
 

  1 

Matlab for PhD students – Advanced Topics 1– WS 2010/11

Data flow and control flow 

Software development:
When you start to work on a (non-trivial) programming task, you should take the time
to perform the following steps. Even though it might at first seem faster to just start
generating code, it will save you a lot of time and trouble to follow the classical
course of software development

1. Specify the task
• A specification defines the problem that a program is supposed to

solve.
• For the specification it does not matter, how the program solves the

task, but only what the task is.
• Specifications can be written in every day language. Some people use

specifications later as help-texts for their programs.
2. Define data sources and data sinks

• Define which data the program will process.
• Where do these data come from? (E.g. a data file, a different program

or user input)
• Define which outputs the program will generate. (E.g. data files,

graphics, outputs to different programs)
• See later section “data flow”

3. Divide the problem into sub-problems
• Identify the sub-problems of your task. Usually, the building blocks of a

big problem are easy to generate, if the task is divided into sufficiently
small pieces. (This concept is called “divide and conquer”). There may
be several layers of sub-division until you reach the sub-problems that
are easy to program.

4. Develop the algorithms for each sub-problem
• An algorithm is the sequence of steps used to solve a problem.

Develop an algorithm for each of the sub-problems you identified.
• It is a good idea to think about the algorithm independently of the

programming language you will use. Depending on your personal
preferences, you could use natural language, flow charts (see below) or
pseudo code (see below) to put your algorithm down on paper.

• Very often it helps to develop algorithms by picking a simple example
and writing each step that should happen on a piece of paper.

5. Define data flow and control flow between sub-problems
• Think about the main structure of your program by combining the sub-

problems:
• In which sequence should the sub-problems be solved?
• Which sub-problems depend on each of the sub-problems?
• Which data should be transferred between the sub-problems?

• At this step, you should also decide how to structure your data. Is it
useful to combine variables to more complex data types? (Will be
discussed later in the course.)

• For each sub-problem you should decide if you should use a script, a
function or a sub function (see below)

 

  2 

• Flow charts (see below) are particularly useful to structure the
sequence – and the hierarchy – of sub-problems.

• The result of this step is the complete algorithm for the entire task,
including all sub-problems.

6. Implement the program
• After you have specified the complete algorithm in a language-

independent way, you can start to produce Matlab code.
• First decide for which of the sub-problems the variables should be

visible in the main workspace and for which they should be hidden from
the user

• If variables should be hidden, use functions or sub-functions.
• If variables should be visible, use scripts.
• It is good style to encapsulate sub-problems into (sub-)

functions and to write scripts only to call functions for specific
cases e.g. of specific parameter settings.

• First write code for sub-problems and test it separately, then put the
parts together.

7. Make the program safe to use
• Remember to document your program while you write it. Comments will

make it much easier for you when you later have to re-visit your code.
• Make sure to test all user inputs (input arguments to functions, user

keyboard or mouse inputs, maybe also contents of data files) if they
meet the specifications of your program. Common sources of hard to
detect errors are unforeseen data types, matrix sizes and parameter
ranges as inputs.

• Tests for correct user inputs are usually done before any code is
performed. If the user input does not meet the specification, issue
adequate error or warning messages.

8. Test, test, test!
• Of course, you should make sure that your program does not stop with

red error lines (unless you issued them on purpose) when you call it.
• However, this is only the very first step of testing! You also have to

make sure that your program produces correct results for all kinds of
different inputs. (see script Matalb_adv2_errorhandling)

• If you detect errors, you need to go back either to step 6 (if the error is
due to a problem in the implementation – which is usually the easiest
problem to fix), to step 5 (if the communication between sub-problems
does not work correctly), to step 4 (if the algorithm of one of the sub-
problems is not correct) or even to step 3 (e.g. if you forgot to take care
of a specific sub-problem that rarely occurs.)

• Usually, the process of testing and revising the program takes longer
than the implementation itself!

9. Re-visit your comments
• When the program is written and tested thoroughly you should take the

time to go through your entire program with all functions and sub
functions again to make sure that your comments are up-to-date and
understandable not only for yourself but also for others who want to use
your code.

• In particular, make sure that the help texts are helpful – they should at
least specify the input and output arguments and shortly define the
purpose of the program.

 

  3 

How to structure a big problem:
• Control flow:

o Most important principle “divide and conquer”
o First divide your big task (coarsely) into smaller sub-tasks
o For each of the sub-tasks define the input and output data. Depending

on the data flow you can decide to use one big program or to
encapsulate sub-tasks into functions (or into separate scripts).

o If a sub-task could also be used in other contexts you should write a
separate function with well-defined inputs and outputs to solve it.

o Divide each of your sub-tasks into even smaller units. To give your
code a clear structure, these blocks can become cells of program code
in Matlab (see script Matlab_adv2_errorhandling).

o It is a good idea to first write a separate file for each sub-task you want
to program, in which you define the task and its inputs and outputs in
the help text. The sequence of sub-sub-tasks leading to the solution of
the sub-task can be defined as cell titles.

o Which control elements (e.g. loops, case differentiation) are needed to
solve the sub-sub-tasks?

o Try to avoid spaghetti code, aim for lasagna code!
• Pseudocode:

o Pseudocode is an informal way to define algorithms without having to
think about syntax and other language-specific issues.

o Pseudocode lists the sequence of steps needed to solve a problem by
using a mixture of natural language and programming-style writing, e.g.

While z is not 0
 Ask the user to type in a new value for z
End
Display value of z

o There are several definitions of pseudocodes, but they are (on purpose)
not standardized. Otherwise pseudocode would be a programming
language itself that people would need to learn. So feel free to define
your own pseudocode!

• Flowchart:
o A graphical tool to structure control flow. Each program step is

represented by a symbol. Arrows show the direction of the control flow.
o Flow charts are usually drawn from top to bottom. In loops, the control

flow re-connects to earlier steps.
o Symbols:

 Arrow: Direction of control flow, connecting program steps
 Circle, oval or rounded edge rectangle: start and end symbols
 Rectangle: Generic processing step (e.g. x=x+1)
 Rectangle with double-struck vertical edges: subroutines, which

are explained in a separate flowchart
 Parallelogram: Input / Output (e.g. save a file or get keyboard

input)
 Rhombus (diamond): conditional or decision (usually a true /

false test). Two arrows leave the rhombus, pointing to the
subsequent program steps, depending on the condition. The
arrows should always be labeled.

 

  4 

 Arrow pointing to another arrow or arrows joining with a blob:
junction of control flow (different processing steps are followed
by the same next step.)

o Example (from Wikipedia): Flowchart to calculate N! (the factorial of N) 

 
o see http://en.wikipedia.org/wiki/Flow_chart

• Data flow:

o Which types of data should be processed?
o Where do the data come from? Possible data sources are:

 Matlab data files
 Other types of data files (data import)
 Measurement hardware
 User inputs
 Function input parameters

o Where do the data go? Possible data sinks are:
 Matlab data files
 Other types of data files (data export)
 Hardware control
 Graphics
 Sound
 Text output
 Function output parameters

 

  5 

o If you have structured your algorithm into sub-parts, think about which
part needs which data and how the data should be transferred between
the parts.

• A graphical tool to structure data flow is the data flow diagram, in which data
flow is depicted by labeled arrows between functions (usually shown as circles
or rectangles). However, there are several graphical notations for data flow
http://en.wikipedia.org/wiki/Data_flow_diagram

• Data flow diagrams should not be confused with flow charts! In flow charts,
arrows depict the order of programming steps, while in data flow diagrams the
order of steps is unimportant and the arrows show the direction of data import
and export between functions.

Control elements in programs

• If-else-end construction: Executes a group of commands depending on a logical
value. Very often, the logical value is the result of a relational test. More than
two alternatives how to continue the program can be given by using elseif
statements. (If you feel you want to review if-elseif-else constructions, you
should take a look at the course script IntroductionMatlab2 and the
corresponding demo program if_demo.m)

• Switch construction: If several different cases should be considered, it is often
clearer and more convenient to use a switch construction instead of using
several elseif statements or nested if constructions. Switch constructions allow
at most one of the command groups to be executed. Switch constructions are
particularly convenient if you are comparing strings (to compare two strings
you usually need the function out=strcmp(string1,string2),
string1==string2 does not work).

• For-Loop: for-loops are (usually) count loops. They are used when a

command block needs to be repeated N times and the number N is known
beforehand. Moreover, they are very convenient to use when an algorithm
should be run for several specified values of a parameter. (for-loops were
topic of day 3 of the introductory part of the course. See script
IntroductionMatlab3 and corresponding demo programs for more details.)

• Good to know:
o Even though a vector (e.g t=1:5) is used in the for-statement, in each

repetition of the commands the variable has a scalar value
corresponding to the N-th element. E.g. in the first repetition t==1, in
the second t==2,…, in the last t==5.

o The most common vector used in for-loops are used for counting (e.g.
i=1:10 or even_num=2:2:22), but it is also possible to pre-define
vectors (e.g. v=[78; 9; -0.5] and use their values sequentially during the
repetitions)

o You should not change the value of the counter variable in the body of
the loop. The value will be overwritten anyway when the next repetition
starts.

• While-loops: while-loops are the more general case to repeat a block of

statements than for-loops. The program body of while-loops is repeated as
long as a certain condition is true. You do not need to know beforehand, how

 

  6 

often the commands will be repeated. While-loops were topic of day 3 of the
introductory part of the course. See script IntroductionMatlab3 and
corresponding demo programs for more details.)

• Good to know:
o A while-loop only works if the variable used in the condition is defined

beforehand
o The variable used in the condition must be changed (at least under

certain conditions) in the body of the while loop. Otherwise, the loop will
never terminate.

o In case you produced an infinite loop, you can interrupt the program
with ctrl-c.

o You can always use while-loops instead of for-loops. See program
factorial_demo.m (from the course homepage) for comparison.
(However, for-loops are often easier to program and will always
terminate.)

Scripts and functions
• Scripts and functions were topic of day 2 of the introductory part of the course.

See script IntroductionMatlab2 for more details.

• Scripts
o Sequence of commands, equal to typing the sequence in the command

window
o Variables in a script are present in the workspace
o All workspace variables can be used in a script
o Workspace variables can be changed and cleared in a script
o Scripts are saved as .m files (you have to give them a name)
o To call a script, the name of the file is used (type the name in the

command window or use it as a command in a script or function).
o Convenient way to make a sequence of commands reproducible.
o The most common use for scripts is to call a sequence of functions for

a specific data example, e.g. a specific parameter set.

• Functions
o Sequence of commands, using a separate workspace
o Workspace variables, which should be used in the function, have to be

given to the function explicitly with input arguments, all other workspace
variables are not visible within the function

o Function variables, which should be used in the workspace after the
function is executed, have to be given to the workspace explicitly by
output arguments

o The first line in the function file, the function-declaration line, defines the
number and names of input and output arguments (all combinations are
possible). It must contain the key word function and the function
name

 function blabla % function without input and
 % output
 function blabla (in1) % function with one input
 % argument
 function out1=blabla % function with one output
 % argument

 

  7 

 function out1=blabla (in1) % function with one in- and
 % one output
 function [out1,out2]=blabla (in1,in2,in3) % function with 3
 % in- and 2 outputs

o When saving the program, Matlab will suggest the function name as
standard file name (in this case blabla.m). It is good style to use the
same name for the file and the function-declaration line of the function
(otherwise it can get very confusing.)

o To call a function, you need to type the filename followed by as many
input arguments as you have specified in the function-declaration line of
the file. (If you have used a different file name than the function name in
the function-declaration line, you need to use the file name.) You also
should give as many output arguments as you have specified,
otherwise this information will get lost. E.g. call your function with
[a,b]=blabla(A,B,27.5); (with A and B variables you have
defined before)

o It does not make sense to define input arguments in the function-
declaration line if they are not used in the function commands! It also
does not make sense to define output arguments that do not get
assigned a value during the function execution!

o Functions that could be useful in more than one context should be
written as general as possible and documented well.

o Functions are the best way to solve a task with defined input and output
data, without interfering with workspace variables.

• Sub functions

o If you have specified a sub-task with defined input and/ or output
arguments, which is used more than once in your algorithm, you should
encapsulate this sub-task into a function.

o However, if you are sure that you will not need this specific sub-task in
any other programming project, but only as part of the function you are
currently working on, you can define a sub-function.

o Sub-functions are placed in the same file as the main function after the
end statement of the main function program code.

o Sub-functions can be called from anywhere in the main function, but
they cannot be called from outside the m-file.

o Sub-functions have their own workspace and communicate with the
parent function only via the input and output arguments.

o Sub-functions begin with a standard function statement line and follow
all rules applying to functions.

o If you use sub functions you need to end each function with the
keyword end. (This keyword can be used but is usually not mandatory
to mark the end of a function.)

o It is good style to start the sub-function name with local_ to remind the
user that it is a local function. To display the help text of a sub-function,
you can use helpwin parent_function/local_sub_function

o Syntax:
function out=parent_function(in)
% parent_function description

% code in parent function, calling local_sub_function

 

  8 

end % of parent_function

function nout=local_sub_function(nin)
%local_sub_function description

%code in local_sub_function working on separate workspace

end % of local_sub_function

• Nested functions:

o Nested functions are functions, which are fully contained in the
definition of another function (the “parent” function.

o Nested functions have their own workspace and can have specified
input and output arguments.

o In addition to their own workspace, nested functions also have access
to the workspace and with all variables of the parent function. A nested
function can overwrite values of variables of the parent function!

o Nested functions cannot be called separately from other functions,
scripts or the command window. They can only be called from within
the same file.

o Nested functions can be called from anywhere in the parent function
code, even though they are usually defined at the end of the parent
function.

o If there are several nested functions, they can all call each other, if they
are on the same level.

o There can be several layers of nested functions. A nested function can
only call nested functions on the same or a higher level (see help for
details: Types of functions -> nested functions)

o Nested functions are a way to avoid global variables, but they usually
make the code more difficult to read and to debug. Usually, there is no
need to use them – I would discourage their use! (Nested functions are
allowed in version 7.0 and up.)

o Syntax:
function out=parent_function(in)
% parent_function description

% code in parent function, calling nested_function with an
% appropriate input argument.

 function nout=nested_function(nin)
 %nested_function description

 %code in nested_function can access all variables in
 %parent_function in addition to explicit input argument
 %nin)

 end % of nested_function

end % of parent_function

• Global variables:
o Usually, encapsulation is a very useful and powerful concept, making

sure that functions are not able to interfere with the base workspace.
o However, in some cases it might be more convenient to have a certain

variable available in all (or many) functions of a program package (e.g.

 

  9 

your own toolbox), without the need to pass them as input argument to
each function (and to take care of the correct sequence of input
arguments etc.). In this case a global variable can be used.

o However, the use of global variables is strongly discouraged!!! In my
opinion, they only make sense for constants, which are never changed
by any of the functions they are used by.

o It is good style to use names with all capital letters for global variables.
o A global variable has to be defined in a workspace and declared global

in this workspace and all functions called by this script or function,
which should have access to the global variable.

o Syntax:
global MYCONSTANT

Homework:

• Draw a control flow chart of your own program. If you have a complicated
program, you will need to draw several charts on different levels of
abstraction, showing the main problems at the top-level and the corresponding
sub-problems.

• Draw a data flow diagram for your program.

