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0.1 Overview

The investigation of processes involved in merging information from differ-

ent sensory modalities has become the subject of research in many areas,

including anatomy, physiology, and behavioral sciences. This field of research

termed “multisensory integration” (MI) is flourishing, crossing borders be-

tween psychology and neuroscience. The focus of this chapter is on mea-

sures of multisensory integration based on numerical data collected from

single neurons and in behavioral paradigms: spike numbers, reaction time,

frequency of correct or incorrect responses in detection, recognition, and dis-

crimination tasks. Defining that somewhat fuzzy term, it has been observed

that at least some kind of numerical measurement assessing the strength of

crossmodal effects is required. On the empirical side, these measures typ-

ically serve to quantify effects of various covariates on MI, like age, cer-

tain disorders (e.g., dyslexia), developmental conditions, training and reha-

bilitation, in addition to attention and learning. On the theoretical side,

these measures often help to probe hypotheses about underlying integration

mechanisms like optimality in combining information or inverse effective-

ness, without necessarily subscribing to a specific model.

Given the important role of its neurophysiological basis, we start with a

presentation of the major rules of integration observed in neural responses in

the form of spike numbers elicited, and introduce numerical measures based

on them. The essential role of the concept of “probability summation” in

deriving measures satisfying certain “optimality” criteria emerges soon, and

it reappears in later sections on measures based on response speed in different

behavioral paradigms.1

Subsequently, measures based on accuracy are discussed in the context

of signal detection theory, followed by measures developed within the broad

area of audiovisual speech identification. A proposal for measuring integra-

tion efficiency based on the Fechnerian Scaling approach closes that section.

The number of models trying to reveal the mechanisms underlying MI

at different levels of description, from the neural to the behavioral, is large

and growing. In the corresponding section, we had to be very selective,

and we primarily sketch models that help motivating a specific measure of

integration.

In order to keep the presentation focused, measures suggested for multi-

sensory “illusions”, like the McGurk effect or the sound-induced flash illusion

(typically, percentages), are not considered at all, nor are those derived from

functional magnetic resonance imaging data sets. A list of all measures dis-

1 Optimality is always defined here only in relation to a specific paradigm.
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cussed in the chapter is found in the discussion section. Finally, the reader

should not expect a balanced presentation of the large field of measuring

multisensory integration; instead, we mainly consider those more or less re-

lated to our own work.

0.2 Measures of multisensory integration: introduction

0.2.1 Defining multisensory integration

Progress in MI is documented in several recent handbooks (see Section 0.8

for an overview of literature). Due to the large range of contexts – from

neurophysiology to applied psychology and marketing, from single cells to

food tastes – the field has been labeled in different ways, e.g. as “intersen-

sory facilitation/enhancement”, “intersensory/crossmodal interaction”, or

“multisensory integration”, creating some semantic confusion among many

researchers. In 2010, a group of authors, together with Barry Stein, one of

the founders of the field in neuroscience, agreed upon defining “multisensory

integration” as

“the neural process by which unisensory signals are combined to form

a new product. It is operationally defined as a multisensory response

(neural or behavioral) that is significantly different from the responses

evoked by the modality-specific component stimuli.” (Stein et al.,

2010, p.1719).

This broad definition does not commit to a specific model or experimental

paradigm, nor to a criterion of optimality. Nevertheless, it requires some type

of measure to assess whether the multisensory response is “significantly dif-

ferent” from the unisensory responses. Investigating such measures, as well

as some models related to them, is the focus of this chapter.2 Moreover,

while the definition encompasses both facilitation and inhibition of the mul-

tisensory response, most measures presented here are formulated for the case

of facilitation only and would need to be adapted to comprise inhibition.

0.2.2 Measuring multisensory integration

First, we introduce some needed notation. Beginning with the stimulus side,

stimuli of a specific modality are labeled by sA, sV , sT , for auditory, visual,

and tactile (or somatosensory) stimuli, respectively, where further stimulus-

specific information, like intensity, have to be added as needed. When a

2 Note, however, that issues of testing statistical significance are not central to this chapter.
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Acronym Meaning

CRE crossmodal response enhancement
E expected value (mean)
FS Fechnerian Scaling
FLMP fuzzy logical model of perception
IE integration efficiency
MI multisensory integration
OUP Ornstein-Uhlenbeck process
PRE prelabeling (model)
PS probability summation
RMI race model inequality
RT reaction time
SC superior colliculus
SDT signal detection theory
SFE statistical facilitation effect
SOA stimulus onset asynchrony
SRT saccadic reaction time
TOJ temporal order judgment
TWIN time window of integration (model)
UI unisensory balance
VE/AE visual/auditory enhancement

Table 0.1 Abbreviations used in the chapter

label is only used as index of modality, we often omit the s part. A basic

distinction to keep in mind is between a unisensory context where stim-

uli of a single modality, sA, sV , sT , are presented, and a cross-sensory con-

text where stimuli from two or more modalities are presented in a to-be-

specified spatio-temporal arrangement. For concreteness, we refer to A, V, T

as the unisensory context where only auditory, visual, or tactile stimuli are

presented, respectively. Similarly, VA denotes a bisensory (visual-auditory)

context with stimulus combinations labeled sVA being presented, VAT a

trisensory context with combined stimuli sVAT , etc., where again further

information about the specific presentation mode may have to be added.

When the number of sensory modalities is not specified, we also use the la-

bel crossmodal (for context, condition, stimulus, response, etc.). Moreover,

in this chapter mainly measures combining the visual and auditory modali-

ties will be considered, but most of these would also apply to other modality

combinations with minor modification.

Each time a specific auditory stimulus sA, say, is presented, it will give rise

to a unisensory response, e.g., a reaction time or a number of spikes within

a certain time interval. Typically, these responses are considered as instan-

tiation (realization) of some random variable, e.g. RTA or NA, respectively.
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Similarly, a combination stimulus sVA elicits bisensory responses considered

as realizations of some random variables, RTVA or NVA. To simplify the

exposition, we will neglect all experimental details for now.

At the sample level, a descriptive measure of MI has to relate the set

of multisensory responses to the sets of unisensory responses; for example,

how much differs the average auditory-visual response to the average audi-

tory and average visual response? At the level of random variables, the MI

measure should assess how, or how much, the distribution of responses to

bisensory stimuli differs from the distributions to unisensory stimuli.

We define measures only at the level of probability distributions, the corre-

sponding sample level measures are then easily derivable. In order to reduce

the number of possible formats, one should consider necessary or desirable

features of such a measure, denoted by CRE (crossmodal response enhance-

ment/inhibition). We first state a few elementary properties any CRE mea-

sure of MI should have. The following list seems uncontroversial:

(i) (Real-valued function) CRE is a real-valued function of the crossmodal

and unisensory empirical distributions, or of some parameter of these dis-

tributions (e.g. the mean);

(ii) (No-integration case) If the crossmodal distribution does not differ from

one of the unisensory distributions, CRE equals zero;

(iii) (facilitation-inhibition) Negative values of CRE indicate crossmodal inhi-

bition, positive values crossmodal facilitation.

Clearly, these features do not impose strong restrictions on the form of the

measure; this does not come as a surprise, however, given the huge number

of different experimental paradigms where MI is observable in various forms.

Thus, (i) to (iii) should be seen as minimal set of necessary requirements.

Next, we consider two first examples satisfying them.

Example 0.1 (Spike numbers) The following measure of MI in a single

neuron is common in neurophysiology:

CRESP =
ENV A −max{ENV ,ENA}

max{ENV ,ENA}
× 100, (0.1)

where ENV A is the mean3 (absolute) number of spikes in response to the

crossmodal stimulus and ENV ,ENA denote the mean (absolute) numbers

of spikes to the visual and auditory unisensory stimuli, respectively.4 Thus,

3 Note that we drop brackets in E[.] when there is no risk of confusion.
4 Spike numbers are counted in a specified time interval and may or may not include

spontaneous activity.
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CRESP quantifies crossmodal enhancement/inhibition as the percentage dif-

ference between the response to a cross-modal pair VA and the largest re-

sponse to one of its unisensory components, V or A.

Example 0.2 (Reaction time measure) An analogous measure for RTs is

CRERT =
min{ERTV ,ERTA} − ERTV A

min{ERTV ,ERTA}
× 100. (0.2)

where ERTV A is mean RT to an auditory-visual stimulus combination and

min{ERTV ,ERTA} is the faster of the unisensory mean RTs to the vi-

sual and auditory stimulus. Thus, CRERT expresses multisensory enhance-

ment/inhibition as a proportion of the faster unisensory response. For ex-

ample, CRERT = 10 means that mean response time to the visual-auditory

stimulus is 10% faster than the faster of the expected response times to

unimodal visual and auditory stimuli.

0.3 Measures for the multisensory neuron response

0.3.1 Rules of multisensory integration

First systematic neuronal studies of MI, performed in the 1970s, focused

on a midbrain structure, the cat superior colliculus (SC) (Meredith and

Stein, 1983). Stein and colleagues showed that neurons in the deep layers of

the SC are primary sites of multisensory convergence: if a visual-auditory

stimulus combination is presented such that the visual stimulus is within

its visual receptive field and the auditory stimulus is within its auditory

receptive field, it will typically produce response enhancement, in the form

of increased spike numbers, even when the stimuli are not found at the

exact same spatial location. Likewise, response depression (inhibition) tends

to occur if the visual stimulus is within its receptive field while the auditory

stimulus is outside its receptive field. This has become known as the spatial

rule of MI.

Similarly, changing the interval between auditory and visual stimulation

can change enhancement to depression: presenting a visual stimulus 50 ms or

150 ms before the auditory (V 50A or V 150A, for short) produced response

enhancement, whereas longer intervals (V 300A or A200V ) produced fewer

impulses than a unisensory stimulus, i.e., depression (Meredith and Stein,

1983). The effect, termed temporal rule of MI, largely depends on the amount

of overlap of the peak discharge periods of the neuron’s unisensory responses.

Later, these spatiotemporal rules of single neuron recordings have also been
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observed in other species like the monkey, ferret, owl, guinea pig, rat, snake,

and others.

A third major factor affecting MI is the efficacy of the component stimuli

within the neuronal receptive fields. Response enhancement is found to be

the greater the less effective the unisensory stimuli are. This rule of inverse

effectiveness is most impressive when the unisensory stimulusintensities are

below the threshold of eliciting any response from the neuron but in combi-

nation generate a reliable response.

More recently, a more nuanced function of unisensory signal strength and

the temporal rule has been observed in cat SC (Miller et al., 2015). For

each neuron, response magnitude (mean number of impulses per trial) to

the visual (V ) and the auditory stimuli (A) can be used to quantify the

notion of unisensory imbalance (UI):

UI =
|ENA − ENV |
ENA + ENV

× 100. (0.3)

UI quantifies the relative difference between the response magnitude to the

visual and the auditory stimuli. It has a minimum of zero when the visual

and auditory responses are of equal magnitude and a maximum of 100 when

one of the responses is lacking.

In view of the above definition of crossmodal enhancement (Equation 0.1),

increasing unisensory imbalance should not affect CRESP . However, across

a wide range of response magnitude, increasing imbalance was found to be

coupled with both a decrease in the multisensory response (ENV A) and

in crossmodal enhancement CRESP (see Figure 0.1). Moreover, the order of

arrival also mattered: when the unisensory response magnitudes were imbal-

anced, multisensory enhancement was maximized when stronger responses

were advanced in time relative to weaker responses (“stronger first”) and

minimized when stronger responses were delayed (“stronger second”) (for

details, see Miller et al., 2015). Thus, only when the unisensory stimuli

are “balanced”, multisensory enhancement depends solely on their absolute

temporal offset.

Still a different twist on the single-cell mechanism in SC has emerged from

developmental findings. Since the early studies, it had been known that, just

before and after birth, cat SC neurons are largely unresponsive to sensory

stimulation and lack spontaneous activity. Successively, neurons start re-

sponding to tactile, then auditory, and finally visual stimulation. Besides

unisensory neurons, multisensory neurons appear, but they do not yet show

enhanced responses, instead they appear to act as a common conduit for dif-

ferent senses to reach the same motor output systems. These early studies
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had shown that blocking an animal’s multisensory experience, e.g. rearing

cats with no visual stimulation at all, results in multisensory responses not

stronger than the most effective component, suggesting CRE to be equal

to zero. However, findings by Yu and colleagues (Yu et al., 2019) revealed

that there exists competition between the senses in these “näıve” neurons:

crossmodal stimuli, whether spatio-temporally disparate or not, can elicit

inhibition in these neurons’ responses. They conclude that the default mode

of multisensory processing in SC is competition rather than absence of inte-

gration, and they develop a neurocomputational model consistent with this

assumption. Thus, some form of MI (including competition) seems to occur

at all stages of maturation, and the ability of enhanced (orienting) responses

to crossmodal events increases over subsequent stages of development (Yu

et al., 2019, p. 1374).

Figure 0.1 Relationships between multisensory responses (ME ≡ CRESP )
and unisensory imbalance (UI) in normal and näıve cohorts. Panel A
Neurons from normally-reared animals produce their greatest response en-
hancements when the spatiotemporally concordant cues produced balanced
unisensory responses: an inverse relationship between ME and UI (dotted
line). Panel B Näıve SC neurons showed a similar inverse relationship be-
tween ME and UI, but even-balanced samples failed to produce significantly
enhanced multisensory products, and imbalanced samples induced multi-
sensory depression. Panel C Histograms summarizing the results. Vertical
lines through the bars represent standard error (from Yu et al., 2019).

All the rules, sometimes referred to as principles of MI, discussed above

have raised a discussion about whether, and in how far, they also deter-

mine multisensory behavior in humans and under more complex stimulus

contexts. Before we follow up on these issues, we need to consider an aspect

that proved particularly noteworthy in measuring MI.
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0.3.2 Multisensory integration vs. probability summation

The fact that a multisensory neuron is responsive to multiple sensory modal-

ities does not guarantee that it has actually engaged in integrating its mul-

tiple sensory inputs. Rather, it may simply respond to the most effective

stimulus in a given trial, i.e. to the stimulus eliciting the strongest response.5

In other words, it is possible that the response to a visual-auditory stimulus

is simply determined by the larger of the responses to the modality-specific

components, that is, by the the component that happens to elicit the higher

absolute number of spikes in a given trial. Assuming random variation of

the responses, such a mechanism is known as probability summation (PS).

In order to explore implications for how to measure MI in single neurons in

the presence of PS, we first introduce some relevant statistical concepts. Only

the case of facilitation will be discussed here, while the case of inhibition

can be developed analogously. As before, the unisensory (visual, auditory)

responses are conceived of as realizations of random variables NV and NA.

We define distribution functions GV and GA, respectively:

P [NV ≤ nV ] = GV (nV ) and P [NA ≤ nA] = GA(nA),

with nV and nA taking integer values 0, 1, . . .. For the bisensory condition,

we assume a distribution function GV A exists such that

P [NV A ≤ n] = GV A(n),

with n = 0, 1, . . .. Thus, NV , NA, and NV A are random variables whose

realizations (samples) are observed in the experiment under to-be-specified

conditions.

0.3.2.1 Probability summation (PS) in spike numbers

For clarity, the three assumptions underlying the concept of PS in this mul-

tisensory context will be stated in detail. The first assumption refers to the

observation that realizations of the random variables NV and NA are col-

lected under different stimulus conditions (visual vs. auditory) and, thus,

occur in distinct probability spaces. A–priori, there is no prescribed way

how to combine them. In particular, any assumption about stochastic (in-

)dependence betweenNV andNA is meaningless. However, one can postulate

a stochastic coupling6 of the two random variables.

5 As Stein and colleagues (Stein et al., 2009, p. 114) have put it, “At the time of the early
physiology studies in the 1980s, it was considered possible that these neurons only represented
a common route by which independent inputs from a variety of senses could gain access to
the same motor apparatus in generating behavior (e.g., possibly employing a
“winner-take-all” algorithm).”

6 See Colonius (2016) for an introduction to that concept in this context.
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Assumption 1: There exists a random vector (ÑV , ÑA) with a joint distri-

bution H̃V A,

H̃V A(nV , nA) = P [ÑV ≤ nV , ÑA ≤ nA].

Assuming the existence of H̃V A amounts to a coupling of the random vari-

ables ÑV and ÑA, which is always possible. Of course, we want ÑV and ÑA

to be a “copy” of NV and NA in the following sense:

Assumption 2: The marginal distributions of H̃V A(nV , nA) are equal to GV
and GA, respectively:

H̃V A(nV ,∞) = GV (nV ) and H̃V A(∞, nA) = GA(nA).

This important restriction, equating the marginals to the observable unisen-

sory response distributions, is often called “context invariance”.

Note that we have not assumed a specific form for H̃V A. In fact, we are

only interested in the values on the diagonal, H̃V A(n, n). For n = 0, 1, . . . ,

we write

H̃V A(n, n) = P [{ÑV ≤ n} ∩ {ÑA ≤ n}]
= P [max{ÑV , ÑA} ≤ n]

≡ G̃V A(n).

The third assumption specifies the probability mechanism proper:

Assumption 3: For n = 0, 1, . . .

GV A(n) = G̃V A(n), (0.4)

that is, the observable crossmodal responses are the result of taking the

maximum of the unisensory responses.

It is always possible to construct some bivariate distribution H̃V A(nV , nA),

e.g., by assuming stochastic independence:

H̃V A(nV , nA) = P [ÑV ≤ nV ] P [ÑA ≤ nA],

which implies the empirically testable hypothesis

GV A(n) = G̃V A(n) = GV (n)GA(n)

for n = 0, 1, . . . , under context invariance (Assumption 2 ).

In general, however, it is not obvious how Assumption 3 should be tested.

Stochastic independence, while convenient, may not be the most judicious

choice, as will be argued below.
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0.3.3 Measures of MI under PS hypothesis

It is straightforward to compare observed responses with those predicted

by PS: one has to gauge the difference between the means (expected val-

ues) associated with GV A and G̃V A, that is ENV A and E max{NV , NA},
respectively. The common measure of MI based on spike counts introduced

in Example 0.1,

CRESP =
ENV A −max{ENV ,ENA}

max{ENV ,ENA}
× 100, (0.5)

is then replaced by

CRE∗SP =
ENV A − E max{NV , NA}

E max{NV , NA}
× 100. (0.6)

Note that Assumption 2 permits us to write measure CRE∗SP with NV , NA

instead of ÑV , ÑA. By a well-known statistics result (Jensen’s Inequality,

e.g. Ross, 1996),

max{ENV ,ENA} ≤ E max{NV , NA}

always holds, obviously implying

CRE∗SP ≤ CRESP . (0.7)

This inequality reveals an important consequence: in order to assess “true”

MI, that is, over and above the effect of PS, the criterion mean number

of spikes observed (ENAV ) has to be larger than the mean taking PS into

account.

0.3.3.1 Effects of unisensory imbalance

The move from CRESP to CRE∗SP opens up the possibility to probe effects

of unisensory imbalance mentioned above (Equation 0.3),

UI =
|ENA − ENV |
ENA + ENV

.

Note that only the maximum of ENA and ENV enters into CRESP , so

that varying imbalance has no effect on that index. In contrast, computing

E max{NV , NA} involves the distribution of both variables, NA and NV , and

it is easy to find instances where CRE∗SP depends on both ENA and ENV

simultaneously (see, e.g. Colonius and Diederich (2017) for an example with

Poisson-distributed spike counts).
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0.3.3.2 Towards an optimal measure of MI

Inequality (0.7) holds without assuming a specific distribution for G̃V A.

While stochastic independence between NV and NA is typically taken for

granted in computing the value of E max{NV , NA}, it turns out that it is not

the most conservative choice possible.7 To demonstrate, we recall (without

proof) a classic result from statistics (Fréchet, 1951) about upper and lower

bounds for arbitrary distributions, here applied to H̃V A.

Lemma 0.3 (Fréchet inequalities) For m,n = 0, 1, . . ., let H̃V A(m,n) =

P (ÑV ≤ m, ÑA ≤ n) be a bivariate distribution with marginals G̃V (m), G̃A(n),

respectively. Then,

max{0, G̃V (m) + G̃A(n)− 1} ≤ H̃V A(m,n) ≤ min{G̃V (m), G̃A(n)}.

The upper and lower bound in the lemma represent bivariate distributions

as well, with the same marginals as H̃V A(m,n) but possessing maximal

positive, respectively negative, dependence between ÑV and ÑA (e.g., Joe,

1997). Setting m = n, we denote the lower bound with maximal negative

dependence by G̃
(−)
V A(n). Then,

G̃
(−)
V A(n) ≡ max{0, G̃V (n) + G̃A(n)− 1} ≤ G̃V A(n) (0.8)

for n = 0, 1, . . ..

Importantly, maximal negative dependence between ÑV and ÑA maxi-

mizes the expected value of E max{NV , NA}:

Lemma 0.4 Let E(−) max{ÑV , ÑA} be the expected value of max{ÑV , ÑA}
under bivariate distribution max{0, G̃V (m) + G̃A(n)− 1}; then

E max{ÑV , ÑA} ≤ E(−) max{ÑV , ÑA}

under any bivariate distribution H̃V A(m,n) for E max{ÑV , ÑA}.

This can be shown as follows. Rewriting Equation (0.8) as

1− G̃V A(n) ≤ 1− G̃(−)
V A(n)

and summing over all n yields

E max{NV , NA} ≡
∞∑
n=0

[1−G̃V A(n) ≤
∞∑
n=0

[1−G̃(−)
V A(n) ≡ E(−) max{NV , NA}.

The upshot of Lemma 0.4 is that an optimal choice for defining CRE∗SP
(Equation 0.6) is to insert E(−) max{NV , NA}:
7 Here, ’conservative’ means that one wants to avoid claiming MI to hold when, in reality, it

does not.
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Definition 0.5 The measure of MI taking into account PS with maximal

negative dependence between the unisensory responses is

CREmaxSP =
ENV A − E(−) max{NV , NA}

E(−) max{NV , NA}
× 100. (0.9)

Note that it is not claimed here that a multisensory neuron actually op-

erates under this extreme negative dependency rule. As long as PS is con-

sidered as possible alternative to “true” MI, however, some specification of

the stochastic relation between the unisensory responses has to be made in

CRE∗SP . Assuming maximal negative dependency is simply the most effi-

cient way to hedge against a “false alarm”, that is, declaring true MI while

enhancement may simply be a product of PS. Whenever there is empiri-

cal or theoretical evidence in favor of some other form of dependence, e.g.

stochastic independence, this could be used to modify the benchmark ap-

propriately.

Because, in general, the new measure is more restrictive than the tradi-

tional CRE measure, many neurons previously categorized as “multisensory”

may lose that property. The purpose of the new measure corresponds to that

of the traditional measure: given a fixed statistical criterion, one may cate-

gorize a single neuron as either being “multisensory” or not. It is of course

possible that a neuron actually ”truly” integrates the unimodal activations

but still does not meet the criterion set by maximal negative PS. However,

as long as one has no direct insight into the integration mechanism, an al-

ternative interpretation in terms of PS simply cannot be ruled out.

0.3.3.3 Example application of CREmaxSP

Estimating E max{ÑV , ÑA} from sample data is straightforward. Without

going into detail, the procedure is as follows. We have two samples of num-

bers of spikes from each modality of size nv and na, say, and assume nv = na.

Under the stochastic independence version of SP, the number of spikes

occurring in trial i, i = 1, . . . , nv is randomly paired with the number of

spikes in trial j, j = 1, . . . , na (without replacement). The maximum in each

pair is determined and the average of the maxima yields an estimate of

E max{ÑV , ÑA}.
Under maximal negative dependence of PS, trial i with the largest number

of spikes is paired with trial j with the smallest number of spikes, the second

largest i is paired with the second lowest j, and so on (method of ’antithetic

variables’), and the average of the maxima is again computed as estimate

of E max{ÑV , ÑA}. If the unisensory samples are of different sizes, some

replacement procedure could be applied. In an illustrative sample of cat SC
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neurons8, Colonius and Diederich (2017) showed that there was a significant

decrease from CRESP to CREmaxSP in 24 out of 27 recording blocks collected

from 20 neurons. Whether or not the label “multisensory” is actually lost for

some neurons, however, depends on criteria of the statistical test comparing

the sample means (see Figure 0.2).

Figure 0.2 Pairs of sample estimates of (CRESP ,CREmaxSP ) based on 27
recording blocks (15 stimulus presentations in each block). In the left-hand
panel spontaneous activity was included, in the right-hand panel it has been
removed.. Filled circles indicate no significant difference between CRESP
and CREmaxSP , based on bootstrap confidence intervals (N = 10,000,
α = 0.05). Thus, each open circle refers to a recording where the label
multisensory may be lost when applying measure CREmaxSP . There were 4
out of 27 cases with no significant difference between both measures (left
panel), after spontaneous activity was removed, only 1 out of 19 cases was
not significant (right panel) (from Colonius and Diederich, 2017).

0.4 Measures based on response speed

The earliest observations of MI effects have likely been reported in the con-

text of measuring the speed and accuracy of responses to crossmodal stim-

uli at the beginning of the 20th century (Welch and Warren, 1986, for a

review). In a typical paradigm, participants are instructed to respond via

button press as soon as a signal of any modality occurs (redundant signals

paradigm9). It is to be distinguished from a related paradigm, often called fo-

cused attention paradigm; in the latter, one modality is designated as ’target’

modality, the other as ’distractor’ modality, and participants are instructed

8 Data provided by the lab of Mark Wallace (personal communication).
9 Also known as divided attention paradigm.
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to respond only to signals from the target modality (mostly, visual) but not

to distractor signals. The two paradigms demand separate treatments for

the measurement of MI.

Note that erroneous responses should also be defined differently for the

two paradigms, but we will first ignore errors entirely since they are often

kept at a negligible rate in the experiments. Accuracy measures are discussed

later.

0.4.1 MI measures in redundant signals paradigms

In general, bisensory, in particular visual-auditory, stimulation results in

smaller mean RT compared to unisensory stimulation, and responses to

trisensory stimulation (often visual, auditory, and tactile) are faster on aver-

age than to bisensory stimulation. The magnitude of the speed-up depends

on the specifics of the experiment, in particular the intensity of the different

modalities and their temporal configuration. For visual-auditory presenta-

tions, the greatest effect is typically found when the visual stimulus precedes

the auditory by an interval that equals the difference between the unisensory

mean RTs.

Hence the MI measure for RTs introduced in Equation (0.2) should be

augmented to include stimulus onset asynchrony (SOA), denoted as τ :

CRERT,τ =
min{ERTV ,ERTA + τ} − ERTV τA

min{ERTV ,ERTA + τ}
× 100, (0.10)

where RTV τA is the RT to a visual-auditory stimulus combination with the

visual preceding the auditory by τ [ms]; thus, the maximum of CRERT,τ
would be expected10 for τ = ERTV − ERTA.

For trisensory stimulus contexts (VAT ), the analogous measure is

CRERT,τ1τ2 =
min{ERTV ,ERTA + τ1,ERTT + τ1 + τ2} − ERTV τ1Aτ2T

min{ERTV ,ERTA + τ1,ERTT + τ1 + τ2}
×100,

(0.11)

where RTV τ1Aτ2T is the RT to a visual-auditory-tactile stimulus combination

with the visual preceding the auditory by τ1 [ms] and the auditory preceding

the tactile by τ2 [ms].

Note that adding a third modality increases the possible measures of re-

sponse enhancement: trisensory response speed may now also be compared

with the speed of any bisensory combination, e.g. V τ1Aτ2T with V τ1A or

Aτ2T , as long as these different combinations have been presented in the

10 Visual RTs tend to be slower than auditory RTs at comparable intensity levels.
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experiment. For example,

CRERT,(τ1)τ2 =
ERTV τ1A − ERTV τ1Aτ2T

ERTV τ1A
× 100, (0.12)

measuring the additional multisensory effect of a tactile stimulus, presented

τ2 [ms] later, on the speed of a visual-auditory combination.

0.4.2 Probability summation in the redundant signals paradigm

None of the RT measures of MI considered so far takes the PS hypothesis into

account. In this context, the hypothesis amounts to postulating the so-called

race model and as such, arguably, represents the most widely known version

of PS in multisensory research. The idea is that, e.g., a visual-auditory stim-

ulus combination triggers random visual and auditory processing times such

that the observed RT equals the minimum of the two, i.e. the ’winner of the

race’.

Usually, RTs are assumed to comprise some additive components, like

motor preparation and execution. To simplify the discussion, we neglect

this distinction here. Observed samples from random variables, denoted as

TV , TA, and TVA represent RTs obtained in unisensory visual, auditory, and

bisensory trials, respectively. Thus, we equate realizations of TV , TA, and

TV A with the observable RT under these conditions.

We define underlying distribution functions FV and FA, respectively:

P [TV ≤ tV ] = FV (tV ) and P [TA ≤ tA] = FA(tA),

with TV and TA taking on nonnegative real numbers. For the bisensory

context, we assume a distribution function FV A such that

P [TV A ≤ t] = FV A(t),

with t ≥ 0. Hence, TV , TA, and TV A are random variables whose realizations

are observed in an experiment under to-be-specified conditions.

0.4.2.1 Probability summation (PS) in reaction times

The exact definition of PS follows in close analogy to the one given for spike

numbers in the previous section:

Assumption 1: There exists a random vector (T̃V , T̃A) with a joint distribu-

tion K̃V A,

K̃V A(tV , tA) = P [T̃V ≤ tV , T̃A ≤ tA].
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Assuming the existence of K̃V A amounts again to a coupling of the random

variables T̃V and T̃A, which is always possible. Of course, we want T̃V and

T̃A to be a “copy” of TV and TA in the following sense:

Assumption 2: The marginal distributions of K̃V A(tV , tA) are equal to FV
and FA, respectively:

K̃V A(tV ,∞) = FV (tV ) and K̃V A(∞, tA) = FA(tA).

Thus, “context invariance” is postulated for RT distributions as well. It

follows that for t ≥ 0,

K̃V A(t, t) = P [{T̃V ≤ t} ∩ {T̃A ≤ t}]
= P [max{T̃V , T̃A} ≤ t]
≡ F̃V A(t).

Assumption 3: For t ≥ 0

FV A(t) = F̃V (t) + F̃A(t)− F̃V A(t). (0.13)

This second assumption is the central one again, implying that the observ-

able crossmodal RTs result from taking the minimum of the unisensory RTs

(race model).

It is always possible to construct some bivariate distribution K̃V A(tV , tA),

e.g., by assuming stochastic independence:

K̃V A(tV , tA) = P [T̃V ≤ tV ] P [T̃A ≤ tA]

= FV (tV )FA(tA) by Assumption 2 ,

implying the special case of “independent race model”

FV A(t) = 1− (1− FV (t))(1− FA(t)). (0.14)

The PS hypothesis has been studied as a possible non-parametric model

for RTs in the redundant signals paradigm. Being equivalent to the ’race

model’, it predicts a specific relation between the distribution functions for

bisensory and the unisensory conditions:

FV A(t) = F̃V (t) + F̃A(t)− F̃V A(t) by Assumption 3

= FV (t) + FA(t)− F̃V A(t) by Assumption 2

≤ FV (t) + FA(t). (0.15)

Inequality (0.15) is a simple version of Boole’s inequality and has been called

“race-model inequality” (RMI) in this context. Testing it has become routine
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in a vast number of empirical studies, using a variety of different statistical

procedures11. Note that the right-hand side of RMI approaches 2 for t going

to infinity, so it can be replaced by min{FV (t) + FA(t), 1}. Typically, RMI

tends to be violated for t not too large.

0.4.3 Measures of MI in redundant signals paradigms under PS

In addition to testing the race model, a quantitative measure of the degree

of RMI violation has been proposed. The latter turns out to be the basis of

a measure of MI in redundant signal experiments.

We define a function RV A(t), for t ≥ 0,

RV A(t) ≡ FV A(t)−min{FV (t) + FA(t), 1}. (0.16)

Hence, values of t with RV A(t) > 0 indicate a violation of RMI, whereas

values of t with RV A(t) ≤ 0 are compatible with the race model. The positive

part of the area between FV A(t) and min{FV (t) + FA(t), 1} is often taken

as measure of the amount of RMI violation. Integrating RV A(t) results in a

convenient interpretation as MI measure. First, observe that

RV A(t) = FV A(t)−min{FV (t) + FA(t), 1}
= 1−min{FV (t) + FA(t), 1} − [1− FV A(t)]

= max{1− FV (t)− FA(t), 0} − [1− FV A(t).

Integrating yields∫ ∞
0

RV A(t) dt =

∫ ∞
0

max{1− FV (t)− FA(t), 0} dt−
∫ ∞

0
[1− FV A(t) dt

= E(−) min{TV , TA} − E{TV A},

where E(−) min{TV , TA} denotes mean RT predicted by a race model with

maximal negative dependence between the latencies TV and TA. This leads

to a modified version of CRERT,τ (see Equation 0.10) accounting for PS,

CREminRT,τ =
E(−) min{RTV , RTA + τ} − ERTV τA

E(−) min{RTV , RTA + τ}
× 100, (0.17)

where TV , TA are identified with RTV , RTA, respectively.

11 Sometimes, the ’independent’ version of the inequality is tested,
FV A(t) ≤ FV (t) + FA(t)− FV (t)FA(t), but violations of this inequality would only rule out
the special case of a stochastically independent race.
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0.4.4 MI measures in focused attention paradigms

Let us assume a stimulus from the visual modality is the target. The task is

to respond to the occurrence of the target, via button press, while ignoring

an auditory stimulus (’distractor’) presented in spatio-temporal proximity.

In a frequent variant, the required response is to execute an eye movement

towards a target that occurs at a randomized spatial position in the visual

field, with saccadic RT and/or accuracy of the trajectory/landing position

being recorded. In all cases, MI is measured by how much the response to

the target is modulated by the presence of a distractor. For RTs, a simple

adaption of the CRE measure in the redundant paradigm results in

CRERT =
ERTV − ERTV A

ERTV
× 100. (0.18)

The amount and direction (facilitation vs. inhibition) of CRERT depends

on a host of experimental conditions. Because visual and auditory stim-

uli activate visuomotor neurons in superior colliculus (SC) thereby eliciting

goal-directed eye movements, many studies of MI have focused on gaze be-

havior, in particular saccadic reaction time.12

While the temporal and spatial rules of MI are, in general, consistent with

findings in the redundant signals task, effects of the role of localizability of

the auditory distractor has found special attention in eye movement exper-

iments. Specifically, when target and distractor are presented at the same

position (e.g., both above or below fixation point), SRTs are faster than

when they are presented at opposite positions (e.g., target above, distractor

below fixation point). However, this effect disappears when localization of

the auditory stimulus is made more difficult, e.g. by increasing the level of

a background noise. Hence, the perceived rather than the physical distance

between target and distractor controls the MI effect (Colonius et al., 2009).

0.5 MI measures based on accuracy

Next, we discuss MI measures based on accuracy. These measures turn up in

a variety of multisensory tasks, including detection, discrimination, recogni-

tion, and identification. We will not be able to cover all of them, but rather

focus on a few important aspects.

12 We limit the presentation here to SRTs, MI measures involving other aspects of eye
movements are similarly obtainable.
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0.5.1 MI measures based on detection accuracy

Let pV , pA, and pVA denote the probability of responding “Yes” to the ques-

tion of whether a visual, auditory, or combined visual-auditory stimulus has

been presented, respectively. In analogy to CRE measures of response speed

in the redundant signals task, we define crossmodal detection rate as

CREDR =
pVA −max{pV , pA}

max{pV , pA}
× 100. (0.19)

Typically, the probability of a ”Yes” response will primarily depend on stim-

ulus intensity. If at least one of the unisensory stimuli is clearly detectable

(i.e., pA or pV close to one), pV A will also be close to one, and so crossmodal

detection rate will be close to zero. If intensity is low or, equivalently, the

level of noise during presentation is (moderately) high, determining the like-

lihood to respond “Yes” is not straightforward: the participant may have

a tendency to guess and/or may have an internal criterion for responding

“Yes” or “No” which leads us to the realm of signal detection theory (SDT)

(Green and Swets, 1974).

In the terminology of SDT, it is not sufficient to compare the crossmodal

hit rate (probability to say “Yes” when the stimulus is presented) with the

unisensory hit rates because increasing the hit rate often goes along with

increasing the false-alarm rate (probability to say ”Yes” when no stimulus is

presented) as well. Assuming the standard equal-variance Gaussian distribu-

tion model of SDT, CREDR can be replaced by inserting the corresponding

d-prime measures,

CRESDT =
d′VA −max{d′V , d′A}

max{d′V , d′A}
× 100. (0.20)

This measure assesses the relative amount of sensitivity increase in the

visual-auditory condition compared to the best unisensory condition, while

separating sensitivity from possible biases to respond “Yes” or “No” in each

condition. An analogous definition for the focused attention task is obvious.

Measure CRESDT tests against a benchmark where the observer simply

ignores the less detectable modality. However, it is also possible to modify

CRESDT such that a PS strategy is taken into account. Let us assume that

an observer sets two criteria, λV and λA, and a “Yes” response is given if

at least one of the criteria is exceeded. Under stochastic independence, the

probabilities of misses (1 minus probability of a hit) and correct rejections

(1 minus probability of a false alarm) are the product of their modality

components. Writing fV , fA, hV , hA, and fV A, hV A for the false-alarm and
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hit rates for the unisensory and bisensory conditions, respectively, we get

fVA = 1− (1− fV )(1− fA) = 1− Φ(λV )Φ(λA)

hVA = 1− (1− hV )(1− hA) = 1− Φ(λV − d′V )Φ(λA − d′A),

with Φ denoting the standard Gaussian distribution function. From this we

can compute the visual-auditory sensitivity under the PS strategy,

d′PSVA = Φ−1(hVA)− Φ−1(fVA).

Inserting into expression (0.20) results in a modified measure of response

enhancement gauging against PS,

CREPSSDT =
d′VA − d′PSV A

d′PSVA

× 100. (0.21)

Besides the PS notion, numerous alternative models on how unisensory de-

tection accuracy is combined into a bisensory one have been discussed in

the literature (see Jones, 2016, for a recent tutorial). Finally, when there

is empirical evidence against the equal-variance assumption of SDT, alter-

native measures, like the area under the operating characteristic, may be

considered instead of d-prime values (see, e.g., Lovelace et al., 2003, for a

focused-attention example).

0.5.2 Measures for audiovisual speech identification

Arguably, one of the most thoroughly studied line of multisensory research

is the identification of speech in an audiovisual paradigm. In typical au-

diovisual speech identification (or recognition) tests, listeners are presented

with audio materials like syllables, words, phrases, or sentences along with

a video of a speaker’s face acquired at the same time as the audio materi-

als. Commonly, speech heard in noise (often, talker babble noise at different

levels) can be more accurately identified or recognized when the participant

sees a speaker’s articulating face or lip movements.

However, there still seems to be considerable controversy with respect

to the source of this audiovisual advantage. According to several studies,

when hearing-impaired individuals, or different age groups, are compared

with respect to the amount of audiovisual benefit, one finds large differences

across individuals or groups. Notably, these differences are often found to

persist even when differing unisensory auditory or visual speech recognition

performance levels are taken into account. Thus, besides lipreading ability

and auditory encoding ability, an ability to integrate auditory and visual

information should be assessed in order to explain audiovisual performance
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(Grant, 2002). In contrast, it is also held that an audiovisual speech signal

represents a more robust representation of any given word because, first,

simultaneous auditory and visual speech signals provide complementary in-

formation: vision contributes clues about some aspects of the speech event

that are hard to hear and which may depend on the shape and contour of

the lower face being clearly visible. Second, reinforcing information may be

provided by the temporal congruence between amplitude fluctuations in the

auditory signal and mouth opening and closing in the visual signal. That is,

when the auditory signal gets louder, the visible mouth and jaw tend to be

opening; when the signal gets softer, the mouth and jaw tend to be closing

(see Tye-Murray et al., 2016).

0.5.2.1 Measures of response enhancement and superadditivity

Without subscribing to a specific source of the audiovisual advantage, ad-

hoc measures of enhancement have been developed. Letting pAV denote the

probability13 of correctly identifying words in the audiovisual condition and

pV , pA the corresponding probability in the vision-only and auditory-only

condition, respectively, one defines visual enhancement (VE) as

VE =
pAV − pA

1− pA
. (0.22)

Thus, VE represents the amount of benefit afforded by the addition of the

visual channel of speech, normalized for the amount of possible improvement.

Analogously, one defines auditory enhancement (AE) as

AE =
pAV − pV

1− pV
. (0.23)

Thus, AE represents the amount of benefit afforded by the addition of the

auditory channel of speech, again normalized for the amount of possible

improvement.

Although these enhancement measures do not seem controversial, some

criticism has been raised against them. First, whereas there is broad empir-

ical support for the principle of inverse effectiveness (Section 0.3.1) being

valid in audiovisual speech performance, the normalization involved in cal-

culating AE biases against finding results consistent with it. Specifically,

among listeners with equivalent improvement (i.e. equal numerators), AE

will be lower for those who made more lipreading errors, inconsistent with

the principle (as pointed out by Tye-Murray et al., 2010, p. 639).

Second, a more sweeping argument was recently made by Dias et al. (2021)

13 Note that pV , pA, and pAV here are not the same as in the previous section on detection, but
no confusion should arise.
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studying the mean proportion of correctly identified words for two different

age groups. Consistent with previous research, they found pV and pA to

decline with age and to correlate positively with each other, but pAV did

not significantly differ between age groups. Importantly, they did not find

VE and AE to exhibit any age effects. Dias and colleagues offer the following

explanation, after defining “superadditivity” psAV as

psAV = pAV − (pA + pV ). (0.24)

Rewriting the expressions for VE and AE yields

VE =
pAV − pA

1− pA
=
pV + psAV

1− pA
and

AE =
pAV − pV

1− pV
=
pA + psAV

1− pV
.

The superadditivity term occurring in both VE and AE explains the positive

correlation; moreover, the authors argue, the absence of an age effect is due

to the declining values of pV and pA with age canceling an alleged increase

of superadditivity, psAV , also with age.14

0.5.2.2 Measures derived from modeling audiovisual speech identification

Different models of auditory-visual speech integration have been proposed.

They often predict “optimal” performance in the bisensory condition given

the information extracted in the unimodal conditions separately (e.g., for

nonsense syllables, words, or sentences), thereby providing quantitative mea-

sures of integration efficiency (IE).

The simplest one is a model representing a PS version of crossmodal detec-

tion rate CREDR (Equation (0.19). Assuming independent PS for auditory

and visual performance, the probability pIAV to recognize an item in the

audiovisual condition equals

pIAV = 1− (1− pA)× (1− pV ) = pA + pV − pA × pV .

From this, integration efficiency is defined as (e.g. Tye-Murray et al., 2007)

IEI =
pobsAV − pIAV

1− pIAV
, (0.25)

where pobsAV is the observed probability in the audiovisual condition. Integra-

tion efficiency measured this way has often been found to be positive, but

14 Dias et al. (2021) use notation AO, VO, and AV instead of probabilities; see the paper for
details of their exhaustive statistical analyses.
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some recent findings support the PS model as well (van de Rijt et al., 2019)

implying zero integration efficiency.

A prominent model for audiovisual speech identification is Massaro’s fuzzy

logical model of perception (FLMP) with an optimal integration rule equiv-

alent to Bayes’ theorem (see Massaro and Cohen, 2000).

Prelabeling model of integration (PRE). Another widely known model is

Braida’s PRE model (Braida, 1991) where each response Rj corresponds

to a point in a D-dimensional Euclidean vector space of stimulus attributes

(cue vectors) referred to as prototypes. Each presentation of a stimulus i gen-

erates a D-dimensional vector of cues X in the same space following a mul-

tivariate normal distribution with independent components, unit variance,

and a given mean Si not necessarily identical to the prototype correspond-

ing to Ri. According to a decision rule of multidimensional signal detection

theory, the subject responds Rj if and only if the (Euclidean) distance of

X to the prototype of Rj is smaller than the distance to any other proto-

type. The prototype locations are assumed to reflect response bias effects,

whereas the subject’s sensitivity in discriminating stimulus i from stimulus

j, d-prime value d ′(i, j), is given by the Euclidean distance between Si and

Sj . The model parameters, i.e., the components of vectors Si and Ri, are

estimated iteratively through non-metric multidimensional scaling by com-

paring observed and predicted confusion matrices. The decision space for

the AV condition is assumed to be the Cartesian product of the space for

the A condition and the space for the V condition. A subject’s sensitivity in

the AV condition can be shown to be related to the unimodal sensitivities

by

d ′AV (i, j) =
√
d ′A(i, j)2 + d ′V (i, j)2. (0.26)

An IE measure is then defined by taking the ratio between the obtained and

predicted d ′AV scores:

IEPRE =
d ′AV (obs)

d ′AV (pred)
. (0.27)

Note that perfect integration need not be associated with high overall AV

performance: If a participant has very bad hearing or is a very poor speech

reader, it is unlikely that they will achieve a high AV score. Nevertheless, a

subject may still integrate the available A and V cues in a nearly optimal

manner, and if so, the integration efficiency measure should be near unity

(see Figure 0.3).
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Figure 0.3 PRE model: Observed and derived measures obtained from ex-
periment on consonant recognition in noise (40 subjects). (Top) Observed
versus predicted PRE AV scores. The line indicates perfect integration ef-
ficiency: IEPRE = 1. Predicted and observed AV scores for several subjects
fall near the main diagonal, whereas observed scores for other subjects are
significantly less than predicted. (Bottom) Histogram showing distribution

of IEPRE values across subjects (from Grant and Seitz, 1998).

0.5.2.3 Integration efficiency based on Fechnerian Scaling

The validity of any IE measure derived from a model of AV speech integra-

tion, like the prelabeling model (PRE), depends on the specific assumptions
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of the model being valid empirically. We briefly discuss an alternative, less

restrictive approach based on a theory of computing subjective distances on

very general stimulus sets (Dzhafarov and Colonius, 2006).

Recall that a metric is a nonnegative function d defined on pairs (x, y)

from a set X, say, such that for all x, y, z ∈ X

(i) d(x, y) ≥ 0 and d(x, y) = 0 implies x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) + d(y, z) ≥ d(x, z).

The theory of Fechnerian Scaling (FS) (see, e.g. Dzhafarov and Colonius,

2007) deals with the computation of subjective distances among stimuli from

their pairwise discrimination probabilities. The latter are the probabilities

with which the judgment “these two stimuli are different” is chosen over

“these two stimuli are the same”:

ψ(x, y) = P [subject judges x and y in (x, y) to be different] (0.28)

For identification tasks, data from confusion matrices are available instead of

discrimination probabilities. The cell in a confusion matrix is the probability

that stimulus y is identified as stimulus x, denoted as η(x, y) for all x, y in

the stimulus set X. Thus, we need the additional assumption that

1− ψ(x, y) = η(x, y).

Given η(x, y) for all x, y in the stimulus set X, FS allows one to compute a

metricG, say, onX satisfying properties (i) to (iii) above. The only necessary

and sufficient empirical condition for the construction is regular maximality:

η(x, x) > max{η(x, y), η(y, x)}. (0.29)

for any x, y ∈ X,x 6= y. In other words, when stimulus x is presented, the

probability of identifying x as x should be greater than the probability of

identifying x as y, a stimulus different from x. Importantly, η(x, x) may vary

with x and η(x, y) may be different from η(y, x).

Let us assume that Fechnerian metrics GA, GV , and GAV have been com-

puted from the confusion matrices in the auditory, visual, and audiovisual

condition, respectively, for each pair of stimuli {i, j}. The corresponding

metric values GA(i, j), GV (i, j), and GAV (i, j) are interpreted as subjective

distance between the two stimuli under auditory, visual, and audiovisual

presentation, respectively. A-priori, these three values are unrelated to each

other since they are defined on different stimulus sets. On the other hand,

there is a natural one-to-one correspondence across the visual, auditory, and

bisensory stimulus sets (i.e., visual stimulus i ↔ auditory stimulus i ↔
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bisensory stimulus component i). Moreover, given that Fechnerian distances

on a given set are unique only up to a similarity transformation, i.e., mul-

tiplication with a positive constant, one can standardize each of them such

that the maximum distance equals one.15

IfGAV (i, j) is larger thanGA(i, j) orGV (i, j), this suggests that adding in-

formation from the other modality (V or A) increases the subjective distance

between i and j. This increase in subjective distance from the unisensory

to the bisensory presentation is proposed as indicator of visual, respectively

auditory enhancement, in analogy to VE and VA in Section 0.5.2.1:

VEFS(i, j) =
GAV (i, j)−GA(i, j)

1−GA(i, j)

=
GV (i, j) +GsAV (i, j)

1−GA(i, j)
, (0.30)

and

VEFS(i, j) =
GAV (i, j)−GV (i, j)

1−GV (i, j)

=
GA(i, j) +GsAV (i, j)

1−GV (i, j)
, (0.31)

with

GsAV (i, j) = GAV (i, j)− [GA(i, j) +GV (i, j)]

denoting the superadditivity term, in analogy to Equation (0.24).

In order to derive an overall index of integration efficiency, averaging

across all superadditivity terms results in an Fechnerian Scaling-based mul-

tisensory integration efficiency index:

IEFS =

(
N

2

)−1 ∑
{i,j}⊂ S

GsAV (i, j), (0.32)

i 6= j, with N denoting the number of stimuli in stimulus set S.

The Fechnerian Scaling-based approach to integration efficiency presented

here and the prelabeling model (PRE) share the idea of converting the in-

formation contained in the confusion matrices into a representation of sub-

jective distances between the stimuli. An important difference is that the

15 Importantly, Fechnerian distances are always a function of the entire (base) set used to
compute them, and the G values are not monotonically related to the probabilities η(x, y),
although they have been found to correlate highly in many empirical data sets. Moreover, it
seems plausible that Fechnerian distances for corresponding stimulus pairs are measured in
the same “units”.
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FS-based approach neither requires explicit assumptions about the space

(e.g., Euclidean) and its dimensionality nor any parameter estimation.

One can argue that the definition of IEFS being based on superadditivity,

is somewhat arbitrary. Nonetheless, Colonius and Diederich (2007) report

on a small data set, a reduced confusion matrix for consonants /b/, /d/,

and /g/ presented in Braida et al. (1998). Table 0.2 lists all 3 confusion ma-

ψA = 1− ηA
GA ”b” ”d” ”g”

0.437 0.717 0.846
b– 0.000 0.450 0.589

0.700 0.530 0.757
d– 0.450 0.000 0.350

0.746 0.689 0.566
g– 0.589 0.350 0.000

ψV = 1− ηV
GV

0.022 0.983 0.996
–b 0.000 1.805 1.527

0.990 0.146 0.871
–d 1.805 0.000 0.864

0.989 0.575 0.436
–g 1.527 0.864 0.000

ψAV = 1− ηAV
GAV

0.007 0.996 0.998
bb 0.000 1.860 1.704

0.997 0.126 0.876
dd 1.860 0.000 1.203

0.991 0.731 0.278
gg 1.704 1.203 0.000

Table 0.2 Each cell: ψ at top and G (Fechnerian distances) at bottom, for

auditory (A), visual (V), and audiovisual (AV) presentation (rows ≡
stimuli, columns ≡ responses) with resulting value of IEFS = 0.8737.

trices (auditory, visual, auditory-visual) together with their corresponding

Fechnerian distances GA, GV , and GV A.
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The value of IEFS was computed16 as 0.8737, which is very close to the

correct identification score (87.1 %) predicted by the PRE model (Braida

et al., 1998) for the same data set. In general, however, most of the indexes

of audiovisual integration efficiency presented here have some degree of ar-

bitrariness and will have to prove their utility and cross-study consistency

in future research.

0.6 Measures based on MI modeling of RTs

The focus of this chapter has so far been on measuring MI, rather than mod-

eling. Yet PS, which is a model, has emerged several times as benchmark:

any improvement (response speed reduction, improved detection probabil-

ity, etc.) beyond the level predicted by PS has been defined as measure of

MI. In keeping with this approach, we will define CRE as a function of the

enhancement observed beyond what is predicted by a particular MI model

under consideration. Given that these models typically require estimation

of some parameters, the idea here is to estimate them from the unisensory

conditions only and subsequently insert these estimates into the MI model

in order to predict bisensory RTs. Measures of MI then assess by how much

these model predictions fall short of the observed bisensory data. Given the

multitude of integration models, however, we need to be selective and will

only sketch a few modeling approaches with respect to how they estimate

and predict the amount of MI.

0.6.1 Coactivation models

Coactivation is a generic term suggested by Miller (1982) to describe mod-

els that allow activation from different channels (in particular, modalities)

to combine in satisfying a single criterion for response initiation, in dis-

tinction to separate activation models (or, race models), where the system

never combines activation from different channels in order to meet its crite-

rion for responding (ibid., p. 248). Coactivation models differ with respect

to their state space, i.e., whether the state space within which combina-

tion is performed, is continuous or discrete. We consider measures of MI

for continuous-time models with either discrete and continuous state space.

Discrete-time coactivation models are not considered here because of our

emphasis on response time measurements.

16 The IEFS index used was based on the superadditivity term GsAV (i, j) written as ratio
rather than difference.
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The (Poisson) superposition model. Presentation of a stimulus induces a

neural renewal (counting) process17, {N(t), t ≥ 0}, with interarrival times

{Xn, n = 1, 2 . . . }. Let W (n) =
n∑
i=1

Xi be the waiting time for the n-th

counts. The assumption is that a response is initiated as soon as a fixed

number of counts, c, is reached. Note that

P (N(t) ≥ c) = P (W (c) ≤ t).

Finally, the observable RT is assumed to be additively composed of the

waiting time plus all processes following (or preceding) it. The duration

of these additional processes, which may include motor preparation and

response execution components, are represented by a random variable M :

RT = W (c) +M.

The superposition assumption holds that the unisensory renewal pro-

cesses, NV (t) and NA(t), are simply added, defining a new renewal process,

so that the waiting time for the c-th count is reduced; specifically, if the

visual stimulus is presented τ msec (τ > 0) before the auditory,

NV A(t) = NV (t) +NA(t− τ),

where NA(t− τ) = 0 for t < τ .

Under the simplest renewal process (Poisson), expected waiting time for

the bisensory condition can be computed as

EWV τA(c) =
c

αV
− αA
αV (αV + αA)

exp(−αV τ)

c−1∑
i=0

(αV τ)i

i!
(c− i), (0.33)

where αV and αA are the Poisson intensity parameters for the visual and

auditory stimulus, respectively.18 For τ = 0, this reduces to c/(αV + αA).

Let ERTV τA = EWV τA(c) + EM . In obvious notation, we define as mea-

sure of crossmodal response enhancement for the Poisson superposition model,

CRESUP,τ =
ERTV τA − ERT obs

V τA

ERTV τA
× 100, (0.34)

assuming parameters c and EM to be invariant across the unisensory and

bisensory conditions. Note that CRESUP,τ increases as a function of c; thus,

the Poisson superposition model is consistent with the prediction of inverse

effectiveness. On the other hand, it cannot predict inhibition.

17 For exact definitions, see e.g. Ross (1996).
18 For τ < 0, τ must be replaced by −τ and αV and αA interchanged.
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Diffusion models. In these models, presentation of a stimulus is assumed to

induce a stochastic process that is often described by a linear, first-order

stochastic differential equation19 of the form

dX(t) = µ(X(t), t) + σ(X(t), t) dW (t), (0.35)

where W (t) is a standard Wiener process, µ(x, t) is called the effective drift

rate describing the instantaneous rate of expected increment change at time

t and state x = X(t). Factor σ(X(t), t) in front of the instantaneous incre-

ments dW (t) is called diffusion coefficient relating to the variance of the

increments.

Modeling information accumulation and predicting response times, how-

ever, requires one to make concrete assumptions on drift rates and diffusion

coefficients resulting in a large variety of stochastic diffusion models. For

example, setting µ(x, t) = δ and σ(X(t), t) = σ defines a time-homogeneous

Wiener process with drift (setting δ = 0 is the standard Wiener process).

The drift rate is interpreted as describing the rate of information accumu-

lation under different stimulus conditions.

Termination of the accumulation process is then defined by the first time

it reaches a threshold, C (C > 0). This stopping time, denoted as ν, is the

smallest value for t such that X(t) = C. If X(0) = 0, expected stopping

time in the Wiener process with drift δ is

E[ν |X(0) = 0] = C/δ, (0.36)

which independent of the diffusion coefficient. Observed RT is defined as the

sum of (random variables) ν and a non-decision component M , RT = ν+M .

Applying this model version to the redundant signals paradigm, we as-

sume two Wiener processes with drift rates δV and δA, respectively, for the

unisensory conditions. In the bisensory condition with SOA ≡ τ = 0, a

superposed Wiener process is defined by

XV A(t) = XV (t) +XA(t) (0.37)

with drift rate δV + δA, while postulating identical threshold values C and

mean values of M, for all conditions. Given the expected stopping times

C/δV , C/δA, C/(δV + δA), one can define a measure of crossmodal enhance-

ment exactly like Equation (0.34) for the Poisson superposition model at

τ = 0. Obviously, however, under these simplified assumptions the two mod-

els become indistinguishable, predicting the same amount of enhancement.

The problem dissolves when predictions for non-simultaneous stimuli for two

19 For exact definitions, we must refer to the literature.
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modalities (Schwarz, 1994) or more (Diederich, 1995) are derived and CRE

measures analogous to Equation (0.34) can be defined:

CREDIF,τ =
ERTV τA − ERT obs

V τA

ERTV τA
× 100. (0.38)

Moreover, for τ = 0, setting µ(x, t) = δ− γx and σ(x, t) = σ defines a time-

homogeneous Ornstein-Uhlenbeck process (OUP)20 . For γ > 0 this implies

that the accumulation rate decays in dependence of the current state x (e.g.,

Diederich, 1995). Given that for this and related models, expected stopping

times are often not available in closed form, crossmodal enhancement mea-

sures of the form of Equation (0.38) may be approximated by simulation or,

alternatively, by Markov chain approximation.21

0.6.2 Time-window-of-integration framework

While the PS mechanism by itself constitutes a broad class of models at both

the neural and behavioral level, simple race models often do not fare too well

empirically and, as mentioned, typically only serve as point of reference in

defining an enhancement measure (see Section 0.4.3). The time-window-of-

integration (TWIN) framework for response speed, measured as manual or

saccadic RT, is a simple extension of the PS model. The amount of RT

facilitation not accounted for by the latter (compare Equation 0.17) equals,

E min{RTV , RTA} − ERTV A

where RTA and RTV are the observed latencies of unisensory responses.

Here, E min{RTV , RTA} refers to the RT predicted by a PS rule (stochasti-

cally independent or dependent race) and ERTV A is the observed bisensory

mean RT. The TWIN framework postulates two serial processing stages. A

first (race) stage among the activity elicited by the different modalities is

followed by a second stage that is defined by default: it includes all subse-

quent, possibly temporally overlapping, processes that are not part of the

processes in the first stage, and crossmodal interaction can only occur in the

second stage.

While the framework is mute about the specific mechanism of integration

in the second stage, its central feature is the notion of a time-window of MI. It

postulates that crossmodal interaction occurs only if the peripheral processes

of the first stage all terminate within a given temporal interval, the ‘time

20 But τ 6= 0 implies a non-time-homogenous OU process.
21 Roughly, after fitting the unisensory data with an OUP model each, sample unisensory values

xV (t) and xA(t) for any t, add them to define a superposed process, and estimate the
expected stopping time of that process.
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window of integration’. The result of crossmodal interaction manifests itself

in an increase, or decrease, of second stage processing time. The window acts

as a filter determining whether afferent information delivered from different

sensory organs is registered close enough in time to trigger MI. Passing

the filter is necessary, but not sufficient, for crossmodal interaction to occur,

because the amount of interaction may also depend on many other aspects of

the stimulus context, in particular the spatial configuration of the stimuli.22

Although the amount of interaction does not directly depend on stimulus

onset asynchrony (SOA) of the stimuli, temporal tuning of the interaction

yet occurs because the probability of the integration event is modulated by

the SOA value. Formalization of the framework makes these observations

explicit.

We introduce some notation and derive an expression for the measure of

MI in the TWIN framework, With τ (−∞ < τ < +∞) as SOA value and ω

(ω ≥ 0) as parameter for the integration window width, these assumptions

imply that the event that MI occurs, denoted by I, equals

I ≡{|TV − (TA + τ)| < ω}
={TA + τ < TV < TA + τ + ω} ∪ {TV < TA + τ < TV + ω},

where TV , TA are assumed to be continuous random variables and the pre-

sentation of the visual stimulus is (arbitrarily) defined as the physical zero

time point. Thus, the probability of integration to occur, P (I), is an increas-

ing function of ω, but its dependence on τ will be a function of the specific

distributions assumed for TV and TA.

Writing S1 and S2 for first and second stage processing times, respectively,

overall expected RT in the crossmodal condition with an SOA equal to τ ,

E[RTV τA], is computed conditioning on event I (integration) occurring or

not,

E[RTV τA] = E[S1] + P (I) E[S2|I] + [1− P (I)] E[S2|Ic]
= E[S1] + E[S2|Ic]− P (I)×∆.

= E[min(TV , TA + τ)] + E[S2|Ic]− P (I)×∆. (0.39)

Here, Ic denotes the event complementary to I and ∆ stands for E[S2|Ic]−
E[S2|I]. The term P (I) ×∆ is a measure of the expected amount of cross-

modal interaction in the second stage, with positive ∆ values corresponding

to facilitation, negative ones to inhibition. Because event I cannot occur

in the unimodal (visual or auditory) condition, expected RT under these

22 Note that the window of the TWIN framework is only defined temporally, in contrast to a
spatio-temporal window sometimes postulated.
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conditions is, respectively,

E[RTV ] = E[TV ] + E[S2|Ic] and E[RTA] = E[TA] + E[S2|Ic].

Note that the race in first stage produces a not directly observable statistical

facilitation effect (SFE) analogous to the one in the “classic” race model

SFE ≡ min{E[TV ],E[TA] + τ} − E[min{TV , TA + τ}].

This contributes to the overall crossmodal interaction effect predicted by

TWIN, which amounts to:

min{E[RTV ],E[RTA] + τ} − E[RTV τA] = SFE + P (I)×∆.

Thus, in the TWIN framework crossmodal facilitation observed in a redun-

dant signals task may be due to MI or statistical facilitation, or both. This

shows that the TWIN extends the race model class by predicting integration

effects over and above statistical facilitation. Moreover, a potential multisen-

sory inhibitory effect occurring in the second stage may be weakened, or even

masked completely, by the simultaneous presence of statistical facilitation

in the first stage.

We have shown that one can derive various empirically testable predictions

from the TWIN framework even without assuming specific distributions for

the random processing times. In addition, when TV and TA are independent

and exponentially distributed random variables and the expected value for

2nd-stage processing time with no crossmodal interaction is set as parame-

ter µ, then numerical estimates of the overall crossmodal interaction effect,

SFE + P (I) × ∆, are available. This suggests the following definition for

crossmodal enhancement:

CRETWIN =
ERTV τA − ERT obs

V τA

ERTV τA
× 100, (0.40)

with ERT obs
V τA denoting observed mean bisensory RT and ERTV τA the ex-

pected bisensory RT under the TWIN model, which can be calculated using

parameter estimates obtained from fitting the model to the observations.

Note that “temporal window of integration” has become an important

concept in describing crossmodal binding effects as function, e.g., of age,

specific disorders, or training in a variety of MI tasks apart from RTs23. In

fact, the width of the time window can by itself be taken as measure for MI:

23 It is worth pointing out that the time window concept in the TWIN framework differs from
the one used in most empirical studies. The latter is typically defined by the range of SOA
values wherein crossmodal effects can be observed. In contrast, in the former (i) window
width is a parameter to be estimated from the data, and (ii) the filter is not in principle
limited to the temporal structure of the stimulus context but could be defined more broadly,
e.g. including spatial features or subjective values see, e.g., (Bean et al., 2021).
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In the temporal order judgment (TOJ) task, where subjects are required

to judge the order of stimuli (visual first vs. auditory first), the width of

the window determines how often the two stimuli will be “bound together”

and, thereby, how often the subject can only guess that the visual stimulus

occurred first. Within a simple extension of the TWIN framework to include

the TOJ task, widening the temporal window of integration in a RT task, or

narrowing it in a TOJ task, can be seen as an observer’s strategy to optimize

performance in an environment where the temporal structure of sensory

information from separate modalities provides a critical cue for inferring the

occurrence of crossmodal events (Diederich and Colonius, 2015).

0.7 Conclusions

It turned out that, in order to construct valid measures of integration, a

possible effect of PS had to be taken into account, in both behavioral and

neural contexts. Specifically, we have argued that the common index for RTs

in the redundant signals paradigm (see Equation 0.2),

CRERT =
min{ERTV ,ERTA} − ERTV A

min{ERTV ,ERTA}
× 100, (0.2)

should be replaced by assuming a race model with maximal negative depen-

dence

CREminRT =
E(−) min{RTV , RTA} − ERTV A

E(−) min{RTV , RTA}
× 100,

which is Equation 0.17 for τ = 0. The latter is a more conservative index

because it allows for the possibility that the “race” between visual and audi-

tory activation may be (maximally) negatively dependent in the statistical

sense, that is, it measures how much faster observed mean RT is than the

fastest one that can be generated by PS alone.

A further argument in favor of using CRE
(−)
RT is that E(−) min{RTV , RTA}

can be sensitive to the shape of the entire distribution of the unisensory

RT distributions, like moments higher than the mean, see Colonius and

Diederich (2017). Another, non-RT, example is a discrimination task where

estimator variance is required to obtain a statistically optimal linear combi-

nation of modalities (Ernst and Banks, 2002; Drugowitsch et al., 2014), so

that any MI measure gauging the degree of deviation from optimality will

be a function of the second moment.

Thus, instead of defining MI measures via means only, it may be argued
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Type Index Definition Section

spikes

CRESP
ENVA−max{ENV ,ENA}

max{ENV ,ENA}
× 100, 0.3.3

CRE∗SP
ENVA−Emax{NV ,NA}

Emax{NV ,NA}
× 100 0.3.3

CREmaxSP
ENVA−E(−)

max{NV ,NA}
E(−)

max{NV ,NA}
× 100 0.3.3

RTs

CRERT,τ
min{ERTV ,ERTA+τ}−ERTV τA

min{ERTV ,ERTA+τ}
× 100 0.4.1

CRERT,τ1τ2
min{ERTV ,ERTA+τ1,ERTT+τ1+τ2}−ERTV τ1Aτ2T

min{ERTV ,ERTA+τ1,ERTT+τ1+τ2}
× 100 0.4.1

CRERT,(τ1)τ2
ERTV τ1A−ERTV τ1Aτ2T

ERTV τ1A
× 100 0.4.1

CREminRT
E(−)

min{RTV ,RTA}−ERTVA
E(−)

min{RTV ,RTA}
× 100 0.4.1

accuracy

CREDR
pVA−max{pV ,pA}

max{pV ,pA} × 100 0.5.1

CRESDT
d′VA−max{d′V ,d

′
A}

max{d′V ,d′A}
× 100 0.5.1

CREPSSDT
d′VA−d

′PS
VA

d′PSVA

× 100 0.5.1

AV speech

psAV (superadditivity) pAV − (pA + pV ) 0.5.2

VE (vis. enhancement) pAV −pA
1−pA = pV +psAV

1−pA 0.5.2

AE (aud. enhancement) pAV −pV
1−pV = pA+psAV

1−pV 0.5.2

pIAV 1− (1− pA)× (1− pV ) 0.5.2

IEI (integr. efficiency)
pobsAV −p

I
AV

1−pIAV
0.5.2

IEPRE d ′AV (obs)/d ′AV (pred) 0.5.2

GsAV (i, j) GAV (i, j)− [GA(i, j) +GV (i, j)] 0.5.2

IEFS
(
N
2

)−1∑
{i,j}⊂ S GsAV (i, j) 0.5.2

RT model

CRESUP,τ
ERTV τA−ERT obsV τA

ERTV τA
× 100 0.6.1

CREDIF,τ
ERTV τA−ERT obsV τA

ERTV τA
× 100 0.6.1

CRETWIN
ERTV τA−ERT obsV τA

ERTV τA
× 100 0.6.2

Table 0.3 List of all indexes in the chapter (for spikes, RTs, detection

accuracy, AV speech identification, RT models)
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that one should compare entire distributions in order to obtain more infor-

mative measures. Assume there exists a numerical function δ measuring the

distance between two distributions, e.g. δ(FA, FV A), one may define cross-

modal response enhancement, in analogy to CRERT above, by

CREδ = min{δ(FV , FV A), δ(FA, FV A)} × 100. (0.41)

Here, δ is already normalized to a range from zero to one; if FV A is equal

to one of the unisensory distributions, then CREδ = 0.24 Thus, the first two

requirements for a CRE measure (see Section 0.2.2) are satisfied, while the

inhibition case is not covered. More complex measures are certainly possible;

however, a more pressing task is to find criteria for selecting some measure δ

from the “universe” of distance measures between distributions that would

make the choice less arbitrary.

0.8 Bibliographical notes

Despite the limited scope of this chapter, we hope to have given a first

glimpse into the various ways and issues of defining measures of MI. A

broader and deeper view may be gained from the references given in this

section.

A number of comprehensive handbooks and review articles on MI are

available: Calvert et al. (2004); Naumer and Kayser (2010); Stein (2012);

Bremner et al. (2012); Murray and Wallace (2012); Stevenson et al. (2014);

van Opstal (2016); Colonius and Diederich (2020). The first monograph on

MI from the neurophysiology point of view is Stein and Meredith (1993),

while Stein et al. (2009) discuss quantitative methods for measuring MI at

the single-neuron level. Early studies by Todd (1912), measuring RT to stim-

uli from two or more sensory modalities, presented both singly and together,

are often seen as the beginnings of the scientific study of crossmodal behav-

ior. Raab (1962) is the classic reference for a treatment of the “race model”

and PS mechanisms for RTs. The latter has typically been presented under

the hypothesis of stochastic independence. The “race model inequality” (see

Equation 0.15), first developed in Miller (1982) and tested in Diederich and

Colonius (1987), initiated the discussion of non-independent PS in the con-

text of copula theory (Colonius, 1990, 2016; Colonius and Diederich, 2017)

and the development of related statistical tests (Ulrich et al., 2007; Gon-

dan, 2010; Gondan et al., 2012; Lombardi et al., 2019). Generalized race

24 Probability summation could be accounted for by defining
CREδ = δ(min{FV (t) + FA(t), 1}, FV A)× 100.
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model inequalities have been discussed, e.g., in Colonius et al. (2017); Gon-

dan et al. (2020); Gondan and Vorberg (2021). The “principle of congruent

effectiveness” (Otto et al., 2013), stating that multisensory behavior (specif-

ically, speedup of response times) is largest when behavioral performance in

corresponding unisensory conditions is similar, corresponds to the index of

unisensory imbalance (UI) (see Equation 0.3).

Regarding accuracy measures, Jones (2016) provides a comprehensive tu-

torial about models of cue combination based on measures of sensitivity

including signal detection theory (Macmillan and Creelman, 2005; Wick-

ens, 2002). Schwarz and Miller (2014) point out that PS does not always

lead to facilitation in compound detection and discrimination tasks because

an increase of hit rate may also cause an increase of false alarms; eval-

uating uni-vs. bisensory performance should, therefore, be performed via

comparing the associated areas under the ROC curves. Billock et al. (2021)

present a framework for comparing spike rates from AV integration in corti-

cal bisensory neurons with psychophysical (discrimination) data and suggest

vector-like Minkowski combination models describing either.

The literature on AV speech processing is huge, the handbook by Bailly

et al. (2012) is a good source, as well as reports from the International Con-

ference on Auditory-Visual Speech Processing (AVSP).25 More details on the

Fechnerian Scaling approach is found in the chapter by E.N. Dzhafarov and

H. Colonius in this volume (Fechnerian Scaling: Dissimilarity Cumulation

Theory).

The Poisson superposition model for MI has been introduced in Schwarz

(1989) and discussed in Diederich and Colonius (1991); Diederich (1995), and

Schwarz (1994). A tutorial on diffusion processes for RTs is given in Smith

(2000), and a comprehensive treatment of stochastic models for decision-

making is the chapter by Diederich & and Mallahi-Karai in Volume II

(Diederich and Mallahi-Karai, 2018). Notably, diffusion models can be ex-

tended to describe binary choice response tasks by assuming an upper and

a lower absorbing bound for the accumulation process (Ratcliff, 1978). Such

a diffusion superposition model for audiovisual data is discussed and tested

by experiment in Blurton et al. (2014). Drugowitsch et al. (2014) introduce

a diffusion model for visual-vestibular integration with a weighted superpo-

sition approach that accumulates evidence optimally across both cues and

time. For other extensions of diffusion models see e.g. Mallahi-Karai and

Diederich (2021); Diederich and Oswald (2016); Diederich (1997). The time-

window-of-integration model was introduced by the authors in 2004 (Colo-

25 http://www.isca-speech.org/archive
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nius and Diederich, 2004) and subsequently extended and experimentally

tested in ?Diederich and Colonius (2007, 2008a,b).
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Gondan, M. 2010. A permutation test for the race model inequality. Behavior
Research Methods, 42, 23–28.

Gondan, M., and Vorberg, D. 2021. Testing trisensory interactions. Journal of
Mathematical Psychology, 101, https://doi.org/10.1016/j.jmp.2021.102513.

Gondan, M., Riehl, V., and Blurton, S.P. 2012. Showing that the race model
inequality is not violated. Behavior Research Methods, 44, 248–255.

Gondan, M., Dupont, D., and Blurton, S.P. 2020. Testing the race model in a
difficult redundant signals task. Journal of Mathematical Psychology, 95,
https://doi.org/10.1016/j.jmp.2020.102323.

Grant, K.W. 2002. Measures of auditory-visual integration for speech understand-
ing: A theoretical perspective (L). Journal of the Acoustical Society of Amer-
ica, 112(1), 30–33.

Grant, K.W., and Seitz, P.F. 1998. Measures of auditory–visual integration in
nonsense syllables and sentences. Journal of the Acoustical Society of America,
104(4), 2438–2450.

Green, D.M., and Swets, J.A. 1974. Signal detection theory and psychophysics. New
York, NY: Robert E. Krieger Publishing Co.

Joe, H. 1997. Multivariate models and dependence concepts. Monographs on Statis-
tics and Applied Probability, no. 73. London, UK: Chapman & Hall.

Jones, P.R. 2016. A tutorial on cue combination and Signal Detection Theory: Using
changes in sensitivity to evaluate how observers integrate sensory information.
Journal of Mathematical Psychology, 73, 117–139.

Lombardi, L., D’Allesandro, M., and Colonius, H. 2019. A new nonparametric test
for the racemodel inequality. Behavior Research Methods, 51, 2290–2301.

Lovelace, C.T., Stein, B.E., and Wallace, M.T. 2003. An irrelevant light enhances
auditory detection in humans: a psychophysical analysis of multisensory inte-
gration in stimulus detection. Cognitive Brain Research, 17, 447–453.

Macmillan, N.A., and Creelman, C.D. 2005. Detection theory: a user‘s guide.
Lawrence Erlbaum Associates.

Mallahi-Karai, K., and Diederich, A. 2021. Decision with multiple alternatives: Ge-
ometric models in higher dimensions–the disk model. Journal of Mathematical
Psychology, 100(https://doi.org/10.1016/j.jmp.2020.102493).

Massaro, D.W., and Cohen, M.M. 2000. Tests of auditory-visual integration eciency
within the framework of the fuzzy logical model of perception. Journal of the
Acoustical Society of America, 108(2), 784–789.

Meredith, M.A., and Stein, B.E. 1983. Interactions among converging sensory inputs
in the superior colliculus. Science, 221, 389–391.

Miller, J.O. 1982. Divided attention: evidence for coactivation with redundant
signals. Cognitive Psychology, 14247–279.

Miller, R.L., Pluta, S.R., Stein, B.E., and Rowland, B.A. 2015. Relative unisen-
sory strength and timing predict their multisensory product. The Journal of
Neuroscience, 35(13), 5213–5220.

Murray, M.M., and Wallace, M.T. (eds). 2012. The Neural Bases of Multisensory
Processes. Frontiers in Neuroscience. Boca Rato, FL: CRC Press.



References 45

Naumer, M.J., and Kayser, J. (eds). 2010. Multisensory Object Perception in the
Primate Brain. New York, NY: Springer-Verlag.

Otto, T.U., Dassy, B., and Mamassian, P. 2013. Principles of multisensory behavior.
The Journal of Neuroscience, 33, 7463–7474.

Raab, D.H. 1962. Statistical facilitation of simple reaction time. Transactions of
the New York Academy of Sciences, 24, 574–590.

Ratcliff, R. 1978. Theory of memory retrieval. Psychological Review, 85, 59–108.

Ross, S.M. 1996. Stochastic processes. Second edn. New York, NY: John Wiley &
Sons.

Schwarz, W. 1989. A new model to explain the redundant-signals effect. Perception
&Psychophysics, 46(5), 490–500.

Schwarz, W. 1994. Diffusion, superposition, and the redundant-targets effect. Jour-
nal of Mathematical Psychology, 38, 504–520.

Schwarz, W., and Miller, J.O. 2014. When less equals more: probability summation
without sensitivity improvement. Journal of Experimental Psychology: Human
Perception and Performance, 40(5), 2091–2100.

Smith, P.L. 2000. Stochastic dynamic models of response time and accuracy: a
foundational primer. Journal of Mathematical Psychology, 44, 408–463.

Stein, B. E. (ed). 2012. The New Handbook of Multisensory Processes. MIT Press.

Stein, B. E., Burr, D., Constantinidis, C., Laurienti, P., Meredith, M., Perrault Jr,
T., Ramachandran, R., Roeder, B., Rowland, B., Sathian, K., Schroeder, C.,
Shams, L., Stanford, T., Wallace, M., Yu, L., and Lewkowicz, D. 2010. Se-
mantic confusion regarding the development of multisensory integration: a
practical solution. European Journal of Neuroscience, 31, 1713–1720.

Stein, B.E., and Meredith, M.A. 1993. The merging of the senses. MIT Press.

Stein, B.E., Stanford, T.R., Ramachandran, R., Perrault Jr, T.J., and Rowland,
B.A. 2009. Challenges in quantifying multisensory integration: alternative
criteria, models, and inverse effectiveness. Experimental Brain Research, 198,
113–126.

Stevenson, R.A., Ghose, D., Krueger Fister, J., Sarko, D.K., Altieri, N.A., Nidiffer,
A.R., Kurela, L.R., Siemann, J.K., James, T.W., and Wallace, M.T. 2014.
Identifying and quantifying multisensory integration: a tutorial review. Brain
Topography, 27(6), 707–730.

Todd, J.W. 1912. Reaction to multiple stimuli. Archives of Psychology No. 25.
Columbia Contributions to Philosophy and Psychology, XXI(8). New York:
The Science Press.

Tye-Murray, N., Sommers, M.S., and Spehar, B. 2007. Audiovisual integration and
lipreading abilities of older adults with normal and impaired hearing. Ear and
Hearing, 28(5), 656–668.

Tye-Murray, N., Sommers, M., Spehar, B., Myerson, J., and Hale, S. 2010. Aging,
audiovisual integration, and the principle of inverse effectiveness. Ear and
Hearing, 31, 636–644.

Tye-Murray, N., Spehar, B., Myerson, J., Hale, S., and Sommers, M. 2016. Lipread-
ing and audiovisual speech recognition across the adult lifespan: implications
for audiovisual integration. Psychology and Aging, 31(4), 380–389.
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