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MMSE-optimal spectral amplitude estimation given

the STFT-phase
Timo Gerkmann*, Member, IEEE, and Martin Krawczyk

Abstract—In this letter, we derive a minimum mean squared
error (MMSE) optimal estimator for clean speech spectral am-
plitudes, which we apply in single channel speech enhancement.
As opposed to state-of-the-art estimators, the optimal estimator
is derived for a given clean speech spectral phase. We show that
the phase contains additional information that can be exploited
to distinguish outliers in the noise from the target signal. With
the proposed technique, incorporating the phase can potentially
improve the PESQ-MOS by 0.5 in babble noise as compared to
state-of-the-art amplitude estimators. In a blind setup we achieve
a PESQ improvement of around 0.25 in voiced speech.

Index Terms—Speech enhancement, Phase estimation, noise
reduction, signal reconstruction.

I. INTRODUCTION

S
INGLE channel speech enhancement describes the prob-

lem of estimating a clean speech signal from a noisy

recording with only one microphone. Typical applications can

be found in the area of speech communications, such as

hearing aids, telephony and automatic speech recognition in

man-machine interfaces. Research in this area has been going

on for decades – with quite some success. Nowadays, speech

enhancement algorithms are implemented on mobile devices

such as smart phones and hearing aids. As these devices are

often used in noisy environments, recent research addresses

the robustness of the algorithms in nonstationary noise, e.g.

babble, and low signal-to-noise ratios.

For the improvement of noisy speech and the estimation

of parameters required for speech enhancement, in the vast

majority of proposals, the noisy speech signal is transformed

to some spectral domain, as it allows for a better separation

of speech and noise. In this paper we will focus on short time

discrete Fourier transform (STFT)-based speech enhancement.

Already in the early eighties researchers have investigated

in what direction research in speech enhancement can be

expected to be fruitful. For instance, Wang and Lim [1] have

done experiments in which they investigated the importance

of phase estimation in speech enhancement. For this, they

synthesized noisy speech by taking the amplitude and phase

from signals with different signal to noise ratios (SNRs). They

observed that improving the noisy spectral amplitude is more

important for the signal quality than improving the noisy

spectral phase. Following this observation, it was concluded
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that clean speech phase estimation is unimportant in speech

enhancement, and until today most research aims at estimating

the clean speech amplitude only, while keeping the noisy phase

unaltered. Among the most prominent amplitude estimators are

the proposals by Ephraim and Malah. For instance in [2] the

spectral amplitudes are estimated, while in [3] it is argued that

estimating logarithmically compressed amplitudes is perceptu-

ally more meaningful. In [4] a more flexible estimator with a

parameterized compression function is derived that generalizes

the estimators of [3] and [2]. While in [2]–[4] it is assumed

that the speech spectral coefficients are complex Gaussian

distributed, more recent work focuses on deriving Bayesian

estimators for more heavy-tailed distributions [5]–[9]. The

most general estimators have parameters to control both the

degree of heavy-tailedness and the degree of compression [9].

All estimators [2]–[9] have in common that only the speech

spectral amplitude is altered, while the noisy phase is left

unchanged. Also in other speech enhancement techniques,

like sinusoidal modeling, it has been proposed to combine

improved spectral amplitudes with the noisy STFT phase [10].

Despite the general trend of neglecting STFT phase estima-

tion, Paliwal et al. argue that, potentially, the role of the phase

in speech enhancement has been underestimated in the past

[11]. They showed that if the segment overlap and the length

of the Fourier transform are increased, the impact of the clean

speech phase is larger than observed by Wang and Lim [1].

Thus, Paliwal et al. concluded that estimating the clean speech

phase can indeed be beneficial. While they proposed some

methods for speech enhancement that involve a modification

of complex spectral coefficients [11], the direct estimation

of the clean spectral phase is considered a difficult task

and only few proposals exist. For instance, Griffin and Lim

proposed to estimate the spectral phase by iteratively analyzing

and synthesizing the signal starting from only the spectral

amplitudes [12]. However, their approach is computationally

quite demanding and requires knowledge of the clean spectral

amplitudes.

While the noisy phase has been shown to be the optimal

Bayesian estimator if the clean speech phase is uniformly

distributed [2], [6], in [13] we showed that with a given

fundamental frequency it is possible to reconstruct the clean

speech phase both on and between speech spectral harmon-

ics in voiced segments directly in the STFT domain. In

a speech enhancement framework, this reconstructed clean

speech STFT phase increases the Perceptual Evaluation of

Speech Quality (PESQ) mean opinion score (MOS) by up to

0.1 as compared to using the noisy phase [14].

In this letter, we argue that the clean speech phase pro-
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vides additional information that can also be exploited for an

improved estimation of the clean speech spectral amplitudes.

For this, we derive a novel MMSE optimal estimator for the

clean speech spectral amplitude when the spectral phase is

given.

II. SIGNAL MODEL AND NOTATION

We observe noisy speech in the STFT domain, where the

noisy speech Yk(ℓ) is an additive superposition of speech

Sk(ℓ) and noise Nk(ℓ),

Yk(ℓ) = Sk(ℓ) +Nk(ℓ) . (1)

Here, k is the frequency index and ℓ is the segment index. In

the sequel, we will omit the indices k and ℓ for brevity. The

complex spectral coefficients can be written in terms of their

amplitude and phase, denoted as

Y = RejΦY ; S = AejΦS ; N = DejΦN . (2)

Further, we will denote random variables by capital letters,

e.g. S,A,ΦS, while their realizations are denoted by the corre-

sponding lower case letters, e.g. s, a, φS. Estimated quantities

are marked by a hat symbol, e.g. φ̂S is an estimate of φS.

III. AMPLITUDE ESTIMATION GIVEN PHASE

In this section we estimate the clean speech amplitudes

provided that we know the clean speech phase φS, as well as

the clean speech power spectral density (PSD) σ2
S
= E

(
A2

)

and the noise PSD σ2
N
= E

(
D2

)
. Similar to [4], [9] we want

to minimize the mean squared error between the compressed

clean speech amplitudes Aβ and the estimator for compressed

amplitudes Âβ . A compression factor β < 1 allows us to

emphasize estimation errors of low amplitudes, and for β → 0
a logarithmic spectral amplitude estimator is approximated [4],

[9]. To obtain our novel estimator we have to solve

Âβ = E
(
Aβ | r, φY, φS

)

=

∫ ∞

−∞

aβ pA|R,ΦY,ΦS
(a | r, φY, φS) da. (3)

Using Bayes’ theorem we obtain

Âβ =

∫∞

−∞
aβ pR,ΦY|A,ΦS

(r, φY | a, φS) pA,ΦS
(a, φS) da∫∞

−∞
pR,ΦY|A,ΦS

(r, φY | a, φS) pA,ΦS
(a, φS) da

.

With the assumption that the clean speech amplitude is inde-

pendent of the clean speech phase, we can write

Âβ =

∫∞

−∞
aβ pR,ΦY|A,ΦS

(r, φY | a, φS) pA(a) da∫∞

−∞
pR,ΦY|A,ΦS

(r, φY | a, φS) pA(a) da
. (4)

As in [6]–[9], we assume that the real and imaginary parts

of the complex noise spectral coefficients are independent

and Gaussian distributed. Thus, if the speech coefficients are

given, after polar transformation we obtain the conditioned

probability density function (PDF) of the noisy coefficients as

pR,ΦY|A,ΦS
(r, φY | a, φS) =

r

πσ2
N

exp

(
−
r2 + a2 − 2ar cos(φY − φS)

σ2
N

)
. (5)

To model the PDF of the speech spectral amplitudes, as in

[7], [9], we employ the χ-distribution with shape parameter µ.
Note that the χ-distribution is a special case of the generalized

Gamma-distribution [8] when the parameters in [8, Eq. (1)] are

set to γ [8] = 2 and β [8] = µ/σ2
S
. The χ-distribution is defined

as

pA(a) =
2

Γ(µ)

(
µ

σ2
S

)µ

a2µ−1exp

(
−

µ

σ2
S

a2
)
, (6)

with the Gamma function Γ(·) [15, Eq. (8.31)].
If the spectral coefficients S are complex Gaussian dis-

tributed, the resulting spectral amplitudes A = |S| are χ-
distributed with µ = 1. More heavy-tailed (super-Gaussian)

priors can be modeled by setting µ < 1. The solutions to the

integrals resulting from inserting (6) and (5) into (4) are listed

in [15, Eq. (3.462.1)], and yield our proposed estimator

Â =
(
E
(
Aβ | r, φY, φS

)) 1

β

=

√
1

2

ξ

µ+ ξ
σ2
N

(
Γ(2µ+ β)

Γ(2µ)

D−(2µ+β)(ν)

D−(2µ)(ν)

) 1

β

(7)

where D·(ν) is the parabolic cylinder function [15, Eq.

(9.24)], ξ = σ2
S
/σ2

N
is the a priori SNR, and the argument

ν = −
r

σN

√
2

ξ

µ+ ξ
cos(φY − φS︸ ︷︷ ︸

∆φ

) (8)

contains the phase difference φY − φS = ∆φ.

IV. BENEFITS OF THE PROPOSED ESTIMATOR

To understand the benefits of the proposed estimator, the

input-output curve of (7) is given in Fig. 1 and Fig. 2 for an

a priori SNR of ξ = 0.2. To draw conclusions independent

of an absolute signal-scaling, we normalize the input R and

the output Â by σN. In Fig. 1 we set the shape parameter to

µ = 1 and the compression parameter to β = 0.001. Thus,
without incorporating the phase we would approximate the

log-spectral amplitude estimator (LSA) proposed in [3]. For

reference, we include the input-output-curves of the LSA and

the Wiener filter in Fig. 1.

The phase information employed by the proposed estima-

tor can help to distinguish if large amplitudes R/σN ≫ 1
originate from speech or represent outliers in the noise. For

this distinction, state-of-the-art estimators only have the a

priori SNR ξ and R/σN available. Taking the phase into

account, we now have additional information for an improved

separation of noise outliers from speech: if R/σN is large

due to a contribution from speech, then the phase of the

noisy speech will be close to the clean speech phase [16],

i.e. |∆φ| → 0. Consequently, if ∆φ = 0, the proposed

estimator (top solid line) applies less attenuation and thus

less speech distortions than the LSA. However, if R/σN is

large because of noise outliers, the phase difference |∆φ| is
likely to be larger than zero. Employing this larger |∆φ| in
(8) and (7) results in an efficient attenuation of noise outliers

that is not possible without taking the phase into account. This

larger attenuation can be seen in the second, third, and fourth

solid line that represent |∆φ| = π/4, π/2, π (top to bottom).
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Fig. 1. Input-output curve of the proposed estimator (7) for µ = 1, β =
0.001 and ξ = 0.2. The solid lines are the results for different values for
|∆φ| = |φY − φS|, namely 0, π/4, π/2, π (top to bottom). For reference
we also include the phase insensitive LSA [3] (dashed) and the Wiener filter
(dash-dotted).

Fig. 2. As in Fig. 1 we compare the output of the derived estimator for
different |∆φ| but now set µ = β = 0.5. For comparison we also include the
phase insensitive amplitude estimator from [9] with µ = β = 0.5 (dashed).

From these considerations we see that incorporating the phase

provides a novel mechanism to distinguish noise from speech.

The proposed estimator can efficiently reduce undesired noise

outliers while preserving the speech signal.

Similar to [7]–[9], we can also model heavy-tailed speech

distributions by setting µ < 1. In Fig. 2 we plot the results

for β = 0.5 and µ = 0.5. It can be seen that this estimator

results in lower outputs for low input values as compared to

Fig. 1. However, for large input values and |∆φ| ≤ π/2,
less attenuation is applied as compared to β = 0.001 and

µ = 1 in Fig. 1. The reason is that for µ < 1 the speech

distribution is modeled as being more heavy-tailed than the

noise distribution, meaning that, as compared to µ = 1, large
noisy amplitudes are assumed to originate more likely from

speech rather than noise.

V. EVALUATION

In this section, we employ the proposed estimator in a

speech enhancement framework. For this we use a randomly

chosen subset of 10 female and 10 male speakers from the

TIMIT database [17] and additive babble noise at various

input SNRs. For the estimation of the noise PSD we use the

unbiased MMSE estimator [18]. Subsequently, the a priori

SNR is estimated using the decision-directed approach [2].

The sampling rate is set to 8 kHz and the segment length is

32ms. In figures 3–5 we evaluate the proposed estimator using

the PESQ MOS as implemented in [19]. While PESQ has been

initially developed for assessing the perceived quality of coded

speech, it also shows good correlation with speech quality in

the speech enhancement context [19]. We provide the results

for the phase insensitive amplitude estimator [9] and compare

it to the proposed estimator (7) with β = µ = 0.5. To quantify

the achievable gain when the clean speech phase is given, in

Fig. 3 we employ the true clean speech phase φS in (8). We see

that employing the clean phase as extra information in ampli-

tude enhancement results in an additional PESQ improvement

of almost 0.35 PESQ-MOS. Informal listening reveals that the

proposed method is capable of reducing annoying outliers in

the residual noise. If we additionally use the clean speech

phase instead of the noisy phase for signal reconstruction

as Ŝ = Âexp(jΦS), an overall PESQ improvement of more

than 0.5 PESQ-MOS can be achieved. It is interesting to

note that, in contrast to [11], the performance gain using

phase information is achieved without zero-padding and with

a segment-overlap of only 50% in the spectral analysis.

In practice, we have to estimate the clean speech phase.

Thus, in the next experiment we employ the phase estimation

method proposed in [13]. As [13] only provides an estimate

of the phase change ∆φS(ℓ) = φS(ℓ)− φS(ℓ− 1) but not the
absolute phase φS(ℓ), we use the phase changes ∆φS, ∆φY

instead of the absolute phases φS, φY in (8). To facilitate the

estimation of ∆φS, we use a segment overlap of 87.5% in this

experiment.

In Fig. 4 the results for an estimated phase are given. The

fundamental frequency, which is needed for phase estimation

via [13], has been obtained from the clean speech signal

using PEFAC as proposed in [20] with the voiced/unvoiced

decision employed in [21]. As in [13] the phase is only

estimated in voiced speech, we also evaluate the performance

only in voiced speech as indicated by using PEFAC on the

clean signal. It can be seen that a robust estimate of the

fundamental frequency is sufficient to obtain a clean phase

estimate that results in large improvements of PESQ. Using

the clean phase estimate also for reconstruction in moderate

and low SNRs improves results further (upper dash-dotted

line in Fig. 4). However, also some artifacts are introduced

and the performance gain vanishes for large SNR. This is not

the case when the estimated phase is only used to improve

amplitudes. Thus, we conclude that employing an estimated

phase for amplitude estimation is more robust as compared to

a direct employment of a clean speech phase estimate.

In the final experiment, we investigate the performance

gain in a blind setup, i.e. when the fundamental frequency

is estimated on noisy speech. In Fig. 5 it can be seen that

even in this blind setup a performance gain of around 0.25

PESQ-MOS is achieved.

VI. CONCLUSIONS

In this letter we showed how knowledge of the clean speech

spectral phase can be employed for a more robust amplitude

estimation. For this, we have derived an MMSE optimal
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Fig. 3. PESQ-MOS for the MMSE-optimal amplitude estimator [9] with
µ = β = 0.5 and the proposed estimator (7). Here, the true clean speech
spectral phase is used in (7)(8) and the segment overlap is 50%. We also plot

the result when the clean phase is used for reconstruction, as Ŝ = Âexp(jφS)
(upper dash-dotted line).

Fig. 4. As Fig. 3, but the clean speech spectral phase is estimated using
[13]. The fundamental frequency required in [13] is estimated on the clean
speech signal using [20]. The segment overlap is 87.5%.

estimator for the clean speech spectral amplitudes when,

besides the speech and noise power spectral densities, also the

clean speech phase is known. The proposed estimator improves

single channel speech enhancement further, as the additional

information provided by the phase helps to distinguish outliers

in the noise from speech. We showed that incorporating the

phase can potentially improve the PESQ-MOS by 0.5 in babble

noise as compared to state-of-the-art amplitude estimators. In a

blind setup we achieve a PESQ improvement of 0.25 in voiced

speech. Results demonstrate that clean speech phase estimation

is an interesting field of research that can push the limits of

single channel speech enhancement algorithms further.
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