worse than the other.

6.5 Experiment 3 - Realistic Data

The last experiment, presented in this subsection, is performed similarly to the ex-

periment in Subsection 6.3, but without artificial levelling, i.e. realistic signals are

used. Again, E1 is set to Ch. 10 and E2 is varied over all other available chan-

nels. In addition to the plots of <{α}, SD, and SNRout, exemplary plots of the cost

functions for the Hermitian angle and the output SNR are shown to visualize the

respective positions of the different optimal solutions.

In Table 6.2, the input SNR and distance to L as well as the SD and SNRout scores

are given for all external microphones.

Intuitively, it is expected that E2 is always favored over E1 in terms of weighting,

since the in- and output values favor Ch. 5 - 9 over Ch. 10. Furthermore, the

combination of vector estimates is expected to perform better when one external

microphone is especially good, i.e. Ch. 5 is used as E2.

Table 6.2: Specifications of input parameters and performance for each available
external microphone.

Ch. No. d / cm SNRin / dB SD / dB SNRout / dB

5 190.6 18.3 1.2 8.9
6 166.5 10.4 1.4 8.9
7 142.4 7.3 2.0 8.6
8 118.3 4.6 2.2 8.7
9 94.2 3.4 1.6 8.2
10 70.1 2.6 1.9 7.9

The expected behavior of <{α} can be seen in Fig. 6.11. For channels which yield

much better results than Ch. 10, i.e. when Ch. 5 is used as E2, the weighting factor

takes values of around 0.15, indicating a clear weighting towards E2. For channels

with similar performances to Ch. 10, especially Ch. 9, the weighting approaches

0.5, which means that the channels are weighted equally.

The results for SD and SNRout are depicted in Fig. 6.12 and 6.13. As expected, the

combinations for Ch. 5 - 7 yield the best results in terms of noise reduction and
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speech distortion. In terms of SNRout, the averaging approach yields, as in exper-

iments 1 and 2, results below the better external microphone alone. Surprisingly,

this is also the case for the output SNR-based optimal weighting factors (ĥoptSNR

and ĥbias) for the configuration where Ch. 8 is used as E2. However, this is the only

outlier throughout all conducted experiments. The SD scores show that all combi-

nations yield comparable or even better results than the best external microphone

alone (mostly in a range of 1 to 1.5 dB). Among the combinations, the orthogo-

nal projection performs best in terms of SD, while the output SNR-based solutions

perform best in terms of noise reduction (despite the single outlier).

Fig. 6.11: Average of real part of the weighting factor α (i.e. weighting E1) obtained
by ĥortho, ĥoptSNR and ĥbias over different E2 with Ch. 10 set as E1,
including the standard deviation as error bars and orientation lines at
<{α}=0 and <{α}=1.

In the following, exemplary cost functions for the output SNR and the Hermitian

angle are depicted (Fig. 6.14 and 6.15) at a frequency of 500 Hz, for the configuration

where E1 is set as Ch. 10 and E2 is set as Ch. 5. These curves are meant to visualize

the positions of the respective optimal solutions of the two cost functions which are

to be optimized. It can clearly be seen that for ĥoptSNR and ĥbias the solutions for α

lie very close to each other and are both located at the maximum of the cost function

of the SNRout, while the weighting factor for the orthogonal projection differs from

these solutions and does not lie directly at the maximum of this curve. In Fig. 6.15,

it also becomes clear that the minimum of the Hermitian angle is not identical to

the maximum of the output SNR and that the orthogonal projection, indeed, yields

this minimum.
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Fig. 6.12: SD in dB for all RTF vector estimates in Table 6.1 over different E2 with
Ch. 10 set as E1.

Fig. 6.13: SNRout in dB for all RTF vector estimates in Table 6.1 over different E2

with Ch. 10 set as E1.

It is to be noticed that in this specific scenario, the weighting does not exhibit the

expected behavior: Against the expectations, E1 is weighted stronger than E2, even

though Ch. 5 is used for the second external microphone and is therefore expected

to perform better. These curves, however, are merely “snapshots” and are not rep-

resentative for all frequencies.
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Fig. 6.14: Exemplary cost function of SNRout at 500 Hz including the weighting
factors for ĥortho, ĥoptSNR and ĥbias, with Ch. 10 as E1 and Ch. 5 as E2.

Fig. 6.15: Exemplary cost function of the Hermitian angle at 500 Hz including the
weighting factors for ĥortho, ĥoptSNR and ĥbias, with Ch. 10 as E1 and Ch.
5 as E2.
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Finally, the conclusion can be drawn that the input SNR has a stronger influence on

the weighting of two RTF vector estimates obtained by two external microphones

using the SC method. The obtained results from ĥortho, ĥoptSNR and ĥbias all outper-

form the simple averaging approach in almost all considered scenarios. These three

optimal solutions all yield comparable results. Especially ĥoptSNR and ĥbias exhibit

quite similar performances which implies that their equivalence found in theory also

applies in practice. This finding makes the biased optimization promising, since it

can also be used in blind scenarios (i.e. without knowledge about Rx). It could

also be shown in the conducted experiments that the orthogonal projection and the

output SNR-based approaches do not yield the same, but fairly similar results, even

though they are optimizing different cost functions. Lastly, it can be said that all

optimal solutions perform better than (or at least as well as) the best available exter-

nal microphone in all considered configurations. Therefore, the proposed solutions

are more robust than only using one (possibly sub-optimal) external microphone.
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7 Conclusion and Outlook

To summarize the work done in this thesis, an ASN with a fusion center, i.e. a local

microphone array, and two external nodes, each equipped with one microphone, is

considered. Assuming uncorrelated noise, e.g. a diffuse noise filed, and a single

desired source, the SC method yields two RTF vector estimates for the local array.

To combine these two estimates, two approaches were proposed, namely the orthog-

onal projection of the true RTF vector on the plane spanned by the two estimates,

which is a purely theoretical approach, and maximization of the output SNR. For

the latter, it has been shown that either the output SNR or the biased output SNR

can be maximized, since both yield, in theory, the same maximum. This theoretical

equivalence is supported by the experimental results, where is was shown that both

yield very similar results for all conditions. The fact that instead of the (unknown)

speech covariance matrix also the noisy covariance matrix can be used, makes this

approach usable in practice.

In the experiments for the dependence of distance and input SNR in the exter-

nal microphones, it was shown that the input SNR plays a much bigger role for the

weighting of the two external microphones than the distance of E1 and E2 to the

local array. This can be concluded since the real part of weighting factor α is almost

constant at a value of about 0.5, i.e. identical weighting, when the input SNR in the

external microphones is fixed and the distance is varied. For different input SNRs,

however, a strong dependence becomes observable: The external microphone with

the higher input SNR is weighted significantly more than the one with the lower

input SNR, especially for large differences in input SNR, while yielding a weighting

factor of around 0.5 if the input SNR is set to similar values in both external mi-

crophones.

The experimental results, furthermore, showed that a simple averaging approach

yields sub-optimal results which are even below the performance of E1 and E2 sep-

arately. It was also shown that the performance of the output SNR-based optimal

solutions and the orthogonal projection yield comparable results, even though they

optimize different cost functions which, in principle, have different positions of their

optima. Finally, both optimization approaches yield better results in terms of noise

reduction and speech distortion than either external microphone alone, in almost

all conditions, even if one of the available external microphones yields significantly

worse performances than the other. This implies robustness of the proposed optimal

solutions.

In conclusion, the output SNR-based solution using the noisy covariance matrix is



7 Conclusion and Outlook

the most promising approach to use in practice, since it does not depend on oracle

knowledge.

The extension of the work done in this thesis which has already been done in [20]

can be seen as an outlook. There, more than two external microphones were used

and the external microphones were also filtered, since the bias in the entry of the

RTF vector estimate corresponding to the respective external microphones can be

neglected in practice [21].

As a practical next step, the RTF estimation method using several external mi-

crophones will be implemented in a real-time framework (as in [12]) for a more

realistic evaluation of the performance.

Furthermore, it is planned to observe the influences of coherent interfering speakers,

since the SC method was originally developed only for diffuse noise, which is in

practice often not the case. The influences of a violated coherence assumption will

be analyzed both analytically and experimentally.
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Appendix

Appendix A

To show that the weighting vector α that minimizes the Hermitian angle in (5.4) is

equal to the orthogonal projection of htrue on the estimation plane, spanned by the

estimates ĥ1 and ĥ2, the argument of the arccos-function (the arccos- function has

its minimum for an argument equal to 1) is considered, which can never exceed 1

according to the Cauchy-Schwarz inequality, i.e

|hHtrueĥ|
‖htrue‖2‖ĥ‖2

6 1 . (A.1)

Hence, the Hermitian angle is minimal if the argument is maximal, which leads to

the maximization problem

max
α

(
|hHtrueĤα|

‖htrue‖2‖Ĥα‖2

)2

, (A.2)

where ĥ is substituted by its definition in (5.2) and the squared argument is maxi-

mized for the sake of simplicity. The cost function c(α) then reads

c(α) =
1

hHtruehtrue

αHĤHhtrueh
H
trueĤα

αHĤHĤα
. (A.3)

The factor 1/(hHtruehtrue) is neglected in the following, since it has no influence on

the position of the maximum. For conciseness, the matrices in numerator and de-

nominator are condensed, such that

A = ĤHhtrueh
H
trueĤ , B = ĤHĤ . (A.4)

The derivative of (A.3) with respect to α is then given by

dc(α)

dα
=

2Aα(αHBα)− 2Bα(αHAα)

(αHBα)2
. (A.5)

For the roots of (A.5), i.e. the solution of the equation when set to zero, the

denominator is irrelevant. Therefore, it must only hold that

2AααHBα = 2BααHAα . (A.6)

Considering the orthogonal projection and its solution for α in (5.5), it can be seen

that this vector solves the equation in (A.6)
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ĤHhtrueh
H
trueĤ(ĤHĤ)−1ĤHhtrueh

H
trueĤ (ĤHĤ)−1ĤHĤ︸ ︷︷ ︸

I

(ĤHĤ)−1ĤHhtrue =

ĤHĤ(ĤHĤ)−1︸ ︷︷ ︸
I

ĤHhtrueh
H
trueĤ(ĤHĤ)−1ĤHhtrueh

H
trueĤ(ĤHĤ)−1ĤHhtrue ,

(A.7)

which then yields

ĤHhtrueh
H
trueĤ(ĤHĤ)−1ĤHhtrueh

H
trueĤ(ĤHĤ)−1ĤHhtrue =

ĤHhtrueh
H
trueĤ(ĤHĤ)−1ĤHhtrueh

H
trueĤ(ĤHĤ)−1ĤHhtrue .

(A.8)

Both sides in (A.8) are obviously the same, which shows that the orthogonal pro-

jection of htrue on the column space of Ĥ also minimizes the Hermitian angle.
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