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Abstract

The race model for stop signal processing is based on the assumption of context
independence between the go and stop process. Recent empirical evidence incon-
sistent with predictions of the independent race model has been interpreted as a
failure of context independence. Here we demonstrate that, keeping context inde-
pendence while assuming stochastic dependency between go and stop processing,
one can also account for the observed violations. Several examples demonstrate
how stochastically dependent race models can be derived from copulas, a rapidly
developing area of statistics. The non-observability of stop signal processing time
is shown to be equivalent to a well known issue in random dependent censoring.
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Introduction

The stop-signal paradigm is a popular tool to study response inhibition. In this setting,
participants perform a reaction time (RT) go task ; typically: press the button when
a go signal occurs (simple RT); or, press the left button when an arrow pointing to
the left appears, and press right when an arrow pointing to the right appears (choice
RT). On a minority of trials, a stop signal (e.g. an acoustic stimulus) appears after a
variable stop-signal delay (SSD) instructing the participant to suppress the imminent
go response stop task. If the delay is short enough, subjects are usually able to follow
the stop instruction so that no reaction time is registered. Yet, the covert latency of
the stopping process is considered to be an important aspect of the response inhibition
mechanism. Thus, the main goal of modeling the task is to obtain information about
the non-observable stop-signal reaction time (SSRT) that is often utilized as diagnostic
tool of inhibitory control capacities in brain cognitive development (e.g. Casey et
al., 2018) and for clinical subpopulations (substance abuse, overeating, pathological
gambling, risk taking (e.g., Verbruggen & Logan, 2008).

In the prevalent model, known as the race model (Logan & Cowan, 1984), per-
formance in the stop-signal task is represented as a race between two (stochastically)
independent random variables representing the go and stop signal processing times,
denoted as Tgo and Tstop, respectively. If Tgo is smaller than Tstop+td (td denoting the
value of SSD), then a response is given in spite of the stopping instructions, otherwise
no reaction time (RT) is registered.

Without making specific distributional assumptions about the random variables,
the race model allows one to estimate the mean and variability of SSRT (for reviews,
see Colonius & Diederich, 2023; Logan, 1994; Matzke, Verbruggen, & Logan, 2018;
Verbruggen et al., 2019). Moreover, Matzke and colleagues (Matzke, Dolan, Logan,
Brown, & Wagenmakers, 2013) developed parametric versions of the race model assum-
ing ex-Gaussian distributions for Tgo and Tstop that provide an estimate of the entire
distribution of SSRT. Using hierarchical Bayesian estimation methods, they show that
this model has the advantage of requiring fewer numbers of observations per subject
than traditional non-parametric methods.

Although the race model, in both its parametric and non-parametric versions, is
generally considered to provide a valid description of the processes underlying perfor-
mance in the stop signal paradigm, a number of empirical observations have revealed
that systematic deviations from the race model’s predictions do sometimes occur. The
first result of this paper is to show that, in principle, such deviations can be explained
by an effect of stochastic dependency between the “racers” in the model. Second, draw-
ing on the statistical concept of a copula, we outline a general approach to modeling
stochastic dependency between go and stop processing. This presents an alternative,
or additional, route to recent endeavors to generalize the race model. This paper is
to provide a proof-of-concept rather than a guide to straightforward application. In
particular, issues of parameter estimation and model testing are left for future work.

The paper is organized as follows. The next section presents a somewhat formal
description of the context-independent race model in a general setting and concludes
with an expression for estimating the non-observable stop signal distribution in the
non-parametric case. After adding the assumption of stochastic independence in the

2



subsequent section, we briefly discuss a well-known inequality test (here called “race
model inequality”) and its empirical status. Then, the section “Towards race models
with stochastic dependency: the copula approach“ introduces the notion of a copula
and presents a principled way to estimate the non-observable stop signal distribu-
tion for copula-based race models. The following section “The copula version of the
inequality” presents sufficient conditions for the inequality to hold that do not imply
stochastic independence. Several examples illustrate the condition and provide param-
eter settings where the inequality is, or is not, violated. The problem of choosing a
particular copula is shown to be equivalent to a non-identifiability issue in actuarial
science (dependent random censoring), and we summarize recent relevant results from
this area in the section “Choosing a copula: the role of dependent random censoring”.
The final section reviews several interactive race models and discusses the role played
by context and stochastic independence in stop-signal race modeling. Some proofs and
definitions concerning copula theory are relegated to the appendices.

The context-independent race model

The random variables introduced above, Tgo and Tstop, are defined with respect to the
experimental condition where both go and stop signal are presented, referred to here
as the context STOP. The go signal triggers realization of random variable Tgo and the
stop signal triggers a realization of random variable Tstop. The bivariate distribution
function

H(s, t) = P [Tgo ≤ s, Tstop ≤ t] = Fgo,stop(s, t), (1)

is defined for all non-negative real numbers s and t, with corresponding density.
Throughout, we will assume continuity of all random variables.

The outcome of the race is determined by “the winner“:

min{Tgo, Tstop + td},

where again td (td ≥ 0) denotes the stop signal delay (SSD), that is, the time between
presentation of the go signal and the stop signal. The marginal distributions of H(s, t)
are denoted as:

Fgo(s) = Pr[Tgo ≤ s, Tstop <∞] and

Fstop(t) = Pr[Tgo <∞, Tstop ≤ t].

In context GO, defined by the absence of a stop signal, only processing of the go signal
occurs.

The most general race model makes no assumption about dependency between the
stop and go processes. Note that in statistical modeling of the task, the two different
experimental conditions in the paradigm, GO and STOP, refer to two different sample
spaces and are therefore statistically unrelated. Thus, in principle, the distribution of
Tgo in context GO, F ∗go(s), say, could differ from the marginal distribution Fgo(s) in
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context STOP. However, the context-independent race model rules this out by adding
the important assumption of context independence:1

Definition 1 (Context independence). In context GO, the distribution of go signal
processing time Tgo is assumed to be equal to the marginal distribution of Tgo in context
STOP:

F ∗go(s) ≡ Fgo(s) = Pr[Tgo ≤ s, Tstop <∞] (2)

for all s.
In general, context STOP would also have to be indexed by the specific value of SSD

(td) being applied in a given trial, and the same holds for H(s, t) and Fstop(t). However,
we will assume that SSD invariance holds, meaning that one can drop the index
td throughout without consequences while keeping it as a given (design) parameter.
Moreover, Tstop is set equal to zero for t ≤ td with probability one.

Under these conditions, the probability of observing a response to the go signal
given a stop signal was presented with SSD = td [ms] after the go signal, is defined by
the race assumption,

pr(td) = Pr[Tgo ≤ Tstop + td]. (3)

In addition, according to the model, the probability of observing a response to the
go signal no later than time s, given the stop signal was presented with a delay td, is
given by the (conditional) distribution function denoted as Fsr(s; td),

Fsr(s; td) = Pr[Tgo ≤ s|Tgo < Tstop + td] =
Pr[Tgo ≤ s, Tgo < Tstop + td]

Pr[Tgo < Tstop + td]
, (4)

also called signal-respond distribution. For 0 < s ≤ td, the numerator of (4) is:

Pr[Tgo ≤ s, Tgo < Tstop + td] = Fgo(s).

To summarize, data obtainable in the stop-signal paradigm are estimates of probability
pr(td), distribution Fgo, and conditional distribution Fsr(s; td). The main goal is to
estimate the distribution Fstop, or at least some of its moments, from these data
in order to obtain information about the non-observable mechanism of stop signal
processing.

Let fgo = F ′go be the density and Fstop|go(·|s) the conditional distribution of
[Tstop|Tgo = s] for s > 0. Then, for s > td > 0,

Pr[Tgo ≤ s, Tgo < Tstop + td]

=

∫ s

0

[1− Fstop|go(s′ − td|s′)] fgo(s′) ds′

=

∫ td

0

fgo(s
′) ds′ +

∫ s

td

[1− Fstop|go(s′ − td|s′)] fgo(s′) ds′

1Context invariance seems more fitting but we keep the familiar term context independence here.
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= Fgo(td) +

∫ s

td

[1− Fstop|go(s′ − td|s′)] fgo(s′) ds′. (5)

From (4) and (5),

Fsr(s; td) pr(td) = Fgo(td) +

∫ s

td

[1− Fstop|go(s′ − td|s′)] fgo(s′) ds′. (6)

Because pr(td) and the first integral on the right do not depend on s, taking the first
derivative with respect to s yields:

fsr(s; td) pr(td) = [1− Fstop|go(s− td|s)] fgo(s).

We solve for the (conditional) stop signal distribution:

Fstop|go(s− td|s) = 1− fsr(s; td)

fgo(s)
pr(td), (7)

where all expressions on the right-hand side are “observable”, that is, they can be
estimated from data collected in the stop signal task.

The independent race (IND) model

The dominant version of the race model, the independent race model (IND model, for
short), adds the assumption of stochastic independence between Tgo and Tstop to the
context-independent model, that is,

H(s, t) = Fgo,stop(s, t) = Fgo(s) · Fstop(t), (8)

for all s and t.
In this model, mean RT of stop failures, i.e. when a response is given although

a stop signal was presented, should not be larger than the mean RT of go responses
without a stop signal occurring:

E[Tgo |Tgo < Tstop + td] ≤ E[Tgo], (9)

with td ≥ 0. Moreover, the left-hand side, mean signal-respond RT, should be mono-
tonically increasing with stop signal delay td. The inequality on the means follows
directly from an ordering of the RT distribution functions:

Fgo(s) ≤ Fsr(s; td), (10)

holding for all s, s > td, (for a proof, see Colonius, Özyurt, & Arndt, 2001).
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The empirical status of inequality Fgo(s) ≤ Fsr(s ; td)

In earlier work, we had found some empirical violations of this distribution ordering at
short SSDs (e.g., Colonius et al. 2001; Özyurt, Colonius, and Arndt 2003) but evidence
remained weak because, typically, observations are sparse at short SSDs. Recently, in
a large-scale survey analyzing 14 experimental studies, Bissett, Jones, Poldrack, and
Logan (2021) observed serious violations of the predicted mean ordering, again mostly
at short SSDs (less than 200 ms). Bissett and colleagues interpret their findings as
refuting context independence and discuss a number of possible alternative models
accommodating context dependence as a function of SSD.

We do not take a stance on how sweeping the empirical evidence against context
independence is given these findings. Developing explicit models incorporating context
dependency seems a worthwhile enterprise in any case (see discussion section).

Alternatively, here we want to explore whether the observed violations can be
accommodated by dropping the assumption of stochastic independence between go
and stop signal processing while keeping context independence. This is prompted by
the finding, detailed below, that there exist context-independent race models that
nonetheless violate inequalities (9) and (10) when Tgo and Tstop are assumed to be
stochastically dependent random variables with specific distributions. Thus, violation
of the inequalities may indicate that either context or stochastic independence, or
both, may fail but it seems difficult to tell them apart without additional information.

Towards race models with stochastic dependency:
the copula approach

Let us assume that context independence holds; Inequality (10) equals

Pr[Tgo ≤ t] ≤ Pr[Tgo ≤ t |Tgo < Tstop + td]. (11)

As mentioned above, inequality (11) holds for stochastically independent Tgo and Tstop
(Colonius et al., 2001). However, pinning down the type of stochastic dependency char-
acterizing the inequality seems difficult and, to our knowledge, is not in the literature.
Let us rewrite Equation (1) as

H(s, t) = Fgo,stop(s, t) = Cgo,stop(Fgo(s), Fstop(t)),

with Cgo,stop denoting a copula, that is a function that specifies how a bivariate (in
general, multivariate) distribution is related to its one-dimensional marginal distribu-
tions, here Fgo(s) and Fstop(t). A copula allows one to assess stochastic dependency
between the two random variables Tgo and Tstop separately from the choice of the
marginal distributions. Thus, copulas are a natural tool to investigate which combina-
tion of stochastic dependency and marginal distributions will lead to a (non-)violation
of Ineq. 11.

A formal definition of a copula for 2 variables is as follows:
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Definition 2. A 2-dimensional copula is a 2-dimensional distribution function C
on the unit square [0, 1]2, whose univariate marginal distributions are uniformly
distributed on [0, 1]:

C : [0, 1]× [0, 1]→ [0, 1]

such that for any u, v ∈ [0, 1],

(u, v) 7→ C(u, v) ∈ [0, 1].

For more details on copula theory see the appendix. A key result (see Appendix B),
adapted to our context, is the following:

Proposition 1. Let

H(s, t) = P [Tgo ≤ s, Tstop ≤ t] = Cgo,stop(Fgo(s), Fstop(t));

the 2-dimensional copula C is determined uniquely assuming continuous marginal
distributions. Moreover, with F−1

go and F−1
stop the inverse functions of Fgo and Fstop,

Cgo,stop(u, v) = H(F−1
go (u), F−1

stop(v))

for any (u, v) ∈ [0, 1]2.
This proposition shows that a copula C allows one to assess the stochastic depen-

dency separately from the marginals. As a simple example, letting u = Fstop(t) and
v = Fgo(s), copula

CIND(u, v) ≡ u v
defines stochastically independent race models.

A more complex case is the following:

Example 1 (Bivariate Gaussian copula). With Φ denoting the univariate standard
normal distribution function and Φ2(·, · ; ρ) the bivariate standard normal distribution
with correlation ρ, the Gaussian copula is defined as

CGauss(u, v) = Φ2(Φ−1(u),Φ−1(v); ρ).

For H(s, t) = CGauss(Fgo(s), Fstop(t)),

C(u, v) =

∫ Φ−1(Fgo(s))

−∞

∫ Φ−1(Fstop(t))

−∞

1

2π
√

1− ρ2
exp

(
−s
′2 − 2ρs′t′ + t′2

2(1− ρ2)

)
ds′ dt′,

(12)

where the expression under the integrals is the bivariate standard-normal density with
correlation ρ defining the dependency separately from the marginals, and F−1

go and

F−1
stop are the inverse functions of the marginals.
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Because of the generality of the copula definition, the class of race models based on
copulas obviously encompasses all race models with specified marginal distributions.
Since we are primarily interested in determining the stop signal distribution, we focus
on Equation (7):

Fstop|go(s− td|s) = 1− fsr(s; td)

fgo(s)
pr(td),

Choosing the independence copula leads to the IND model without conditioning on
{Tgo = s}:

Fstop(s− td) = 1− fsr(s; td)

fgo(s)
pr(td), (13)

as already derived in Colonius (1990a). Because all elements on the right-hand side
of (13) are observable, this could provide an estimate for the stop signal distribution;
however, simulation studies revealed that gaining reliable estimates requires unrealis-
tically large numbers of observations (Band, van der Molen, & Logan, 2003; Matzke
et al., 2013).

For the general, non-independent case one may pick some copula C(u, v) and define
random variables U ≡ Fgo(Tgo) and V ≡ Fstop(Tstop) uniformly distributed on [0, 1].
Letting u = Fgo(s) and v = Fstop(t), from Lemma 1 in Appendix B,

∂C(u, v)

∂u
=
∂H(F−1

go (u), F−1
stop(v))

∂u
= Pr[V ≤ v |U = u]

= Pr[Fstop(Tstop) ≤ Fstop(t) |Fgo(Tgo) = Fgo(s)]

= Pr[F−1
stop [Fstop(Tstop)] ≤ F−1

stop [Fstop(t)] |F−1
go [Fgo(Tgo)] = F−1

go [Fgo(s)]]

= Pr[Tstop ≤ t |Tgo = s]. (14)

Gaining information about the (marginal) distribution of Tstop, this could be obtained
by “integrating out” Tgo:

Fstop(t− td) =

∫ ∞
0

Pr[Tstop + td ≤ t |Tgo = s] fgo(s) ds, for t > td. (15)

Equation (7) reveals that all we can hope to obtain from data is information about the
conditional distribution Pr[Tstop + td ≤ t |Tgo = s] at points (s, s), so the conditional
distribution under the integral is not available in full. This lack of information requires
the model builder to settle for some copula. The following example illustrates this
approach. Choosing a copula will be discussed in a subsequent section.
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Example 2 (Farlie-Gumbel-Morgenstern copula (FGM)). The FGM copula is defined
as

CFGM (u, v) = u v[1 + δ(1− u) (1− v)] (16)

with parameter δ ∈ [−1, 1]. This copula defines a stochastically dependent semi-
parametric race model with bivariate distribution function

HFGM (s, t) = CFGM (Fgo(s), Fstop(t))

= Fstop(t)Fgo(s)[1 + δ(1− Fstop(t))(1− Fgo(s))], (17)

with parameter δ determining the strength of dependence between Tgo and Tstop. Setting
δ = 0 corresponds to the independent race model, negative and positive values of δ to
negative or positive dependent models, respectively. It is known that the FGM copula
only allows for moderate levels of dependence (e.g. Kendall’s tau, τ ∈ [−2/9, 2/9]).2

In order to obtain information about the processing time Tstop via Equation (7), we
follow Equation (14) and take the partial derivative of CFGM (u, v) with respect to u,

∂C(u, v)

∂u
= Pr[V ≤ v |U = u]

= v + δ(2u− 1)v(v − 1) (18)

From Equation (7) and inserting the distribution functions, we have

Fstop(s− td |Tgo = s)

= Fstop(s− td) + δ(2Fgo(s)− 1)Fstop(s− td)(Fstop(s− td)− 1). (19)

The left-hand side, as well as Fgo(s), are in principle estimable so that (19), as a
quadratic equation, can be numerically solved for both Fstop and parameter δ.

The copula version of the inequality

From Lemma 1 in Appendix B,

Fstop|go(t|s) =
∂Cgo,stop(Fgo(s), Fstop(t))

∂Fgo(s)
= Cstop|go(Fstop(t) |Fgo(s)).

Then, for s > td > 0, Eq. 5 becomes

Pr[Tgo ≤ s, Tgo < Tstop + td]

= Fgo(td) +

∫ s

td

[1− Fstop|go(s′ − td|s′)] fgo(s′) ds′

2FGM copula extensions with a slightly larger dependency range can be constructed but require additional
parameters (see the copula literature in the references).
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= Fgo(s)−
∫ s

td

Fstop|go(s
′ − td|s′) fgo(s′) ds′

= Fgo(s)−
∫ s

td

Cstop|go(Fstop(s
′ − td) |Fgo(s′)) fgo(s′) ds′. (20)

Let s→∞ to get:

Pr[Tgo < Tstop + td] = 1−
∫ ∞
td

Cstop|go(Fstop(s
′ − td)|Fgo(s′)) fgo(s′) ds′.

For s > td, Inequality (11) is the same as

Pr[Tgo ≤ s] Pr[Tgo < Tstop + td] ≤ Pr[Tgo ≤ s, Tgo < Tstop + td],

or,

Fgo(s)
[
1−

∫ ∞
td

Cstop|go(Fstop(s
′ − td)|Fgo(s′)) fgo(s′) ds′

]
≤ Fgo(s)−

∫ s

td

Cstop|go(Fstop(s
′ − td)|Fgo(s′)) fgo(s′) ds′

or,

Fgo(s) ·
∫ ∞
td

Cstop|go(Fstop(s
′ − td)|Fgo(s′)) fgo(s′) ds′

≥
∫ s

td

Cstop|go(Fstop(s
′ − td)|Fgo(s′)) fgo(s′) ds′.

The final equation can be checked for different copulas Cgo,stop and parametric families
for Fgo and Fstop. For 0 < s ≤ td, the inequality

Pr[Tgo ≤ s] Pr[Tgo < Tstop + td] ≤ Pr[Tgo ≤ s, Tgo < Tstop + td]

becomes
Fgo(s) Pr[Tgo < Tstop + td] ≤ Fgo(s),

which is always satisfied.

Sufficient conditions for the inequality

Several sufficient conditions for Inequality 11 to hold can be stated.

Proposition 2. Let X and Y be random variables with a joint density and conditional
(cumulative) distribution function FY |X(y|x). If g(z) = 1−FY |X(z|z) is decreasing in
z, then

Pr[X ≤ x] ≤ Pr[X ≤ x |X ≤ Y ]

for all x.
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(Note: “decreasing” is defined as non-increasing). The proof is in Appendix A.
Replacing X by Tgo and Y by Tstop + td, the sufficient condition for (11) to hold for
all t is that

Pr[Tstop + td > t |Tgo = t] = 1− Fstop|go(t− td|t) = 1− Cstop|go(Fstop(t− td)|Fgo(t))

is decreasing in t > td. Note that this condition is satisfied if Tgo is independent of
Tstop.

Remark 1. From Equation (7), the above implies that

Pr[Tstop + td > t |Tgo = t] =
fsr(t; td)

fgo(t)
pr(td)

is decreasing in t. Then, reversing the ratio

fgo(t
′)

fsr(t′; td)
≤ fgo(t)

fsr(t; td)

holds for any t′ < t, i.e. the ratio of densities has the monotone likelihood property.
This is consistent with the intuition that, when observing a large value of t, it is more
likely that it was drawn from distribution fgo rather than fsr.

Remark 2. From the proof of Proposition 2 (Appendix A) it is easily shown that the
following holds as well:
If g(z) = 1− FY |X(z|z) is increasing in z, then the inequality reverses:

Pr[X ≤ x] ≥ Pr[X ≤ x |X ≤ Y ]

for all x.
A condition slightly stronger than assuming g(z) = 1− FY |X(z|z) is decreasing in

z (Proposition 2) is given by the following:

Definition 3. Stochastic decreasing negative dependence for Y given X (SDND)
means that Pr(Y > y|X = x) = 1 − FY (y|x) is decreasing in x for all y. If CX,Y
is the copula of FX,Y , then the condition is the same as 1 − CY |X(v|u) decreasing in
u ∈ (0, 1) for all v ∈ (0, 1) or CY |X(v|u) increasing in u ∈ (0, 1) for all v ∈ (0, 1).

To show that SDND is indeed stronger, take z1 < z2. Then, by SDND, Pr(Y >
z1|X = z1) ≥ Pr(Y > z1|X = z2); by monotonicity of the survival, Pr(Y > z1|X =
z2) ≥ Pr(Y > z2|X = z2) showing that g(z) is decreasing.

If Tstop is stochastically decreasing in Tgo in the sense of Definition 3, then Propo-
sition 2 holds with X = Tgo and Y = Tstop+ td. This generalizes the result of Colonius
and Diederich (2018) with perfect negative dependence. However Proposition 2 with
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X = Tgo and Y = Tstop + td can also hold with positive dependence of these two
variables, depending on the relative tail heaviness of Fgo and Fstop.

The following example illustrates Proposition 2 and also allows one to find
parameter settings violating the inequality.

Example 3. Let (X,Y )′ be a bivariate normal random vector:(
X
Y

)
∼ N

((
µX
µY

)
,

(
σ2
X σXY

σXY σ2
Y

))
. (21)

Then, for the conditional distribution,

[Y |X = x] ∼ N(µY + σXY (x− µX)/σ2
X , σ

2
Y − σ2

XY /σ
2
X)

and, with Φ denoting the standard normal distribution function,

1− FY |X(z|z) = 1− Φ

(
z − µY − σXY (z − µX)/σ2

X

(σ2
Y − σ2

XY /σ
2
X)1/2

)
= 1− Φ

(
z(1− σXY /σ2

X)− µY + σXY µX/σ
2
X

(σ2
Y − σ2

XY /σ
2
X)1/2

)
. (22)

This is always decreasing in z if 1− σXY /σ2
X ≥ 0.

Remark 3. One can have 1− σXY /σ2
X = 1− ρXY σY /σX < 0 for ρXY positive and

σY /σX sufficiently large. An extreme case is as follows: let ρXY = 1, µX = µY =
0, σ2

X = 1, and Y = aX with a > 1. Then σY = aσX = a and 1 − σXY σY /σX =
1− a < 0. The event {X ≤ Y } corresponds to {X ≥ 0} and

Pr(X ≤ x |X ≥ 0) =

{
0 if x < 0

2Φ(x)− 1 if x ≥ 0
≤ Φ(x) = Pr(X ≤ x) (23)

violating the inequality for all x.
The next example illustrates the effect of varying SSD on the strength of violations

of Inequality (11):

Example 4 (Ex-Gaussian marginals). Assume go and stop processing times follow
an ex-Gaussian distribution3; thus, Tgo = Ngo + Ego and Tstop = Nstop + Estop with
Ego, Estop exponentially distributed and Ngo, Nstop normally distributed random vari-
ables; moreover, stochastic independence is assumed throughout except for the pair
{Ngo, Nstop} which has a bivariate normal distribution with correlation ρ.

As depicted in Figure 1, the signal-respond distribution functions are ordered
according to SSD values, with violation of Inequality (10) decreasing with increasing
SSD.

3The Gaussian assumption permits positive probability for negative values of Ngo and Nstop, but they
are negligible given the parameter values.
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A numerical evaluation by double integration is based on the following

(Ngo, Nstop) ∼ N2

(
(µ1, µ2),

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2)

))
truncated below at (0, 0), and

Ego ∼ Exponential(rate =λ), Estop ∼ Exponential(rate =λ), with (Ngo, Nstop) ⊥
Ego ⊥ Estop.

Let Y = Ngo, Z = Ngo − Nstop, so that E (Z) = µ1 − µ2, Var (Z) = ω2 =
σ2

1 + σ2
2 − 2ρσ1σ2, Cov (Y,Z) = σ2

1 − ρσ1σ2, ρ∗ = Cor (Y, Z) = (σ2
1 − ρσ1σ2)/(σ1ω).

Then

Pr(Tgo < t) = Pr(Ngo + Ego < t)

Fig. 1 Violation of Inequality 11 as a function of stop signal delay. Go distribution (Fgo) and
signal-respond distributions (Fsr) from a correlated (ρ = .9) ex-Gaussian race model for SSD values
5, 45, 60, 110 [ms] and parameter values: µgo = 252, µstop = 204, σgo = 37, σstop = 60 [ms], and
λ = 0.8. Corresponding means are depicted in the upper-left inserted figure.
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=

∫ ∞
0

Pr(Ngo < t− e1)λe−λe1de1

=

∫ ∞
0

Φ((t− e1 − µ1)/σ1)λe−λe1de1.

Pr(Tgo < Tstop + td) = Pr(Z < −Ego + Estop + td)

=

∫ ∞
0

∫ ∞
0

Φ((e2 − e1 + td − (µ1 − µ2))/ω)λ2e−λe1−λe2de1de2.

Pr(Tgo < t, Tgo < Tstop + td) = Pr(Y < −Ego + t, Z < −Ego + Estop + td)

=

∫ ∞
0

∫ ∞
0

Φ2

( (t− e1 − µ1)

σ1
,

(e2 − e1 + td − (µ1 − µ2))

ω
; ρ∗
)
λ2e−λ(e1+e2)de1de2

where Φ2(; θ) is the bivariate normal cdf with zero means, unit variances and
correlation θ.

The next example illustrates Proposition 2 and Definition 3 using exponential
marginals.
Example 5 (Gumbel’s bivariate exponential distribution).

Hθ(x, y) =

{
1− e−x − e−y + e−(x+y+θxy), if x ≥ 0, y ≥ 0

0, otherwise
(24)

where θ is a parameter in [0, 1]. Then the margins are obviously exponential: F (x) =
1 − e−x and G(y) = 1 − e−y with inverses F−1(u) = − ln(1 − u) and G−1(v) =
− ln(1− v). Inserting F−1(u) and G−1(v) for x and y, respectively, in Equation (24)
yields its copula

Hθ(F
−1(u), G−1(v)) = u+ v − 1 + (1− u)(1− v)e−θ ln(1−u) ln(1−v)

= Cθ(u, v).

Then,

Hθ(y|x) = 1− e−y(1+θx)(1 + θy). (25)

Replacing (X,Y ) with random variables (Tgo, Tstop)

Hθ(s, t; td) = C(Fgo(s), Fstop(t− td))
= 1− e−s − e−(t−td) + e−(s+t−td+θs(t−td)),

with s ≥ 0, t− td ≥ 0. From Eq. (25), the conditional df is

Hθ(t|s; td) = Pr(Tstop ≤ t− td |Tgo = s)

= 1− e−(t−td)(1+θs)(1 + θ(t− td))
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with s ≥ 0, t− td ≥ 0. Obviously, 1−Hθ(t|s; td) is decreasing in t, so by Proposition 2,
Inequality (11) is satisfied for all t ≥ td. Note that this already follows via Defini-
tion 3 because Gumbel’s bivariate exponential distribution is known to have negative
dependence.

The exponential marginals could be replaced by more realistic distributions like
Weibull or log-normal. However, given that we only have a sufficient condition for
Inequality (11) to hold, we cannot draw general conclusions about the effect of choosing
arbitrary marginals on the violation.

Choosing a copula: the role of dependent random
censoring

As noted above, due to the limited observability expressed in Equation (7) the model
builder faces a non-identifiability problem. Interestingly, it turns out that this problem
is formally equivalent to a classic one studied in actuarial science, an area concerned
with the determination of the time of failure of some entity, e.g. human or machine.
We first show the equivalence and then sketch some recent developments in actuarial
science and survival modeling relevant to the non-identifiability issue in stop signal
modeling.

Equivalence with dependent random censoring

Censoring is a condition in which the failure time is only partially known. In the case
of right censoring a data point is above a certain value but it is unknown by how
much. For example, in medical studies, one is often interested in the survival time T
of patients who will die of a certain disease. However, it often happens that patients
remain alive at the end of the study, or leave the study before the end for various
reasons, or die from another cause at some time point X referred to as observation
time (or random censoring time). If X < T the survival time is not observable. Thus,
one can directly estimate only the following two functions:

G(x) = Pr(X ≤ x) and p2(x) = Pr({X ≤ x} ∩ {T < X}), (0 ≤ x ≤ ∞)

by their empirical estimates. The following shows the formal equivalence with the
dependent race model:

Remark 4. (Colonius & Diederich, 2023) We equate distribution G(x) with Fgo(s)
and F (t) with Fstop(t). Thus, p2(x) = Pr({X ≤ x} ∩ {T < X}) corresponds to
Pr({Tgo ≤ s} ∩ {Tstop + td < Tgo}). Since the latter is not observable, we use the
following equality,

Pr(Tgo ≤ s)− Pr({Tgo ≤ s} ∩ {Tstop + td < Tgo})
= Pr({Tgo ≤ s} ∩ {Tgo < Tstop + td})
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= Pr(Tgo ≤ s |Tgo < Tstop + td) Pr(Tgo < Tstop + td)

= Fsr(s | td) [1− pr(td)],

showing a one-to-one correspondence between the observable quantities in dependent
censoring and the stop signal race model; note that we made use of the correspondence
of p2(∞) with Pr(Tstop + td < Tgo) ≡ pr(td).

Potential consequences for identifiability in stop signal modeling

In most work on censoring it is assumed that the survival time T is stochastically
independent of the censoring time X, but there are many instances in which this
independence assumption is violated. Consider, for example, the case where the patient
dies of another related disease, and such dependency should be taken into account in
the model.4

With F (t) and G(x) the distribution functions of T and X, respectively, one
assumes a copula C

C(F (t), G(x))

to specify the dependence between failure time and observation time. Modeling ran-
dom dependent censoring has recently become an active area of actuarial science and
statistics (Emura & Chen, 2018; Hsieh & Chen, 2020).

The formal equivalence to stop signal-dependent race models just established opens
up a host of results potentially relevant to the copula approach suggested here. The
approaches differ in whether they make parametric assumptions on the distributions
of T and X, consider a completely known copula, or only a semi-parametric model;
unsurprisingly, (non-)identifiability depends on the specifics of these assumptions. For
example, if the copula is known, the non-observable failure time distribution can be
determined uniquely given the observable data G(x) and p2(x) (Wang, Sun, Sun,
Zhou, & Wang, 2012). Translated to the stop signal model, this means that Fstop(t) is
uniquely determined in the context-independent race model with a specified copula.
There is a caveat concerning identifiability of the dependence parameter: a well-known
result implies that the numerical value of the dependence parameter, e.g. of δ in the
case of the FGM model, is not in general identifiable (Betensky, 2000) but, as noted
in Titman (2014, p. 457) it will often be possible to estimate both the dependence
parameter and the parameters of the margins simultaneously.

Most recently, Czado and Van Keilegom (2023) present sufficient conditions on
the margins and the partial derivatives of copula C(F (t), G(x)) to identify the joint
distribution of (T,X) including the association parameter of the copula. The margins
and the copula remain basically unspecified except for assuming that they belong
to some parametric family. Identifiability means here that the parameters uniquely
determine the densities of the observable random variables. Given the central role of

4A slightly more general case is when there are several possible cases of failure. Thus, the object (machine,
person, etc.) is simultaneously exposed to several, mutually exclusive and collectively exhaustive, causes of
failure (competing risks situation). Suppose that only the time of failure and the identity of its cause are
observable. A classic non-identifiability result is that under weak conditions it is always possible to generate
the data as if the different risks act as stochastically independent random variables (Tsiatis, 1975). This
result has found applications in non-parametric, parallel models of reaction time and choice (e.g., Marley
& Colonius, 1992; Townsend, 1976).
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the copula partial derivative in our approach (Equation 14), this seems to be a good
starting point for further investigation of copula-based race models for the stop signal
paradigm.

Summary and Discussion

The race model for stop signal processing is based on two important assumptions of
independence between the go and stop process: stochastic independence and context
independence. Recent empirical evidence violating predictions of this model has been
interpreted as a failure of context independence (e.g., Bissett, Jones, et al., 2021). In
addition, design issues in a large-scale study of brain development and child health
(ABCD study) (Casey et al., 2018), have raised doubts about the validity of con-
text independence and prompted the development of some alternative versions of the
race model dispensing with the assumption (Bissett, Hagen, Jones, & Poldrack, 2021;
Weigard, Matzke, Tanis, & Heathcote, 2023). The ubiquity of context independence
violations is currently under discussion. A recent study by Doekemeijer, Dewulf, Ver-
bruggen, and Boehler (2023) did not find evidence of violations suggesting that it may
depend on the complexity of the stopping task. In a similar vein, both theoretical and
empirical evidence for context independence violations exists for variations on the stop
signal paradigm. A case in point is stimulus selective stopping (e.g., Bissett & Logan,
2014), where two different signals can be presented on a trial, and participants must
stop if one of them occurs (stop signal), but not if the other occurs (ignore signal). It
has been hypothesized that in these tasks, the decision to stop or not will share lim-
ited processing capacity with the go task. When the decision is difficult, the go and
stop task will have to share capacity for a longer period, resulting in longer RTs on
stop signal trials (Verbruggen & Logan, 2015).

In sum, further research about the status of context independence seems necessary
(see also below).

The important points that we demonstrate here are, first, that assuming stochastic
dependency between go and stop processing can also account for observed violations
of the independent (IND) model. In particular, sufficient conditions for a failure of the
critical distribution inequality are presented, implying a reversal of the predicted order-
ing of the means for go and signal respond processing. This is all the more intriguing as
it seems unlikely that one can pinpoint which type of violation of independence– con-
text or stochastic– is causing the failure of the IND model without adding assumptions
that would themselves need further justification.

Second, in order to introduce stochastic dependency we expound on the critical
role of the concept of copulas, a rapidly developing area of statistics (e.g., Joe, 2014).
After providing the general feasibility of deriving race models from copulas, several
detailed examples illustrated the approach. Applying a copula to our paradigm is not
straightforward, however, because due to the non-observability of stop signal process-
ing time, one of its marginals has to be derived rather than simply estimated from
data. Fortunately, we can show that this problem is formally equivalent to a well
known one posed in random dependent censoring, an active area of actuarial science
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(e.g., Crowder, 2012). We report on a number of recent results on (non-) identifiabil-
ity in this field, depending on specific assumptions, that suggest to be of relevance for
stop signal modeling.

Given our results, we feel that discussing the distinction between context and
stochastic independence has mostly been too superficial, if not lacking entirely, in the
stop signal literature up to now; but see Verbruggen and Logan (2015). Whenever
there is empirical evidence–whether behavioral or neural– for shortcomings of the IND
model, context independence is typically pointed at as causing the problem (e.g., Bis-
sett & Poldrack, 2022; Schall, Palmeri, & Logan, 2017). However, there may actually
be good reasons not to drop it at all if one wants to retain the basic idea of a race
model.

The argument comes from modeling a related paradigm, the redundant signals
detection task for simple reaction time5 (e.g., Miller, 1982). In an elaborate analysis
of the notion of “interactive race”, Miller (2016) shows, with a simple formal argu-
ment, that dropping context independence makes race models unfalsifiable, that is, any
observed redundant-signals reaction time distribution is explainable perfectly within
a context-dependent race if no further constraints are added. In other words, context
independence is an elemental feature of race models. Given that observability in the
stop signal task is even more limited than in the redundant signals task, the conclu-
sion also applies to this paradigm. It should be noted, however, that explicit cognitive
processing models using parametric assumptions do not necessarily require context
independence and are still empirically testable.6

Turning to stochastic dependency, it is important to realize that the choice of
a certain copula does not automatically imply the specific type of dependency. For
example, in a semi-parametric copula like the FGM copula (see Example 2), it depends
on the sign of the association parameter whether positive or negative dependence
occurs. Moreover, the parameter value in the copula does not accurately reflect the
strength of the dependency; taking again the FGM copula, the extremal values of its
parameter δ, −1 and +1, do not correspond to extremal correlation values but, e.g.,
τ = 2δ/9 for Kendall’s tau.

What can be said about the sign of dependency between go signal and stop signal
processing time? In our ex-Gaussian example (Example 4) high positive correlation
was required to elicit violation of the distribution order inequality, Fgo(t) ≤ Fsr(t | td).
On the other hand, findings from the neurophysiology of saccadic countermanding
have shown that the neural correlates of go and stop processes consist of networks of
mutually interacting gaze-shifting and gaze-holding neurons. This has been interpreted

5The participant’s task is to press a button as soon as a signal is detected, say, either a visual or an
auditory stimulus, and both single-modality and bimodal stimuli are presented over different trials. In a
simplified model version, let V and A be the time to process the visual and auditory stimulus, respectively,
and to prepare and execute the response. The “race model” (Colonius, 1990b; Diederich, 1995; Diederich &
Colonius, 1987; Raab, 1962) holds that the response in the bimodal condition is determined by the minimum
time, min{V,A}. In close correspondence with the stop signal race model, context independence here means
that the distribution of V and A in the single stimulus conditions has to be equal to the margins of the
bivariate distribution of (V,A) in the bimodal condition.

6For example, in the racing-diffusion evidence-accumulation model (RDEX–ABCD) (see Tanis, Heath-
cote, Zrubka, & Matzke, 2022; Weigard et al., 2023), developed to describe the context independence
violations in the ABCD study (Casey et al., 2018), to account for the effect of visual masking on evidence
accumulation for go choices at short SSDs, the go process has an accumulation rate that changes with SSD
up to an asymptotic level that matches go trials with no masking.
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as creating a paradox between neural and behavioral modeling (Boucher, Palmeri,
Logan, & Schall, 2007; Schall et al., 2017): How can interacting circuits of mutually
inhibitory neurons instantiate stop and go processes with stochastically independent
finishing times? In an effort to bring these findings in line, we developed a general-
ization of the IND race model that allows for perfect negative dependency between
the processes7 (Colonius & Diederich, 2018). This model, however, just like the IND
model, does not predict violations of the distribution order inequality.

Thus, the final verdict about the “true” nature of dependency between going and
stopping seems still standing out. There is a possibility that limiting the alternatives
to just positive or negative dependence, or independence, is not appropriate. Schall
et al. (2017) tried to resolve the above paradox by assuming that the go and stop
processes are developing independently “most of the time” with a strong and quasi-
instantaneous interaction at the end of processing. Generalizing this idea, Bissett,
Jones, et al. (2021) simulated a (preliminary) interactive model where the potency of
the stop signal to inhibit the go process is varying across trials according to a Gaussian
distribution. They found strong violations of the IND model only at short SSDs and
could explain this by the different time spans available for a weak stop signal to affect
the go process8. Both these versions of an interactive race are claimed as relaxing the
context independence assumption of the IND model. Because the models are not fully
formalized, this is difficult to argue with. However, there may be ways to develop race
models for these interactive processes drawing upon local dependency measures. It is
well known that a single signed measure like Pearson’s correlation or Kendall’s tau
cannot capture non-linear dependencies in variables where, for some regions of support,
dependence is stronger (positive or negative) and for other regions it is weaker. A
specific approach capturing such more complex dependency structures is called local
Gaussian correlation (Tjostheim & Hufthammer, 2013; Tjostheim, Otneim, & Stove,
2022) and this may deserve closer scrutiny.

Appendix A Proof of Proposition 2

Assume Pr(X ≤ Y ) > 0. Let FY |X = 1 − FY |X and note that h(z) = I(−∞,x)(z) is
decreasing where I denotes the indicator function. Fix x in the support of X. X is
continuous with density fX . Then

Pr(X ≤ x |X ≤ Y ) =
Pr(X ≤ x,X ≤ Y )

Pr(X ≤ Y )
=

∫ x
−∞ FY |X(z|z)fX(z) dz∫∞
−∞ FY |X(z|z)fX(z) dz

7Assuming the countermonotonicity copula (of perfect negative dependence).
8Bissett, Jones, et al. (2021, p. 4–5):“When cross-trial variability in stop potency was instantiated at all

SSDs, this resulted in large violations of context independence only at short SSDs, even though the same
variability was present in longer-SSD trials. This is because when SSDs were long and inhibition was weak,
the go process was already near completion when the weak inhibition began, so it had little opportunity to
slow the go proces , and stop failure RTs were largely unaffected by this weak inhibition (Fig. 2b). However,
when SSDs were short and inhibition was weak, the go process had just started when the weak inhibition
began, and therefore the interaction between the weak stop process and the go process had more time to
unfold, which resulted in more severe slowing of simulated stop-failure RTs and, in turn , severe simulated
violations of context independence (Fig. 2c). When stop potency is allowed to vary, a prolonged dependency
between the go and stop processes arises on weak-inhibition trials, particularly at short SSDs.”
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=

∫∞
−∞ I(−∞,x)(z)FY |X(z|z)fX(z) dz∫∞

−∞ FY |X(z|z)fX(z) dz

and

Pr(X ≤ x) =

∫ ∞
−∞

I(−∞,x)(z)fX(z) dz.

By assumption, g(z) = FY |X(z|z) is decreasing in z. The covariance of two decreasing
functions is non-negative (if it exists, see e.g. Egozcue, Garcia, and Wong (2009)).
Since g and h are bounded functions,

cov(g(X), h(X)) ≥ 0 or E[g(X)h(X)] ≥ E[g(X)] E[h(X)].

With the definitions of g, h,

E[g(X)h(X)] =

∫ ∞
−∞

I(−∞,x)(z)FY |X(z|z) fX(z) dz

E[g(X)] =

∫ ∞
−∞

FY |X(z|z) fX(z) dz

E[h(X)] =

∫ ∞
−∞

I(−∞,x)(z) fX(z) dz.

The inequality Pr(X ≤ x, X ≤ Y ) ≥ Pr(X ≤ Y ) Pr(X ≤ x) follows.

Appendix B Copula theory background

We only consider two-dimensional (d = 2) copulas here; for the general case, we refer
to Joe (2014); Nelsen (2006) and Durante and Sempi (2016). Proposition 2 follows
directly from Sklar’s theorem, a simple version of which is as follows:

Proposition 3.(a) For a bivariate distribution H with margins H1 and H2, the copula
C associated with H exists with uniform on [0, 1] margins

H(x1, x2) = C(H1(x1), H2(x2)), (B1)

for (x1, x2) ∈ R2.
(b) If H is a bivariate distribution function with continuous margins H1, H2 and quantile

functions (inverses) H−1
1 , H−1

2 , then

C(u1, u2) = H(H−1
1 (u1), H−1

2 (u2)), (B2)

for (u1, u2) ∈ [0, 1]2.

The proof follows essentially from two properties: (i) If F is a univariate cdf and
Y ∼ F (∼ means “distributed as”), then F (Y ) ∼ U(0, 1);
(ii) if F is a univariate cdf with inverse F−1 and U ∼ U(0, 1) , then F−1(U) ∼ F .
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Hence, if (X1, X2) ∼ H, then (H1(X1), H2(X2)) ∼ C, and if (U1, U2) ∼ C, then
(H−1

1 (U1), H−1
2 (U2)) ∼ H.

We also need this property of conditional (cumulative) distribution functions (cdfs):

Lemma 1. For random variables X1, X2 the conditional cdf is defined as

H2|1(x2|x1) = Pr(X2 ≤ x2 |X1 = x1)

= lim
ε→0+

Pr(x1 ≤ X1 < x1 + ε,X2 ≤ x2)

Pr(x1 ≤ X1 < x1 + ε)

= lim
ε→0+

Pr(x1 ≤ X1 < x1 + ε,X2 ≤ x2)

ε
lim
ε→0+

ε

Pr(x1 ≤ X1 < x1 + ε)

=
∂H12(x1, x2)

∂x1
/h1(x1) (B3)

For the special case of (X1, X2) = (U1, U2) (that is, Ui ∼ U(0, 1)):

H2|1(x2|x1) = C2|1(u2|u1)

=
∂C12(u1, u2)

∂u1
/1

= Pr(U2 ≤ u2 |U1 = u1). (B4)
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