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0.1 Response inhibition and the stop signal task

The notion of response inhibition refers to an organism’s ability to suppress

unwanted impulses, or actions and responses that are no longer required

or have become inappropriate. This ability is considered a case of cognitive

control, those cognitive faculties that allow information processing and be-

havior to vary adaptively from moment to moment depending on current

goals, rather than remaining rigid and inflexible. At this time, the field of

cognitive control flourishes like never before (Logan, 2017, p. 875).1

The simple fact that cognitive control takes time makes subjects’ behav-

ior amenable to the advanced methods of response time analysis and mod-

eling developed in cognitive psychology over many years. In the stop-signal

paradigm, participants typically perform a go task (e.g. press left when an

arrow pointing to the left appears, and press right when an arrow pointing

to the right appears), but on a minority of the trials, a stop signal (e.g.

an acoustic stimulus) appears after a variable stop-signal delay, instructing

the participant to suppress the imminent go response (see Figure 0.1). This

paradigm has become the main workhorse being used in laboratory settings

across various human populations (e.g. clinical vs. non-clinical, different age

groups) as well as non-human ones (primates, rodents, etc.).

The stop-signal task provides three types of observable data: (i) reaction

times (RTs) to the go signal in go trials, (ii) RTs in stop trials (when response

inhibition failed), and (iii) the frequency of responses given in spite of the

stop signal. Unlike the latency of go responses, response-inhibition latency

cannot be observed directly (as successful response inhibition results in the

absence of an observable response). This is a problem, in particular because

the time to cancel a response is widely considered to be an appropriate

indicator of the level of response inhibition of an individual, and it must be

addressed by any model of the stop-signal task.

1 Gordon Logan emphasizes that “Cognitive control addresses core issues in basic and applied
psychology, from free will and the nature of intention to practical strategies for improving our
own control and treating deficient control in our clients.”. According to Web of Science
(10/2020), there were about 200 papers and 10k citations in 2019 for “stop-signal task”.
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Figure 0.1 Depiction of the sequence of events in a stop-signal task. In this
example, participants respond to the direction of green arrows (by pressing
the corresponding arrow key) in the go task. On one fourth of the trials,
the arrow is replaced by “XX” after a variable stop-signal delay (FIX =
fixation duration; SSD = stop-signal delay; MAX.RT = maximum reaction
time; ITI = intertrial interval) (from Verbruggen et al., 2019).

The main goal of this chapter is to present results in the formal modeling

of behavioral data from the stop-signal paradigm and some of its variants.

Given that there exists a number of comprehensive literature reviews of both

empirical and modeling results (see final section on bibliographic notes), we

primarily present a general formal framework allowing us to incorporate

most current models and, at the same time, expose a number of open or

only partially solved problems. In order to keep the chapter self-contained,

we start by presenting some typical data pattern. Then, the general race

model is introduced including estimation methods for the non-parametric

case (Section 0.3). More detailed presentations of parametric independent

(Section 0.4) and dependent (Section 0.5) race models follow. Some related,

but non-race, models are discussed in Section 0.6. Section 0.7 introduces the

class of semi-parametric race models based on the copula concept. It also

contains the race model with perfect negative dependence. Variants of the

stop signal paradigm, the problems of trigger failures and sequential effects

are sketched in Section 0.8. We conclude with a brief discussion contrasting

parametric versus non-parametric approaches and a look into the future of
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Acronym Meaning

ARI anticipated response inhibition
CI context independence
FEF frontal eye field
FGM Farlie-Gumbel-Morgenstern (copula)
IT inhibition time
LATER linear approach to threshold with ergodic rate (model)
MCMC Markov chain Monte Carlo
PND perfect negative dependency
PTC pause-then-cancel (model)
RT response (or, reaction) time
SC superior colliculus
SI saccadic inhibition
SOA stimulus-onset asynchrony
SSD stop-signal delay
SSRT stop-signal reaction time

Table 0.1 Abbreviations used in the chapter

stop signal modeling. A list of abbreviations used in the chapter is found in

Table 0.1.

0.2 Some typical data patterns in the stop-signal paradigm

Given the popularity of the stop-signal task, the amount of data is enor-

mous and, unsurprisingly, there is a lot of diversity in the findings due to

differences in design, instruction, and the specific sub-population tested.

Nonetheless, many results only differ with respect to their specific numerical

values observed for reaction times and inhibition probabilities, while some

general qualitative features of the inhibition function and RT distributions

are typically retained.

0.2.1 Inhibitions function

Inhibitions functions depict the probability of a response in spite of a stop

signal as a function of stop-signal delay (SSD)2. When the stop signal occurs

soon after the go signal, participants have a high chance of withholding a

response, so the inhibition function has a small value. With SSD increasing,

this chance diminishes more and more, up to a point where the probability

to respond approaches 1. The top panel of Figure 0.2 depicts classic data

2 Strictly speaking, it should be called “non-inhibition function”, but the terminology used here
is common.
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from three subjects reported in Logan and Cowan (1984). While these in-

Figure 0.2 Classic data reported in Logan and Cowan (1984). Top panel:
Inhibition functions from 3 subjects plotted as function of stop-signal delay.
Bottom panel: Inhibition probability for the same three subjects replotted
as a function of mean go response time minus stop-signal delay (SSD) (from
Logan et al., 2014).

hibition functions are somewhat similar in shape, subjects clearly differ: for

mid-range SSD values, the probability of a response can vary enormously.

Does this imply that, e.g., participant J.M. (lower curve) is much better in

controlling the response than the other two? Unfortunately, interpretation of

inhibition functions is not straightforward. Although J.M.‘s inhibitory per-

formance may in fact be best, it could also be the result of J.M. voluntarily
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slowing responses to the go signal in most trials, so that there is always

“enough” time to stop the response. Even if one persuades participants to

not delay their response, it has still been shown that various parameters of

the distribution of responses to the go signal, like variance, may have a strong

effect on the inhibition functions. Suggestions to remove these problems by a

standardized transformation of the inhibition function remain controversial,

however. The bottom panel of Figure 0.2 shows the probability of inhibition

plotted against the difference between mean go RT and stop-signal delay

for the same subjects. Under some simplifying assumptions, this difference

is interpretable as a measure of the time that is available to detect the stop

signal and to cancel a response.3 In sum, this issue calls for developing a

formal model within which the level of performance can be gauged exactly

by some parameter estimated from data.

0.2.2 Reaction times to go and to stop signal

The distribution of reaction times on go trials, i.e. without a stop signal, are

often more or less right-skewed, as is typical for RT distributions in general.

Figure 0.3 depicts the histogram of 2144 saccadic reaction times to a visual

target, occurring either to the left or right of the fixation point, in a stop-

signal task with auditory stop signals (Özyurt et al., 2003). Responses on

Figure 0.3 Saccadic reaction times to a visual target with N = 2144 (from

Özyurt et al., 2003, subject P.T.).

3 Note that the functions for J.C. and G.L. align better than the function for J.M. because
J.M. had greater variability in go RT than the other two.
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unsuccessful stop trials (signal-respond RT) are on average faster than go

RT on trials with no stop signal and faster for shorter stop-signal delays

than for longer ones. Note that this latter observation is to be expected

assuming that the process of inhibition evolves over a possibly variable time

interval. This feature (often called “fan effect”), illustrated in Figure 0.4

by another study on saccadic RTs to a visual target with an auditory stop

signal (Colonius et al., 2001), motivated the development of so-called race

models to be discussed below.

Figure 0.4 Empirical (signal-respond) distribution functions of saccadic
RTs to a visual target with an auditory stop signal presented at different
SSD values [ms] (in parentheses: number of observations): dotted line: 150
(14); dashes: 200 (58); thin line: 230 (122); dots/dashes: 250 (147); medium
line: 270 (170); thick line: go condition (2919) (from Colonius et al., 2001,
subject D.L.).

0.3 Modeling the stop signal task

Many features of typical data in the stop-signal task are consistent with

modeling responses as the outcome of a race between processing of the go
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signal and the stop signal: if the latter terminates earlier than the former,

subjects succeed in inhibiting a response, otherwise they respond in spite

of the stop signal. Although “race” is the predominant modeling approach,

let us first take a step back and consider the situation from a more general

point of view.

When only the go signal is presented, denoted as context GO, reaction

time Tgo, say, represents the time to process that signal, including possible

pre- and motor components. In order to account for some variability across

trials, Tgo is considered a random variable taking on non-negative values.

In contrast, when the go signal is followed by presentation of a stop signal,

denoted as context STOP, the two alternative outcomes –either a response

is given or there is no response– are the result of (somehow) processing

both signals. Race models hold that, in addition to Tgo, there is a separate

random processing time for the stop signal, Tstop, say, and the outcome

is determined by min{Tgo, Tstop + SSD}. Alternatively, instead of claiming

a separate processing time Tstop, one could assume that the stop signal

modulates processing of the go signal in a way that is qualitatively consistent

with two fundamental empirical observations. First, RTs in context STOP

tend to be faster than in context GO ; thus, according to this alternative

view, the stop signal speeds up processing time Tgo for the go signal. Second,

the probability of inhibition decreases with SSD; thus, the later the stop

signal is presented, the shorter the time it can modify processing time Tgo.

We will sketch such non-race models in Section 0.6.

Nonetheless, a glance over the stop-signal literature strongly suggests that

the race model is the “main game in town”, especially when certain general-

izations and extensions of the notion of “race” are included, like interdepen-

dent processing or certain across-trial strategies for optimizing responses.

Therefore, the chapter’s focus is on this model class. The next section pro-

vides a formal introduction of the race model and its subclasses.

0.3.1 The general race model

One important distinction in classifying race models is whether they are

parametric or non-parametric, that is, if specific distributional assumptions

concerning Tgo and Tstop are made. Another is whether these random vari-

ables are considered to be statistically independent or not (see Figure 0.5).

Although semi-parametric race models actually contain both parametric and

non-parametric instances, they are listed here as a separate subclass for con-

ceptual reasons. They are based on the definition of a copula and will be

discussed in Section 0.7.



0.3 Modeling the stop signal task 11

Figure 0.5 Parametric, non-parametric, and semi-parametric subclasses of
the general race model with either independent or dependent Tgo and Tstop
processing times.

For context STOP , we postulate a bivariate cumulative distribution func-

tion (cdf), denoted H, for Tgo and Tstop,

H(s, t) = P [Tgo ≤ s, Tstop ≤ t], (0.1)

defined for all real numbers s and t, with s, t ≥ 0. Moreover, Tgo and Tstop are

assumed to be continuous random variables4. Sometimes Tstop is referred to

as stop signal reaction time (SSRT). The marginal cdfs of H(s, t) are denoted

as

Fgo(s) = P [Tgo ≤ s, Tstop <∞] and

Fstop(t) = P [Tgo <∞, Tstop ≤ t].

In context STOP , the go signal triggers realization of random variable Tgo
and the stop signal triggers a realization of random variable Tstop. In con-

text GO, however, only processing of the go signal occurs. Thus, the two

different experimental conditions in the paradigm, GO and STOP , imply

the existence of two different sample spaces in the statistical modeling of

the task. In principal, the distribution in context GO, F ∗go(s), say, could be

different from the marginal distribution Fgo(s) in context STOP .

However, the general race model rules this out by adding the important

assumption of context independence, also known as context invariance5:

Context independence (CI) In context GO, the distribution of go signal

processing time is assumed to be

F ∗go(s) ≡ Fgo(s) = P [Tgo ≤ s, Tstop <∞] (0.2)

4 That is, H possesses a bivariate density.
5 Context invariance seems a more fitting term but to avoid confusion, we keep the familiar

context independence.
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for all s, i.e., it is identical to the marginal distribution Fgo(s) in context

STOP .

Note that, in order to be more precise, context STOP would have to be

indexed by the specific value of SSD, td, say, with td ≥ 0, and the same

holds for H(s, t) and Fstop(t). In the following, however, we will tacitly as-

sume that SSD invariance holds, meaning that we can drop the index td
throughout without consequences while keeping it as a given (design) pa-

rameter. Moreover, Tstop is set equal to zero for t ≤ td, with probability

one.

From these assumptions, the probability of observing a response (r) to

the go signal given a stop signal was presented with SSD = td [ms] after the

go signal, is defined by the race assumption ,

pr(td) = P [Tgo < Tstop + td]. (0.3)

In addition, according to the model, the probability of observing a response

to the go signal no later than time t, given the stop signal was presented

with delay td, is given by the (conditional) distribution function

Fsr(t | td) = P [Tgo ≤ t |Tgo < Tstop + td], (0.4)

also known as signal-respond RT (sr) distribution.

The main interest in modeling the race is to derive information about

the distribution of the non-observable stop signal processing time, Tstop, or

about some of its parameters given sample estimates of Fgo(t), Fsr(t | td), and

pr(td). For example, the independent race model presented in Section 0.3.2

is parameter-free, i.e., no parameters have to be estimated in order to make

predictions. Later, we will discuss both fully parameterized models and semi-

parametric versions. In the latter, no specific distributions are postulated but

only a parameter assessing the degree of stochastic dependency.

The most simple version of the race model, sometimes referred to as in-

dependent horse race model, assumes the non-observable time Tstop = SSRT

to be a constant k, k ≥ 0. Thus, pr(td) becomes simply

pr(td) = P [Tgo ≤ td + k].

Figure 0.5 is the standard depiction of this specific model. It illustrates how

the probability to respond given a stop signal (the area under the curve

to the left of the vertical line) depends on (i) SSD (thus generating the

inhibition function), (ii) the go RT distribution, and (iii) the stop signal

processing time (SSRT).

Assuming constant stop signal processing time is not realistic and may

impair model predictions (Verbruggen and Logan, 2009), but it simplifies
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Figure 0.6 Schematic of the simplified race model: the probability to re-
spond given a stop signal (the area under the curve to the left of the vertical
line) depends on td = SSD (panel b), on go RT distribution (panel c), and
stop signal processing time (SSRT = k) (panel d) (from Verbruggen and
Logan, 2008).

estimation of SSRT enormously. In fact, a popular estimation method for

SSRT, the integration method, requires it (see below).
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0.3.2 The (complete) independent race model

The most common version of the race model is the (complete) independent

race model6 introduced by Logan and Cowan (1984); it postulates stochastic

independence between Tgo and Tstop:

Stochastic independence:

H(s, t) = P [Tgo ≤ s]× P [Tstop ≤ t] = Fgo(s)× Fstop(t), (0.5)

for all s, t (s, t ≥ 0).

From this, we have

pr(td) = P [Tgo < Tstop + td]

=

∫ ∞
0

fgo(t)[1− Fstop(t− td)] dt, (0.6)

with fgo(t) denoting the probability density function (pdf) for Tgo. Moreover,

the signal-respond distribution equals,

Fsr(t | td) = P [Tgo ≤ t |Tgo < Tstop + td],

=
1

pr(td)

t∫
0

fgo(t
′)[1− Fstop(t′ − td)] dt′. (0.7)

for all t > td and pr(td) > 07.

The predominance of the independent model is due to the fact that its

predictions are mostly consistent with the empirical observations presented

above. First, increasing td in Equation 0.6 monotonically increases the ex-

pression under the integral, thus increasing the probability of a response

and approaching 1 in the limit for td → +∞, as observed in Figure 0.2

(top panel). Second, letting td → +∞ in Equation 0.7 implies Fsr(t | td)
to approach Fgo(t), for any fixed t (Figure 0.4). As an additional test, the

signal-respond distribution has been shown to have an upper and a lower

bound (Colonius et al., 2001),

Fgo(t) ≤ Fsr(t | td) ≤ Fgo(t)/pr(td) (0.8)

6 The attribute “complete” is sometimes used to distinguish this model from the one with
constant SSRT.

7 One can define Fsr(t | td) for t ≤ td as well: Equation 0.7 then results in

Fsr(t | td) = min

{
Fgo(t)

pr(td)
, 1

}
.

It is the probability of an anticipatory response (given even before the stop signal is
presented), but these responses are usually removed.
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for all t. The lower bound implies, in particular, that

E[Tgo |Tgo < Tstop + td] ≤ E[Tgo],

i.e. mean stop failure responses should be faster than mean go signal re-

sponses.

Writing fsr(t | td) for the pdf of Fsr(t|td), it follows (Colonius, 1990) that

fsr(t | td) = fgo(t) [1− Fstop(t− td)]/pr(td). (0.9)

From that, an explicit expression for the distribution of unobservable stop

signal processing time (Tstop) follows after rearrangement:

Fstop(t− td) = 1− fsr(t | td)pr(td)
fgo(t)

. (0.10)

Unfortunately, simulation studies revealed that gaining reliable estimates

for the stop signal distribution using Equation (0.10) requires unrealistically

large numbers of observations (Band et al., 2003; Matzke et al., 2013). As

long as one is satisfied with obtaining just an estimate of some parameter

of the stop signal distribution, like the mean, two common ‘non-parametric’

methods are available. If the entire distribution is of interest, a parametric

model assuming a distributional family, like the ex-Gaussian, is called for.

Both alternatives will be discussed.

0.3.3 Non-parametric estimation of stop signal distribution

under independence

We first describe the underlying theoretical assumptions of the methods,

followed by some practical considerations for their usage.

Mean method. Rewriting the probability of a response given the stop signal

is presented at SSD = td as

pr(td) = P [Tgo − Tstop < td],

it can be interpreted formally as the cdf of a random variable Td, say, tak-

ing values td, see Logan and Cowan (1984) and illustrated by the shape of

Figure 0.2, bottom panel). It follows that Tgo − Tstop and Td are equal-in-

distribution.8 In particular, we get

E[Tstop] = E[Tgo]− E[Td], (0.11)

8 This means they have the same distribution but are not (necessarily) defined on the same
sample space; see Chapter 1 in Volume 1 (p. 10) for definitions.
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for the mean, and

Var[Tstop] = Var[Td]−Var[Tgo] (0.12)

for the variance of Td, the latter following due to stochastic independence of

Tgo and Tstop.

Integration method. In contrast to the mean method, here stop signal pro-

cessing time is taken to be a constant, tstop, say. Thus,

Fstop(t) =

{
0, if t < td + tstop;

1, if t ≥ td + tstop.
(0.13)

Inserting in Equation 0.6 yields

pr(td) =

∫ ∞
0

fgo(t)[1− Fstop(t− td)] dt,

=

∫ td+tstop

0
fgo(t)dt,

= Fgo(td + tstop), (0.14)

and inserting in Equation 0.7 yields

Fsr(t | td) =
1

pr(td)

t∫
0

fgo(t
′)[1− Fstop(t′ − td)] dt′,

{
Fgo(t)

Fgo(td+tstop) , if t < td + tstop;

1, if t ≥ td + tstop.

The value of tstop is obtained via Equation 0.14 by determining the quantile

of the go-signal distribution, F−1
go (td+tstop), and subtracting the correspond-

ing SSD value td (see Figure 0.5).

Some practical considerations. Whether the mean or integration method

should be used depends in part on the way the stop-signal delays are set.

First, one can simply choose a fixed number of SSDs such that the range

of the probability of responding, pr(td), is sufficiently covered. The second

method adjusts SSDs dynamically using a tracking procedure (mostly, one-

up/one-down), as described, e.g., in Matzke et al. (2018)9. At convergence,

9 “At the beginning of the experiment, stop-signal delay is set to a specific value (e.g., 250 ms)
and is then constantly adjusted after stop-signal trials, depending on the outcome of the race.
When inhibition is successful, stop-signal delay increases (e.g., by 50 ms); when inhibition is
unsuccessful, stop-signal delay decreases (e.g., by 50 ms).”
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this results in an approximate value of SSD (td) such that pr(td) = 0.5, but

step size should be optimized to avoid slow or no convergence. The tracking

method typically results in a sufficiently varied set of SSD values so that

E[Tstop] can be estimated easily by subtracting mean SSD from mean RT

on go trials corresponding to Equation 0.11, making the mean method the

most popular estimation method.

Applying the integration method with a fixed number of SSDs involves

rank-ordering the go RTs for each td and selecting the n-th go RT where n is

the number of go RTs multiplied pr(td). Stop-signal delay is then subtracted

to arrive at an estimate of tstop (compare Equation 0.14). Estimates from

different stop-signal delays are averaged to arrive at a single estimate for

each participant, also when the tracking procedure is being used. Simulation

results reported in Verbruggen et al. (2019) suggest that the integration

method produces the most reliable and least biased non-parametric SSRT

estimates under the condition that go omissions (i.e. go trials on which the

participant did not respond before the response deadline) and premature

responses on unsuccessful stop trials (i.e. responses executed before the stop

signal is presented) should be included in the estimation procedure. Due to

numerous recommendations in the literature on how to conduct stop signal

experiments (Logan, 1994; Matzke et al., 2018; Verbruggen et al., 2019),

applying non-parametric race models has become a more or less routine

task.

0.4 Parametric independent race models

One reason for adopting a parametric distributional family for go and stop

signal processing times is the desire to obtain additional measures of inhi-

bition performance, like variance or skew, in order to differentiate, for ex-

ample, between clinical sub-populations. Another motive is trying to reveal

the mechanisms that implement going and stopping and to predict effects

of experimental manipulations on stop-signal performance in the context of

a substantive process model of response inhibition. A selected set of inde-

pendent parametric models will be considered here.

In principle, assuming some parametric form for the distributions of Tgo
and Tstop and inserting them into the equations for the go and stop signal

distributions (Equations 0.6 to 0.9) is straightforward, but obtaining closed-

form expressions is often not achievable. The signal-respond distribution can
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be written as

Fsr(t | td; θgo; θstop) = P [Tgo ≤ t |Tgo < Tstop + td; θgo; θstop],

=
1

pr(td, θgo, θstop)

t∫
0

fgo(t
′ | θgo)[1− Fstop(t′ − td | θstop)] dt′,

(0.15)

with θgo and θstop denoting parameters, or vectors of parameters, for the go

and stop signal distribution, respectively.

A number of different estimation methods for parametric models have

been developed. Parameter estimation via maximum likelihood requires the

likelihood functions for both go and stop signal conditions that can be writ-

ten as follows.

Let {tg}g=1,...G denote a sample of G response times collected in context

GO. The log-likelihood function becomes

logL(θgo | {tg}) =

G∑
g=1

fgo(tg | θgo). (0.16)

For context STOP , we must distinguish stop-signal responses and inhibi-

tions: let {tr}r=1,...R denote the signal-respond times for a given SSD = td.

This implies the following log-likelihood function:

logL(θgo, θstop | {tr}, td) =
R∑
r=1

fgo(tr | θgo)[1− Fstop(tr − td | θstop)]. (0.17)

Turning to the inhibitions, let {ti}i=1,...I denote the successful inhibition

(stop signal) times. Because the ti’s are not observable, the likelihood of

winning at each possible time point must be considered (by integration).

For a given SSD = td, the log-likelihood function is thus given by (Matzke

et al., 2013)

logL(θgo, θstop | {ti}, td) =
I∑
i=1

∞∫
td

{fstop(ti − td | θstop)[1− Fgo(ti | θgo)]} dti.

(0.18)

0.4.1 Exponential model.

We start with the exponential model as an illustrative example permitting

closed-form predictions. Several, more prominent models will follow includ-

ing information about suitable parameter estimation methods.
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Let Tgo and Tstop follow exponential distributions; the bivariate cdf is

H(s, t) = P [Tgo ≤ s]× P [Tstop ≤ t]
= (1− exp[−λgo s])× (1− exp[−λstop t]),

for all s, t ≥ 0 with positive real-valued parameters λgo and λstop . Then

pr(td) =

∫ ∞
0

fgo(t)[1− Fstop(t− td)] dt,

=

∫ td

0
fgo(t) dt+

∫ ∞
td

fgo(t) [1− Fstop(t− td)]

= 1− λstop
λstop + λgo

exp[−λgotd].

The pdf of the signal-response distribution is given, for t > td, by

fsr(t | td) = fgo(t) [1− Fstop(t− td)]/pr(td)

=
λgo exp[−λgot] exp[−λstop(t− td)](

1− λstop
λstop + λgo

exp[−λgotd]
)

=
1

K
(λgo + λstop) exp[−(λgo + λstop)(t− td)],

with K = exp[λgo td](1 + λstop/λgo)− λstop/λgo. For td = 0, we have K = 1

and the signal-respond density is identical to an exponential pdf for an

independent race between Tstop and Tgo, with parameter λgo + λstop and

pr(td) = λgo/(λgo + λstop).

For t ≤ td, the density simplifies to

fsr(t | td) = fgo(t)]/pr(td)

= (λstop + λgo) exp[−λgo(t)].

Computation of the expected value of signal-response RTs yields:

E[Tgo |Tgo < Tstop + td] =

∞∫
0

t fsr(t | td)dt

=
λgo [1 + (λgo + λstop)td]

(λgo + λstop){exp[λgo td](λgo + λstop)− λstop}
.

In particular, for td = 0, we obtain E[Tgo |Tgo < Tstop + 0] = 1/(λgo +λstop),

consistent with the density we mentioned above for this value of the stop

signal delay.
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The exponential distribution does not possess a plausible shape as RT

distribution, but it is a special case of the Weibull distribution that has just

one more parameter. The Weibull is often considered to approximate em-

pirical RT distributions, but the Weibull model has not yet been considered

for stop-signal modeling, to our knowledge.

0.4.2 Ex-Gaussian model.

This model, explored by Matzke and colleagues (Matzke et al., 2013), re-

lies on the convolution of an exponential and a normal distribution (ex-

Gaussian). The ex-Gaussian distribution is described by three parameters:

µ and σ the mean and standard deviation of the Gaussian component, and

τ , the mean of the exponential component10. It has a positively skewed uni-

modal shape with µ and σ reflecting the leading edge and τ the tail of the

distribution (see Figure 0.7). It often produces an excellent fit to empirical

RT distributions.

Figure 0.7 Dependence of ex-Gaussian distributional shape on parameter
changes. The parameter sets used to generate the distributions are (A) µ =
0.5, σ = 0.05, τ = 0.3 (default parameter set); (B) µ = 1, σ = 0.05,
τ = 0.3 (increasing µ); (C) µ = 0.5, σ = 0.2, τ = 0.3 (increasing σ);
and (D) µ = 0.5, σ = 0.05, τ = 0.8 (increasing τ) (from Matzke and
Wagenmakers, 2009).

The pdf of the ex-Gaussian is

f(t;µ, σ, τ) =
1

τ
exp

[
µ− t
τ

+
σ2

2τ2

]
Φ

[
t− µ
σ
− σ

τ

]
(0.19)

where Φ is the standard normal cdf and σ > 0, τ > 0. Moreover, as sum of

two random variables, the expected value equals µ + τ and, by stochastic

10 Note that here τ is the inverse of the λ parameters in the previous model where the
exponential mean was 1/λ.
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independence of the component distributions, the variance is σ2 + τ2. Skew-

ness is determined solely by the exponential component and is equal to 21/3τ

(see also Figure 0.7). The ex-Gaussian model has the theoretical defect of

predicting negative RTs with positive probability, but this probability can

be made arbitrarily small by shifting the distribution to the right.

The ex-Gaussian stop-signal model assumes separate parameter sets for

the Tgo and Tstop distributions, (µgo, σgo, τgo) and (µstop, σstop, τstop). Due

to the normal component, no closed-form expressions for Fsr(t) and pr(td)

are available, but simulation is simple by sampling from the two component

distributions and adding the values.

Parameter estimation. While model parameter estimates can be obtained

via standard maximum likelihood methods, Matzke and colleagues (Matzke

et al., 2013) have also developed a Bayesian estimation method to fit the

model to both individual and group data.

First, a uniform prior distribution is assumed for the six parameters of

the Tgo and Tstop distributions. These priors are informative in the sense

that they cover a wide but realistic range of values informed by results from

the stop-signal literature (Band et al., 2003). The prior distributions are

then updated by the data to yield the posterior distributions, according to

Bayes’s rule (without marginal likelihood),

posterior ∝ likelihood× prior.

For each parameter, the mean, median, or mode of the posterior distribu-

tion is taken as a point estimate of the parameter, while the dispersion of

the posterior distribution, quantified by the standard deviation or the per-

centiles, yields information about precision of the parameter estimates: The

larger the posterior standard deviation, the greater the uncertainty of the

estimated parameter. The posterior distribution for each parameter is ap-

proximated via Gibbs sampling (Geman and Geman, 1984), a Markov chain

Monte Carlo (MCMC) algorithm for obtaining a sequence of observations

when direct sampling is difficult (for details, see Matzke et al., 2013). Fig-

ure 0.8 illustrates the result for the 3 parameters of the posterior stop-signal

pdf.

The Bayesian parametric approach can also handle group data via hierar-

chical modeling (Gelman and Hill, 2007). Individual parameters are assumed

to be drawn from group-level distributions that specify how the individual

parameters are distributed in the population. Given that in stop-signal ex-

periments often relatively few observations per participant are available, the

hierarchical approach is especially valuable here. For further details about
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Figure 0.8 The histograms in the top panel show the posterior distribu-
tion of the stop signal parameters (synthetic data set). The corresponding
thick gray lines indicate the fit of a nonparametric density estimator to
the posterior samples. The horizontal black lines at the bottom show the
prior distribution of the parameters. The horizontal black lines at the top
show the 95% Bayesian confidence interval. The solid, dashed, and dotted
lines in the bottom panel represent the different sequences of values (i.e.,
MCMC chains) sampled from the posterior distribution of the parameters
(Gibbs sampling) (from Matzke et al., 2013).

the estimation procedure and accompanying software, we must refer to the

original sources (Matzke et al., 2013; Matzke, 2013).

The ex-Gaussian model yields precise information about the unobservable

stop signal times but does not attach a specific substantive meaning to the

choice of the distribution. In contrast, the following models motivate their

distributional form by certain processing assumptions in the stop signal task.

0.4.3 Hanes-Carpenter race model.

The model is based on the linear-approach-to-threshold-with-ergodic-rate

(LATER) model purporting to describe the neural mechanism controlling

the latency between appearance of a visual target and the start of a saccadic

eye movement to the target (Carpenter and Williams, 1995). Introduced in
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Hanes and Carpenter (1999), it assumes that the competing go and the

stop process rise in a linear fashion to a fixed response threshold. Assuming

a fixed response threshold θ, stochastic variability is built into the model

by postulating a normally-distributed random rate of rise for going and

stopping.

The LATER model assumes a linear rise r of the go process to a fixed

threshold, starting from an initial activity level s0, i.e., s0 + r × t = θ

(see Figure 0.9). Assuming r to be the realization of a normally distributed

random variableR with mean µgo and variance σ2
go, the above equation leads,

after rearrangement, to an expression for the go process random variable Tgo:

Tgo = (θ − s0)/R.

Since the distribution of R is given, the pdf of Tgo follows as (see Colonius

et al., 2001)

fgo(t) =
θ − s0

σgo
√

2π t2
exp

[
−
(
θ − s0

t

)2

/(2σ2
go)

]
(0.20)

An analogous pdf is assumed for the stop process Tstop with mean µstop
and variance σ2

stop and predictions from the Hanes-Carpenter model are

obtained by inserting these distributions into the expression for the signal-

respond distribution Equation 0.15 and the analogous expression for pr(td).

The model has been tested in several studies. Hanes and Carpenter (1999)

reported that the model correctly predicted the probability of successful

saccade inhibition as a function of the stop-signal delay as well as the signal-

respond distributions. Colonius et al. (2001) found results paralleling those

of the non-parametric Logan-Cowan model applied to the same data set,

and showed that saccade inhibition is more efficient in response to auditory

stop signals than visual stop signals.

Parameter estimation has been performed by minimizing sum-of-squares

deviations between observed and predicted data using expressions for the

pdfs, by maximum likelihood estimation, and by Monte Carlo simulations

(see, e.g., Colonius et al., 2001).

0.4.4 Diffusion race model including its extension to choice RT

In the Hanes-Carpenter model, stochastic variability is implemented across

trials by the random rise of activity in going and stopping, but once started,

activation accumulates in a linear deterministic fashion within the trial. In

contrast, the diffusion race model developed in Logan et al. (2014) assumes

that both processes are governed by diffusion processes that race against
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Figure 0.9 The go process (solid line) and the stop process (dotted line)
race independently toward their respective thresholds (dashed horizontal
line). The thresholds for both processes coincide only for ease of illustration.
In stop trials, the stop process is evoked after the go process has begun. Left
panel, the go and stop stimuli each trigger a signal rising linearly towards
a threshold: if, as here, the stop process rises so fast that it overtakes to
go process and reaches threshold first, the saccade is successfully inhibited.
Right panel, if the go process reaches threshold first, the saccade fails to
be countermanded. (from Hanes and Carpenter, 1999).

each other until the first one reaches a fixed threshold. The concept of a

stochastic diffusion (Wiener) process has arguably become the most impor-

tant component of modeling response times in a wide variety of tasks (e.g.

Ratcliff, 1978; Busemeyer and Townsend, 1993; Diederich, 1995; Smith and

Ratcliff, 2009; van Zandt et al., 2000) and (for details, see Diederich and

Mallahi-Karai, 2018; Smith, 2000).

The diffusion race model assumes a Wiener diffusion process with drift

rate ξ, a starting point of zero activation, and a threshold (absorbing bound-

ary) at z. The first-passage time is given by the inverse Gaussian (or, Wald)

distribution; for the go process pdf, we get

fgo(t) = z(2πt3)−0.5 exp

[
− 1

2t
(ξt− z)2

]
, (0.21)

and for the stop process pdf,

fstop(t) = z(2π(t− td)3)−0.5 exp

[
− 1

2(t− td)
(ξ(t− td)− z)2

]
, (0.22)

for t > td and zero otherwise.

The model actually tested in Logan et al. (2014) was an extended version

of the above, re-introducing across-trial variability by assuming the thresh-
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old to be a uniform random variable Z ranging from z − a to z + a, with a

mean of z and a variance of a2/3. For example, the finishing time of the go

process unconditioned over the variable threshold Z results in a go pdf

ggo(t | z, ξ) = (2a)−1

∫ z+a

z−a
fgo(t | z′, ξ) dz′

The context for this model extension was that the authors were interested

in modeling a more general paradigm, where participants‘ go response was

a decision among stimuli from a set A of possible response alternatives.

In this paradigm, participants also produce error RTs (choosing the wrong

alternative), and it is well known that the diffusion model with constant

threshold cannot predict the often observed “fast error” RT distributions

(Smith, 2000).

The diffusion race model is a instantiation of what Logan and colleagues

call the general independent race model. The latter assumes a double race,

first, between a set A of possible go responses and, second, between the win-

ner of the first race and the stop process. Assuming stochastic independence

throughout, this implies for the probability that go response i (i ∈ A) will

occur given SSD = td

P [response i | td] =

∫ ∞
0

fi(u)
∏

j∈A,j 6=i
(1− Fj(u)) (1− Fstop(u− td)) du,

where Fj(t) and fj(t) (j ∈ A) are the cdf and pdf, respectively, for go

response j. The probability that the stop process wins the race is

pstop(td) =

∫ ∞
0

fstop(u− td)
∏
i∈A

(1− Fi(u)) du;

thus, pr(td) = 1− pstop(td).
For the pdf of RTs conditioned on response i, we get the signal-respond

distribution

f(t|i, td) =

fi(t)(1− Fstop(t)) ∏
j∈A,j 6=i

(1− Fj(t))

 /pr(td).
The pdf for Tgo, the RT to give some response when no stop signal is present,

equals

fgo(t) =
∑
i∈A

fi(t)
∏

j∈A,j 6=i
(1− Fj(t)).
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In analogy to Equation (0.9), the signal-respond pdf can be calculated using

fsr(t | td) =

∑
i∈A

fi(t)
∏

j∈A,j 6=i
(1− Fj(t))(1− Fstop(t− td))

 /pr(td).
This model clearly generalizes the Logan-Cowan race model in covering

choice RT paradigms as well. As such, it could be further studied as a non-

parametric model, e.g. with an additional assumption of constant SSRT.

However, Logan et al. (2014) were specifically interested in issues of pro-

cessing capacity. For example, do stop and go process share capacity, or is

processing capacity unlimited in the stop signal paradigm? To answer this

question, they systematically varied the number of response alternatives and

estimated parameters of the race diffusion model. They hypothesized that,

under limited capacity, the rate parameter for the stop process should de-

crease with the number of alternative responses, just as the rate parameters

for the go processes do. This is basically what they found using a series of

model variants with certain parameters fixed and others free to vary. More-

over, the threshold parameter for the go task increased slightly with the

number of alternatives, which is interpreted as subjects adjusting threshold

strategically to compensate for the increased noise.

0.5 Parametric dependent race models.

0.5.1 Evidence against independence: the paradox

All models considered up to here were based on assuming both context and

stochastic independence. Nevertheless, some recent findings, adding to some

earlier ones, have raised serious doubts about the ubiquitous validity of the

independence assumptions. A specific independence test is to check that

mean signal-respond RTs are monotonically increasing with stop signal de-

lay and that corresponding distribution functions are ordered accordingly

(see Fig. 0.10, left panel). In earlier work, we have found some violations of

this ordering at short SSDs (e.g., Colonius et al. 2001; Özyurt et al. 2003, see

Fig. 0.10, right panel) but evidence remained weak because, typically, obser-

vations are sparse at short SSDs. Moreover, Band et al. (2003) investigating

the consequences of violations of both context and stochastic independence

on stop signal processing estimates via simulation, found severe bias effects

on SSRT estimates under some conditions. Recently, in a large-scale sur-

vey analyzing 14 experimental studies, Bissett et al. (2021) found serious

violations of context independence specifically at short SSDs (i.e. less than

200 ms).



0.5 Parametric dependent race models. 27

Figure 0.10 Distribution function (cdf) prediction of IND model. Left
panel: prediction for signal-respond cdfs ordered by SSD size (from Ver-
bruggen and Logan 2009). Right panel: Observed violation for short SSD
= 90 ms (from Colonius et al. 2001). In both panels, the solid line represents
the go signal RT distribution.

Such violations are commonly interpreted as refuting context indepen-

dence, but it seems difficult to tell apart violations of stochastic indepen-

dence from violations of context independence by experimental tests of be-

havior. Thus, violations of the former, in addition to or in place of, violations

of context independence cannot be ruled out.

Strong evidence against independence comes from seminal findings on

the neural underpinnings of response inhibition, and the main impetus for

developing race models with dependency arguably comes from these investi-

gations. Studies in the frontal eye fields (FEF) and superior colliculus (SC)

of macaque monkeys performing a countermanding task with saccadic eye

movements have shown that the neural correlates of go and stop processes

produce eye movement behavior through a network of interacting gaze-

shifting and gaze-holding neurons (Brown et al., 2008; Hanes et al., 1998;

Hanes and Schall, 1995; Paré and Hanes, 2003; Middlebrooks et al., 2020).

Specifically, Hanes and colleagues (Hanes and Schall, 1995) showed, first,

that macaque monkey behavior in saccade countermanding corresponded

to that of human performance in manual stop-signal tasks consistent with

the independent model. Then, recording from FEF they isolated neurons

involved in gaze shifting and gaze holding that represent a larger circuit

of such neurons that extends from cortex through basal ganglia and SC to

brainstem (see Figure 0.11).

The question thus arises: How can interacting circuits of mutually in-

hibitory neurons instantiate stop and go processes with (context or stochas-
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Figure 0.11 Schematic diagram: Activation of the GO unit (upper) and
the STOP unit (lower) for trials with no stop signal (dashed lines) and
trials with a stop signal that successfully canceled the saccade (solid lines).
Saccades are produced when inhibition of the STOP unit is released and
the activation of a GO unit reaches a threshold (red dashed line). In re-
sponse to the stop signal (solid grey line), the STOP unit becomes active,
interrupting the accumulation of GO unit activation. This interruption oc-
curs immediately before the stop-signal reaction time (SSRT) (blue line),
a measure of STOP process duration derived from the independent race
model. From Schall et al. (2017).

tically) independent finishing times? Although it can be argued that behav-

ioral and neural data provide a description on different levels of processing

(see below section “linking propositions”), this discrepancy has widely been

perceived as a paradox (Boucher et al., 2007; Schall and Godlove, 2012;

Schall et al., 2017; Matzke et al., 2018).

In an effort to resolve the paradox, a number of neurally inspired, compu-

tationally explicit models have been proposed that will be considered here

and in the following section. In Section 0.7, we will present some further

behaviorally oriented approaches based on recent concepts of statistical de-

pendence.
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0.5.2 Interactive race model

Boucher and colleagues Boucher et al. (2007) developed a relatively simple

neural network model, the interactive race model , consisting of a go (or

move) and a stop (or fixation) unit that accumulate stochastic evidence and

race toward a common threshold (arbitrarily set to one). Whichever unit

reaches the threshold first determines whether a stop signal trial is signal-

inhibit or signal-respond.

The approach, based on a version of the leaky, competing accumulator

model (Usher and McClelland, 2001; Bogacz et al., 2006), is defined by two

stochastic differential equations

dago(t) =
dt

τ
[µgo − k ago(t)− βstop astop(t)] +

√
dt

τ
ξgo; (0.23)

dastop(t) =
dt

τ
[µstop − k astop(t)− βgo ago(t)] +

√
dt

τ
ξstop. (0.24)

These equations describe the change in activation of the go and stop units,

ago(t) and astop(t), within (an infinitely small) time step dt. Parameters

µgo and µstop denote mean growth rates (drift rates) for the go and stop

unit, respectively. The leakage parameter, k, prevents the activation from

increasing without bound. Interaction between the units is controlled by

the inhibition parameters βgo and βstop (see Figure 0.12, right panel). The

amount of mutual inhibition depends on the instantaneous activation levels,

ago(t) and astop(t), causing a unit with a low activation to have a small

inhibitory effect on the other unit. Finally, ξgo and ξstop are Gaussian noise

terms with mean of zero and variance σ2
go and σ2

stop, respectively.

Other parameters in the model capture the non-decision time stages of

processing. Stimulus encoding that occurs before go unit and stop unit acti-

vation was instantiated is represented as constant delay: Dgo denotes afferent

processing time after the go stimulus is presented, Dstop is the latent time

after SSD and before the stop unit begins to inhibit the go unit (see Fig-

ure 0.12, left panel). Boucher et al. (2007) studied simultaneously recorded

behavioral and neural data from two monkeys performing the saccadic stop-

signal task (Hanes et al., 1998). Because the above model equations do not

possess closed-form solutions, they simulated the model searching for opti-

mal parameter values to minimize deviations of predictions from data. In

order to fit neurophysiological data, they first had to decide which parts of

the neural populations should correspond to the stop and go units of the

interactive model. They noticed:

“The stop-signal task is ideal for investigating the neural control of movement
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Figure 0.12 Interactive race model. Left panel: timing of events (including
afferent delays Dgo and Dstop) (adapted after Logan et al., 2015). Right
panel: go and stop unit interaction (with leakage parameter k dropped)
(adapted after Boucher et al., 2007).

initiation because it specifies the criteria a neuron must meet to be identified as
contributing to controlling saccade initiation. First, the activity in trials when a
saccade is made (no-stop-signal or signal-respond trials) must be different from
that in trials when no saccade is made (signal-inhibit trials). Second, in stop-signal
trials, the activity should begin along the trajectory that would lead to saccade ini-
tiation, but on presentation of the stop signal, the activity must be modulated away
from that trajectory, and this modulation must occur within the SSRT. Neurons
with movement-related and fixation-related activity in frontal eye field and superior
colliculus satisfy both of these requirements .”(Boucher et al., 2007, p. 380)11

Second, go unit activation was compared with movement neuron activity and

stop unit activation was compared with fixation neuron activity. Specifically,

for both neurons and model units, activation on signal-inhibit or signal-

respond trials was compared with the activity of a subset of latency-matched

no-stop-signal trials. No-stop signal trials with response time longer than

SSD + SSRT were compared with signal-inhibit trials, because according

to the race model, the saccade would have been inhibited had the stop

signal been presented. No-stop signal trials with response time shorter than

SSD + SSRT were compared with signal-respond trials because, according

to the race model, the saccade would have been initiated even if the stop

signal had occurred. Cancel time was defined as the time at which activation

11 As the authors point out, determining the quantitative details is a rather subtle task. First,
neural activation functions derived from spike trains are converted to spike density functions,
as described in Hanes et al. (1998). Although a neural population with a specific function
should respond in generally the same way, each neuron may have some idiosyncrasies. Thus,
before averaging across neurons, they first had to normalize the spike density function of each
neuron by dividing its activity by the peak firing rate in the interval from 20 ms before to
50 ms after saccade initiation on no-stop-signal trials.
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on signal-inhibit trials significantly diverged from the activation on no-stop-

signal trials relative to SSRT12 (for further details, we must refer to Boucher

et al., 2007, 386 pp.).

In probing the model, Boucher and colleagues first evaluated the ability of

the independent race model to account for the observed data. Setting inhi-

bition parameters βgo and βstop to zero turns the model into a stochastically

independent version, and this resulted in good fits to the behavioral data

(inhibition functions, go RT and signal-respond RT distributions). However,

since it has no mechanism to shut off the go process so that it does not

reach threshold on signal-inhibit trials when the stop process wins, it could

not account for the neural data. On the other hand, letting parameters free

to vary and utilizing some additional model simulations to estimate go and

stop signal cancel times, the authors showed that the interactive model can

be fitted simultaneously to both neural and behavioral data. Moreover, by

constraining the model parameters in different ways, it turned out that a

good model fit depended on two restrictions: (i) activation of the stop unit

has to be delayed for a substantial amount of time after the stop signal oc-

curs, i.e., Dstop must be rather large (50-70 ms) and (ii) the stop unit must

inhibit the go unit much more than vice versa, i.e., βstop has to be much

larger (i.e., by an order of magnitude) than βgo.

What are the consequences of these findings for the interpretation of

SSRT, as measured in the Logan-Cowan independent race model? The pa-

rameterized interactive race model implies an additive partition of SSRT:

First, stop-signal encoding time, Dstop, was between 51 and 67 ms with a

small standard deviation (10 to 20 ms). Second, the interval from SSD+Dstop

until cancel time (interruption of go unit accumulation), called stopinterrupt,

is only about 22 ms, effectively instantaneous. Adding the ballistic interval

preceding initiation of the movement (Logan and Cowan, 1984), denoted as

goballistic (about 10 ms), results in the following SSRT decomposition:

SSRT = Dstop + stopinterrupt + goballistic (0.25)

With SSRT estimates from behavioral data in the range of 80-95 ms, this

equation means that most of SSRT is occupied by Dstop, during which the

go unit is not affected by the stop unit. Boucher et al. (2007) conclude that

stopping is a two-stage process consisting of a (relatively long) encoding

stage with no interaction and a brief interruption stage during which re-

sponse preparation is inhibited. This model has been postulated to be a

12 Cancel time is important in neuroscience because it is an essential criterion for determining
whether modulation of neural activity happens early enough to participate in response
inhibition (Logan et al., 2015, p. 123).
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resolution of the above-mentioned paradox of an independent race at the

level of RTs and mutual inhibition at the level of neural activation between

gaze-holding and gaze-shifting units (see also Schall et al., 2017).

0.5.3 Linking propositions

The general race model and most of its subclasses do not make a commit-

ment to the underlying computational or neural processes that generate the

processing times Tgo and Tstop. The interactive race model, however, has

been developed with the aim of connecting go and stop signal processing

to the underlying physiology. Given the good understanding of how sac-

cade production is controlled by a circuit of neurons extending from cortex

through basal ganglia and superior colliculus to brainstem, the model links

the go unit to movement-related neurons and the stop unit to fixation-related

neurons in frontal eye fields and superior colliculus (Boucher et al., 2007).

Such linking propositions specifying the nature of the mapping between

particular cognitive states and neural states have a long history (e.g., Teller,

1984) and they have recently become more popular under the heading of

model-based cognitive neuroscience (e.g., Forstmann and Wagenmakers, 2015).

One motivation for developing linking propositions is the hope to solve the

general problem of non-identifiability and model mimicry (see Jones and

Dzhafarov, 2014), that exists for behavioral models of choice RT, by iden-

tifying the underlying neurophysiology. In the context of the stop signal

task, J. Schall and colleagues have thoroughly investigated linking proposi-

tions between processing times (Tgo, Tstop) and single-neuron discharges in

the frontal eye field, superior colliculus, and ocular motor neurons leading

to the interactive race model of Section (0.5.2) and related models (Schall,

2004; Schall and Godlove, 2012; Schall, 2019). Unfortunately, as recently

described in Schall (2019), finding a one-to-one mapping between parame-

ters of neural activity and those describing abstract stochastic accumulators

(like in race models) seems out of reach at the moment (see also Schall and

Paré, 2021).

0.6 Related (non-race) models

0.6.1 Blocked-input model

Starting from the interactive model, Logan and colleagues (Logan et al.,

2015) suggested an alternative view on how stopping occurs: the stop unit

does not directly inhibit growth of activation of the go unit; rather, the stop
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signal activates a top-down process outside the gaze control network that,

once reaching a threshold early enough, blocks input to the go unit. Within

the dynamics of the interactive model, this means setting go drift rate to

zero so that it will not reach its threshold.

The authors defined the units more neutrally as fixation (fix) and move-

ment (move) units because they linked them to gaze-holding and gaze-

shifting neurons in a general network, extending from cerebral cortex to

the brain stem and being in active balance already at the start of a trial.

Modeling steady-state fixation activity implied that eye movements can only

occur if activation in the move unit (µmove) and inhibition from the move

unit to the fix unit (βmove) are large enough to overcome steady-state activa-

tion in the fix unit, and if simultaneously inhibition from the fix unit to the

move unit (βfix) is not large enough to suppress move activation entirely.

For the monkey FEF data from Hanes et al. (1998), these constraints led

to equivalent predictions of physiological data for the interactive and the

blocked-input model, but the latter model provided a better account of the

behavioral data.

By letting certain model parameters vary freely and and keeping others

fixed, Logan et al. (2015) compared fits of different versions of the interactive

and blocked-input models. Although these models differed strongly with

respect to the temporal dynamics of inhibition, they did not show substantial

differences in goodness of fit. The authors refer to this result as an instance

of “model mimicry” of blocking and inhibiting which can only partially be

resolved by considering neurophysiological data.

0.6.2 DINASAUR model

A recent neural network model by Bompas and colleagues (Bompas et al.,

2020) tackles the problem of modeling rapid saccadic countermanding from

a different background. Their model had originally been developed for the

well known phenomenon of saccadic inhibition(SI) (Reingold and Stampe,

2002; Bompas and Sumner, 2009; Walker and Benson, 2013).

SI occurs in a paradigm that is, or can be made to be, identical to the stop

signal task in all aspects except for the instruction: instead of inhibiting the

response upon appearance of a (stop) signal, the participant is instructed

to just ignore it and perform the saccade to the target stimulus. The SI

effect is manifest as a decrease in the number of saccades observed shortly

after (distractor) stimulus onset, compared with baseline conditions (with

no signal), with a maximum inhibitory influence occurring around 70–90 ms

later (see Figure 0.13).
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Figure 0.13 Saccadic stop-signal task (panel A) and saccadic inhibition
(panel B) paradigms. Both paradigms involve a stimulus jump from center
to periphery, sometimes followed by the onset of a central signal (right
subpanels above, black lines below), sometimes not (left subpanels, gray
lines). The signal onset time is indicated by vertical green lines and the
delay between the target jump and the signal is referred to as the stimulus
onset asynchrony (SOA). The two tasks differ in the instruction associated
with the signal onset: withhold the saccade vs. ignore the signal and perform
the saccade. Panel A: Instructions to stop remove slower responses from
the RT distribution, but fast responses escape. Panel B: The same visual
events associated with an ignore instruction typically produce a dip in the
latency distribution, where saccades are delayed and subsequently recover,
so that the total number of saccades are about the same between signal
present and no-signal distributions (adapted after Bompas et al., 2020).

The authors start from the observation that in the stop signal paradigm,

as in SI, fixation and movement neurons receive inputs tightly tied to the

visual stimuli (targets and stop-signals) with onsets and offsets leading to

step changes some 35 to 50 ms later, preceding inputs from control neurons

whose role is to cancel the action plan (Bompas et al., 2020, p. 528). The

first part of rapid saccadic countermanding is initially entirely automatic,

with slower, top-down endogenous signals built on top of rapid automatic

disruption. Their model refers to an approach originally developed by Trap-

penberg and colleagues (Trappenberg et al., 2001) describing the dynamics

of saccadic decision with basic characteristics of exogenous and endogenous
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neural signals and lateral inhibition in the intermediate layers of the superior

colliculus (SC).

A specific instantiation of Bompas et al.‘s model, called 200N-DINASAUR,

possesses n = 200 nodes representing the horizontal dimension of the visual

field, and the average spiking rate Ai of neuron i is a logistic function of its

internal state ui:

Ai(t) = 1/(1 + exp[−β ui(t)]).

Similar to leaky competing accumulators models, the dynamics of ui(t)

across time depends on normally distributed noise and two types of input

received, either external to the map (endogenous or exogenous) or internal

via lateral connections (cf. Trappenberg et al., 2001):

τ
dui
dt

= −k ui(t) +
1

n

∑
j

ωij Aj(t) + Iexoi (t) + Iendoi (t) +N(0, η). (0.26)

The authors emphasize the distinction between visual events triggering ex-

ogenous inputs (i.e. transients tied to visual changes: targets, distractors, or

stop signals) not affected by instructions, and endogenous signals (i.e. later,

sustained and linked to the instructions) (Bompas et al., 2020, p. 529).

Endogenous inputs vary as step functions, while exogenous inputs are tran-

sient reaching their maximal amplitude (aexo) ) at t = tonset+δvis, and then

decreasing exponentially as a function of time, according to the following

equation:

τon
dIexoi

dt
= −Iexoi (t) + aexo.

Following the Trappenberg et al. model, all inputs have Gaussian spatial pro-

files (with standard deviation σ). They are maximal at the targeted nodes

but also affect nearby nodes. Lateral connections show a Gaussian spatial

profile that changes from positive (excitation) at short distance to nega-

tive (inhibition) at longer distance according to connection weights ωij (see

Bompas et al., 2020, p. 530).

In the no-signal condition, a single exogenous (visual) transient onset

occurs δvis after target onset, shortly followed by a switch of endogenous

support from fixation to target δendo after target onset. The signal-ignore

condition differs from the no-signal condition solely by the presence of a sec-

ond visual transient, triggered by the signal appearing. When generalizing

the model from signal-ignore to signal-stop conditions, only the endogenous

input should differ because the visual display is identical and only the in-

structions differ. As in the blocked-input model, the endogenous input to
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the target is switched off (blocked) δendo after the stop-signal, while the

endogenous input to the fixation is switched on again.

Bompas et al. (2020) validate the DINASAUR model in several steps via

both simulation and experiment. While the model features a large number of

parameters (up to 16), by taking all but 2 of the parameters from the model

fit for the SI paradigm in Bompas and Sumner (2009), their simulation

was able to reproduce well the typical pattern of results obtained in both

paradigms13(see Figure 0.14).

The model makes two important predictions. Work on SI by Bompas

and Sumner (2011) had indicated that dip onset, the time point T0 where

latency distributions diverge, matches the sum of sensory delay δvis and

motor output delay δout so that T0−SOA reflects non-decision time. More-

over, following Boucher et al. (2007), a large portion of SSRT is devoted to

non-decision time (the independent processing part, followed by rapid and

late inhibition). Thus, Bompas et al. argue that SSRT “...likely behaves like

T0, and therefore we expect the early part of the interference from stop-

signals and distractors should be very similar in saccadic inhibition and

countermanding.” (Bompas et al., 2020, p. 536). Therefore, the first strong

prediction of DINASAUR is that the time point at which the RT distribu-

tion diverges from the no-signal distribution should be the same under the

ignore-signal and the stop-signal instruction (see point T0 in Figure 0.14,

top and bottom right panels).

The second prediction follows from separating exogenous (visual) delay

δvis from endogenous delay δendo, and from parsimoniously assuming the

latter value to be the same in all phases: (a) endogenous support for the tar-

get following target onset, (b) the removal of endogenous support for fixation

following target onset, (c) the removal of endogenous support for the target

following the signal under the stop instruction, and (d) endogenous support

returning to fixation following the stop instruction. The prediction then is

that extracting these parameters from the no-signal and signal-ignore condi-

tions permits predicting stopping behavior without the need for additional

top-down countermanding parameters.

Bompas et al. (2020) found support in three experiments geared toward

probing these predictions, but only after adding two amendments to improve

fits to the no-signal distribution. The first is to introduce a holding period

in order to account for the participants’ strategic slowing down in the stop

task (proactive inhibition). Second, in order to predict “late errors” in the

stop signal condition they had to add a parameter for the probability of

13 Bompas et al. (2020) compare their model with the blocked-input model in much more detail,
but we do not go into this here.
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Figure 0.14 Simulated RT distributions for blocked input (left panels) and
200N-DINASAUR (right panels) model for ignore-signal (upper panels) and
stop-signal condition (lower panels). The DINASAUR model (with blocked
input for stopping) captures well the typical pattern of results obtained in
both paradigms. Blocked input 2.0 (with adding automatic fixation activity
for ignore conditions) is not able to produce the sharp dips expected from
the saccadic inhibition literature. Both models predict a perfect alignment
across instructions of the time when the signal RT distribution (black)
departs from the no-signal RT distribution (gray), indicated by the blue
dots (T0) and highlighted by blue vertical bars (adapted after Bompas et al.,
2020).

not following the stop instruction. This corresponds to the probability of

“trigger failures” (see, e.g. Band et al., 2003, and Section 0.8.2 below).
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0.6.3 Diffusion-stop model

This model does not implement a race concept either and is related to the

blocked-input model closely enough to be mentioned here. In an unpublished

paper (Colonius and Diederich, 2001/2021), we address the paradox men-

tioned at the start of this section by suggesting a diffusion model approach

based on Diederich (1997).

The diffusion-stop model assumes a variable growth to a fixed threshold.

Rather than claiming separate growths of go and stop signal related ac-

tivities, it assumes a single diffusion process unfolding over time between

two fixed criterion thresholds. The onset of the go signal triggers a growth

process represented by a stochastic trajectory drifting towards the upper

boundary, threshold (θgo). In the absence of a stop signal, the average tra-

jectory (indicated by the line in Figure 0.15, left panel) has a positive slope

resulting in mean saccadic response time determined by the time point cor-

responding to the crossing of the go threshold. On the other hand, crossing

the stop threshold (θstop)) results in a permanent cancellation of the planned

movement to the go signal. Figure 0.15 illustrates this mechanism. Presen-

Figure 0.15 Three hypothetical trajectories in the activation space simu-
lated by the diffusion-stop model. Left: in go trials, the drift rate is constant.
A saccade is initiated when the trajectory crosses the upper threshold θgo
for the first time. The line presents the average trajectory. Right: in stop
signal trials, the drift rate switches with presentation of a stop signal at
SSD. The saccade is inhibited with certainty once the lower threshold θstop
has been crossed the first time. The average trajectory switches slope from
positive to negative at SSD.

tation of a stop signal at point SSD after the go signal shifts the slope of the

linear drift to a negative value. Trajectories that have not yet crossed the
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upper boundary will then tend in the direction of stop criterion θstop. Due

to stochastic variability, however, individual trajectories may still cross the

upper boundary resulting in a response in spite of the stop signal. Note that,

like the race model, the diffusion model does not predict different rates of

rise in activity for responses in non-canceled trials and in latency-matched

no-stop-signal trials. Moreover, consistent with empirical data, the later the

stop signal is presented the less likely a successful inhibition of the saccade

becomes.

Specifically, the growth process in the diffusion-stop model is represented

by a standard Brownian motion (or Wiener) process A(t) with drift rate µ(t)

and two absorbing barriers θgo and θstop. The process is time-inhomogeneous

because the drift rate changes with the occurrence of the stop signal at t =

SSD:

µ(t) =

{
µgo, if t ≤ SSD;

µstop, if t > SSD.

The first-passage times are defined as

Tgo = inf{t : A(t) ≥ θgo and A(τ) ≥ θstop for all τ < t},
Tstop = inf{t : A(t) ≤ θstop and A(τ) ≤ θgo for all τ < t}

with θstop < A(0) < θgo.

The model was fit to the data of one subject reported in Colonius et al.

(2001) using the finite-state Markov chain approximation of the diffusion

process (Diederich, 1997). Observable saccadic reaction time was taken as

SRT = Tgo + c (c a sensorimotor constant) and observable inhibition prob-

ability as P (Tgo < Tstop + SSD). Assuming no bias, A(0) was set to zero.

Estimated parameters are the drift rate values µgo and µstop, the distance

between go and the stop threshold θgo − θstop and constant c. The model

fit (7 data points and 4 parameters) is depicted in Figure 0.16. Note that

the diffusion-stop model, in contrast to independent race models, is able to

account for the non-monotonic relation between mean response time and

stop signal delay.

Measuring the speed of the stop process differs strongly from race models.

We define inhibition time (IT) as the interval from presentation of the stop

signal until the trajectory reaches the stop criterion (lower bound). Thus, IT

depends on the momentary level of activity towards the go threshold (repre-

sented by the trajectory location) at the time the stop signal is presented. It

implies that the average time to cancel a saccade increases with stop signal

delay. For example, estimates of IT were 530, 570, and 580 ms for stop signal

delays of 70, 100, and 130 ms, respectively. Even if one subtracts some 30
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Figure 0.16 Observed data (squares) and predictions (diamonds) from
diffusion-stop model for one subject. Left: stop failure probability as a func-
tion stop signal delay. Rightmost point refers to no-stop-signal condition.
Right: mean saccadic response time as function of stop signal delay.

ms for the latency of the response to the stop signal, the resulting estimates

are one half order of magnitude larger than the estimates for SSRT under

the race model (100 ms in this case). This discrepancy reflects an important

difference between the diffusion-stop and the race model: while both IT and

SSRT are initiated by the presentation of a stop signal, termination of IT

in the diffusion-stop model indicates that inhibition of the saccade has be-

come certain, whereas termination of SSRT in the race model means that

stop signal processing is finished, but actual inhibition of the saccade only

occurs if go signal processing has not been terminated earlier. Estimates for

IT of about 500 ms in the diffusion-stop model may appear implausible,

but it should be noted that this includes the time to suppress the go signal

activity completely. If, for example, go and stop signal are presented nearly

simultaneously, resulting in a very high probability of successful inhibition,

estimates for IT can go down strongly, depending on the relative values of

the drift parameters.

Subjects have considerable leeway in performing the countermanding task

(proactive inhibition). In the diffusion-stop model, a bias in favoring either

stopping performance or response speed is easily accounted for by letting

a trajectory in the activation space start from a level closer to the stop

criterion or to the go criterion, respectively. Introducing this bias parameter

also allows the model to predict sequential effects like a higher probability

of canceling a saccade if the movement had failed to be canceled on the

previous trial (see Section 0.8).
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0.7 Semi-parametric race models

The assumption of context independence is fundamental to the general race

model (Section 0.3.1). In addition, stochastic independence has been as-

sumed in all race models discussed so far, with the exception of the inter-

active race model (Section 0.5.2). Given that this latter model is fully pa-

rameterized, one may wonder whether other race models with stochastically

dependent “races” can be developed without making strong assumptions

about the distributions of Tgo and Tstop.

0.7.1 The role of copulas

It turns out that the concept of copula is a natural tool to investigate such

dependent race models. Briefly, a copula is a function that specifies how a

multivariate distribution is related to its one-dimensional marginal distribu-

tions14. For stop signal modeling, this means that the bivariate distribution

H can be written as15

H(t, s) = P [Tstop ≤ t, Tgo ≤ s] = C(Fstop(t), Fgo(s)) (0.27)

where C is a bivariate copula that is determined uniquely assuming contin-

uous marginal distributions. Note that a copula specifies the dependency

structure without the need to commit to a given distributional family for

the marginals, here Fgo and Fstop. For example, letting u = Fstop(t) and

v = Fgo(s), copula

CIND(u, v) ≡ u v

defines stochastically independent race models. Because of the generality of

the copula definition, the class of race models based on copulas obviously

encompasses all race models with specified marginal distributions.

Example: Farlie-Gumbel-Morgenstern copula. The Farlie-Gumbel-Morgen-

stern (FGM) copula is defined as

CFGM (u, v) = u v[1 + δ(1− u) (1− v)] (0.28)

14 For precise definitions of, and an introduction to, copulas we must refer to the literature Joe
(2015); Nelsen (2006); Durante and Sempi (2016); for an introduction in psychological
contexts, see Colonius (2016).

15 Note that in Section 0.7 (only) we write H with the order of marginals switched.
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with parameter δ a real-valued constant. It defines a stochastically depen-

dent semi-parametric race model with bivariate distribution function

HFGM (t, s) = CFGM (Fstop(t), Fgo(s))

= Fstop(t)Fgo(s)[1 + δ(1− Fstop(t))(1− Fgo(s))], (0.29)

with parameter δ determining the strength of dependence between Tgo and

Tstop. Setting δ = 0 corresponds to the independent race model, negative and

positive values of δ to negative or positive dependent models, respectively. It

is known that the FGM copula only allows for moderate levels of dependence

(e.g. Kendall’s tau, τ ∈ [−2/9, 2/9])16.

By inserting specific marginal distributions into a copula, fully parameter-

ized models can be created. For example, with ex-Gaussian marginals with

parameters µ and σ for the Gaussian and λ for the exponential component,

this results in the ex-Gaussian version of the FGM copula:

HFGM (t, s) = Fstop(t; θstop)Fgo(s; θgo)[1+δ(1−Fstop(t; θstop))(1−Fgo(s; θgo))],

where θstop = (µstop, σstop, λstop) and θgo = (µgo, σgo, λgo) are parameter

vectors, adding up to a total of 7 model parameters including δ.

0.7.2 Equivalence with dependent censoring

Many alternative copula families with relatively simple dependency struc-

tures exist and could be investigated. The specific challenge for stop signal

race models is, of course, that Fstop is unobservable. Fortunately, it turns out

that the problem of determining the distribution of non-observable stopping

time Tstop in the race model is formally equivalent to a problem studied in

actuarial science concerned with the time of failure of some entity (human,

machine, etc.). Recall that censoring is a condition in which the failure time

is only partially known. For example, left censoring occurs if a data point is

below a certain value but it is unknown by how much. If the value of the cen-

soring is a random variable, the random censoring time is usually assumed

to be statistically independent of the failure time. More recently, however,

the determination of failure times under dependent random censoring has

been considered as well (Wang et al., 2012; Hsieh and Chen, 2020):

Dependent censoring. In medical experiments on tumorigenicity, for exam-

ple, the failure time of interest, T , is usually the time to tumor onset, which

is commonly not observed. Instead only (i) the death (or sacrifice) time of an

16 FGM copula extensions with a larger dependency range exist but require additional
parameters.
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animal, serving as the observation time X here, is observed and (ii) whether

or not T exceeds the observation time X (at that time, one knows the ab-

sence or presence of the tumor). Thus, one can directly estimate the following

two functions:

G(x) = P (X ≤ x) and p2(x) = P (X ≤ x, T < X), (0 ≤ x ≤ ∞)

by their empirical estimates. With F (t) and G(x) the distribution functions

of T and X, respectively, one assumes a copula C

C(F (t), G(x))

to specify the dependence between failure time and observation time. Im-

portantly, it has been shown that, under weak assumptions and given the

copula, the marginal distribution function F is uniquely determined by G(x)

and p2(x) (Wang et al., 2012).

To show the formal equivalence with the dependent race model, we equate

distribution G(x) with Fgo(s) and F (t) with Fstop(t). Thus, p2(x) = P (X ≤
x, T < X) corresponds to P (Tgo ≤ s, Tstop + td < Tgo). Since the latter is

not observable, we use the following equality,

P (Tgo ≤ s)− P (Tgo ≤ s, Tstop + td < Tgo)

= P (Tgo ≤ s, Tgo < Tstop + td)

= P (Tgo ≤ s |Tgo < Tstop + td)P (Tgo < Tstop + td)

= Fsr(s | td) [1− pr(td)],

showing a one-to-one correspondence between the observable quantities in

dependent censoring and the stop signal race model; note that we made use

of the correspondence of p2(∞) with P (Tstop + td < Tgo) ≡ pr(td).
Consequently, the uniqueness result in dependent censoring implies that

Fstop(t) is uniquely determined in the general race model with a specified

copula and that the distribution is amenable to non-parametric estimation

methods developed in actuarial science (e.g. Titman, 2014, for a maximum

likelihood method). This result is very general and applies to any depen-

dent model, e.g. the FGM model defined in Equation (0.29). Unfortunately,

however, a further well-known result from that theory implies that the nu-

merical value of the dependence parameter, e.g. δ in the case of the FGM

model, is not identifiable in general and, thus, cannot be estimated without

specifying the marginals (Titman, 2014; Betensky, 2000). Nevertheless, a

sensitivity analysis can be quite revealing about the impact of dependency

Wang et al. (2012). In the FGM model, this involves taking a range of de-

pendency parameter values, like δ = 0,±0.1,±0.2, . . . ,±0.5 , and probing
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how much the predictions generated for the stop signal distribution vary

as a function of these values. An application of these results to empirical

stop-signal data has not yet been undertaken, however.

We conclude this section with a model featuring extreme stochastic de-

pendency not requiring any numerical parameters.

0.7.3 Perfect negative dependency race model (PND)

In order to resolve the paradox described above, of interacting circuits of

mutually inhibitory neurons instantiating stop and go processes in spite of

stochastically independent finishing times, we have suggested a race model

with negative dependency between go and stop signal processing times (Colo-

nius and Diederich, 2018). It is based on the countermonotonicity copula

expressing perfect negative dependence (PND) between Tgo and Tstop and is

completely parameter-free. The bivariate distribution is defined as

H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}. (0.30)

for all s, t (s, t ≥ 0). It follows that the marginal distributions of H−(s, t) are

the same as before, that is, Fgo(s) and Fstop(t). Moreover, it can be shown

that Equation (0.30) implies that

Fstop(Tstop) = 1− Fgo(Tgo) (0.31)

holds almost surely, that is, with probability 1. Thus, for any Fgo percentile

we immediately obtain the corresponding Fstop percentile as complementary

probability and vice versa, which expresses perfect negative dependence be-

tween Tgo and Tstop
17.

Colonius and Diederich (2018) show that the PND race model is consistent

with the empirical data patterns of the stop signal task (Section 0.2) and

that one can test the model, at least in principle, against stochastically

independent race models. However, experimental studies of the model are

not yet available. The PND model arguably constitutes the most direct

implementation of the notion of “mutual inhibition” observed in neural data:

any increase of inhibitory activity (speed-up of Tstop) elicits a corresponding

decrease in “go” activity (slow-down of Tgo) and vice versa.

17 The relation in Equation (0.31) is also interpretable as “Tstop is (almost surely) a decreasing
function of Tgo”.
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0.8 Miscellaneous aspects

0.8.1 Variants of the stop-signal paradigm

Early on, some variants of the standard stop-signal task have been developed

in an attempt to gain further insight into response inhibition mechanisms

(Logan and Burkell, 1986). Data obtained from these studies are mainly

discussed against the background of the independent or the interactive race

model. Formal modeling approaches geared toward the specific task variants

are rare, however. Here we sketch some results and point out future research

goals.

Stop-change paradigm. In stop-change tasks, subjects are instructed to stop

the originally planned go response and execute an alternative “change” re-

sponse (or, “go2” task) when a signal occurs. A number of experimental and

modeling studies suggest that subjects cannot stop and replace a response

by simply activating an alternative response. A stop process must inhibit

the first go response before the go2 response can be executed. For some mod-

eling efforts within the multitasking context, we refer to Verbruggen et al.

(2008).

Selective-stop paradigm. There are two variants of the selective stop task:

in stimulus-selective stopping tasks, different signals can be presented and

subjects must stop if one of them occurs (valid signal), but not if the others

occur (invalid signals); in motor-selective stop tasks, subjects must stop

some of their responses (e.g. finger press) but not others (e.g. foot press).

For the stimulus-selective task, there are 3 different types of trials: (i) only

the go signal is presented, (ii) both the go signal and the stop signal are

presented, and (iii) both the go signal and the ignore signal are presented.

Mainly, two alternative strategies for stimulus-selective stopping have been

discussed within the race model framework: ’Stop then Discriminate’ and

’Discriminate then Stop’ (Bissett and Logan, 2014). Given that stop and

ignore signal are never presented within one and the same trial, it is not

obvious that discriminating between stop and ignore signal can naturally

be represented as a race. It has been suggested that in the ’Discriminate

then Stop’ strategy discrimination interferes with go processing, violating

the context independence assumption of the independent race model. For

this paradigm, further theoretical and experimental work is clearly called

for.
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Anticipated response inhibition. In anticipated response inhibition (ARI)

tasks, participants are required to make a planned response that coincides

with a predictably timed event (typically a vertically filling bar) at a pre-

defined stationary target (e.g., horizontal line on the bar). This predefined

target requires participants to consistently prepare and initiate movement

and is supposed to avoid the ‘strategic slowing’ often observed in the ordi-

nary stop signal task even when subjects are asked to “respond as soon as

possible”. Experimental comparisons of ARI tasks with the ordinary stop

signal task suggest indeed that SSRT estimates show less bias with this ver-

sion of response inhibition task (Leunissen et al., 2017). However, a recent

study finds violations of context independence due to the nature of the task

and suggests a parametric model to take those into account (Matzke et al.,

2021)

0.8.2 Modeling trigger failures

All race models assume that go processing (Tgo) is triggered by presenting

the go signal, and stop processing (Tstop) by occurrence of the stop signal.

However, sometimes no response is registered before the response deadline.

These “go omissions” may be due, e.g., to distraction or a lack of atten-

tion. For the non-parametric independent race model, a recommendation by

Verbruggen et al. (2019), based on extensive simulations, is to assign the

maximum observed RT in order to compensate for the lacking responses,

when the integration method of estimating SSRT is used.

A more difficult problem arises if the stop signal fails to trigger the stop-

ping process. Simulations have shown that non-parametric estimation meth-

ods will overestimate SSRT when trigger failures are present on stop trials

(Band et al., 2003). If the probability to respond in stop signal trials (the

inhibition function) is larger than zero for small or zero SSDs, this sug-

gests the presence of trigger failures. Unfortunately, there are typically only

rather few observations available for very small SSDs making estimates for

this probability unreliable. As a pragmatic solution, Verbruggen et al. (2019)

suggest researchers include extra stop signals that occur at the same time

of the go stimulus but not include these trials in estimating SSRT.

At this time, there is no general solution available for non-parametric race

models to estimate the probability of trigger failures in stop signal trials.

On the other hand, recent variants of parametric modeling methods provide

an estimate of the probability of such trigger failures using a distribution-

mixture approach (for details, see Matzke et al., 2019).
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0.8.3 Sequential (aftereffects) effects

In a large variety of action control tasks like the stop signal paradigm, par-

ticipants typically slow down after an error (‘post-error slowing’). Several

distinct behavioral and physiological explanations have been offered for this

observation (Ullsperger et al., 2014), but quantitative models are scarce

(though see Dutilh et al. (2012) for a diffusion model approach). One hy-

pothesis attributes slowing to the ‘executive system’: when it detects an

error, it increases control by adjusting the parameters of the perceptual and

response system to reduce the likelihood of committing future errors. Con-

sistent with this, subjects often slow down after an unsuccessful stopping

in the stop signal task. However, slowing has been observed after successful

stopping as well (Verbruggen and Logan, 2008). Bissett and Logan (2012)

suggested that the presentation of the stop signal encourages subjects to shift

priority from the go task to the stop task, producing longer response laten-

cies after a signal trial and reducing the latency of the stop process. A formal

approach has been undertaken by Mohsen Soltanifar and colleagues (Soltan-

ifar et al., 2019). They estimate SSRT separately depending on whether the

preceding trial has been a go or a stop trial and then develop a two-state

mixture model for the SSRT distribution. They find clear effects of trial

type, but further research along these lines is called for.18 In an earlier de-

velopment, Angela Yu and colleagues suggested a comprehensive Bayesian

inference-based, optimal-control theory for sequential effects (Ma and Yu,

2016) where a control system computes, at any given trial, the probability

of a stop signal occurring in the next trial.

0.9 Concluding remarks

In this chapter, we have aimed at characterizing the formal structure of

quantitative models for the stop signal task. Possible extensions and gen-

eralizations of currently available models have been discussed as well, e.g.

the class of semi-parametric race models. Given the rapid increase of exper-

imental studies in this area, presenting the empirical success (or failure) of

the various models remains outside the reach of this chapter, however.

A recurring theme concerning model building is the issue of parametric

versus non-parametric approaches. On the one hand, the independent, non-

parametric race model of Logan and Cowan (1984) (Section 0.3.2), with its

straightforward estimation methods for SSRT, has clearly dominated em-

pirical studies up to now, notwithstanding numerous reports of violations
18 Unfortunately, in this and later papers, these authors always use parametric model versions

only.
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of some of its assumptions. On the other, the availability of software pack-

ages for parameter estimation and model simulation is currently generating a

broader usage of parametric race models in applied fields. Increased informa-

tion about stop signal processing time (beyond the mean), the possibility to

more adequately deal with errors in choice paradigms that require discrim-

ination between go signals, and the handling of stop signal trigger failures

have been listed among the benefits of the parametric approach (Matzke

et al., 2019). It should be mentioned for completeness, though, that it also

faces some challenges. There is some arbitrariness involved in the choice of a

specific family of distributions for go and stop signal processing times (and,

for Bayesian methods, in the choice of priors). For example, the commonly

used ex-Gaussian distribution has some features that seem problematic: (i) it

has an increasing hazard function, whereas most RT distributions exhibit

an increasing and then decreasing (to some constant) hazard function (e.g.,

Luce, 1986, p. 439), and (ii) it predicts a non-zero probability of realizing

negative values. The fact that ex-Gauss distributions often yield good em-

pirical fits does not automatically mean that the ex-Gaussian parameters

of the stop signal distribution can be taken as valid description of the in-

hibitory process. Alternative distribution families have been considered, like

the log-normal or the Wald distribution, but detailed studies have sometimes

revealed broad parameter identifiability failures for these families (Matzke

et al., 2020).

It is difficult to predict what type of behavioral modeling will prevail in the

future. In any case, it is obvious that the different variants of the paradigm,

like selective stopping, will require going beyond the simple ‘race’ scheme.

Further insight from neurophysiology may suggest more complex mecha-

nisms. A case in point is the two-stage pause-then-cancel (PTC) model by

Schmidt and Berke (2017), based on subcortical rodent recordings. As de-

scribed in Diesburg and Wessel (2021), the first stage is defined by a short-

latency “Pause” process that actively delays the go process; it is followed

by a slower “Cancel” process, which shuts off ongoing invigoration of the

go response. This way, the PTC model tries to disentangle attentional ori-

enting from motor inhibition. The model is clearly at odds with standard,

independent race models and calls for an augmented mathematical formal-

ization with more sophisticated quantitative measures for the strength of

inhibition.
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0.10 Bibliographical notes

While there are a number of early references to the stop signal paradigm

(e.g., Lappin and Eriksen, 1966), the first completely developed modeling

approach is found in Logan and Cowan (1984). Over the years, a number of

review articles have appeared, with different emphases (Band et al., 2003;

Verbruggen and Logan, 2009; Logan, 1994; Logan et al., 2014; Matzke et al.,

2018; Verbruggen et al., 2019). Platform-independent software to correctly

execute the standard stop-signal task by F. Verbruggen is found on GitHub

(https://github.com/fredvbrug/STOP-IT). For the anticipated response in-

hibition task, an open-source program (OSARI) is presented in He et al.

(2021).
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