
Linking Spatial and Dynamic Models for Traffic Maneuvers

Ernst-Rüdiger Olderog1, Anders P. Ravn2, and Rafael Wisniewski3

Abstract— For traffic maneuvers of multiple vehicles on
highways we build an abstract spatial and a concrete dynamic
model. In the spatial model we show the safety (collision
freedom) of lane-change maneuvers. By linking the spatial and
dynamic model via suitable refinements of the spatial atoms
to distance measures, the safety carries over to the concrete
model.

I. INTRODUCTION

This paper develops controls for vehicles maneuvers in
traffic, which are by design safe. For conciseness of presen-
tation, we concentrate on distance control and lane change in
traffic on highways. To this end, we build an abstract spatial
and a concrete dynamic model for these traffic maneuvers
such that the concrete models refines the abstract one through
symbolic linking relations. Similar links can also be built for
other traffic maneuvers with an abstract spatial view linked
to a concrete dynamic model and controller for velocity and
distance control as well as for lateral motion (to cope with
lane change).

An inspiration for the symbolic linking is the data refine-
ment relations explored in program verification [4]. However,
in the reactive setting, linking predicates as in the approach
of UTP (Unifying Theories of Programming) [8] are more
suitable. In summary, the approach is as follows. For the
abstract, discrete model the steps are:

1) Qualitative model of the context with symbolic repre-
sentation of object states.

2) Rules for interaction formulated as finite state ma-
chines operating on the symbolic states. If the state
machines use communication protocols, timeout tran-
sitions may compensate for lost messages.

3) Formulation of safety properties of the symbolic state.
4) Verification of the properties.

These steps are illustrated on the case of vehicle maneuvers
in Sections II and III.

When the verification is successful, it is time to consider
concrete models. It has the following steps:

5) Identification of the concrete models for objects includ-
ing available or at least plausible sensors and actuators.

6) Linkage through refinement relations of the symbolic
state variables of the abstract model to concrete ob-
servers that are implemented using available sensors
and concrete models of the individual objects. Also

1Department of Computing Science, University of Oldenburg, Germany
olderog@informatik.uni-oldenburg.de

2Department of Computer Science, Aalborg University, Denmark
apr@cs.aau.dk

3Department of Electronic Systems, Automation and Control, Aalborg
University,Aalborg, Denmark raf@es.aau.dk

linking of symbolic actions to values of set points for
the controls.

7) Design and validation of the controllers and observers.
These steps are illustrated on the case in Sections IV to VI.

Note that the two models may be developed concurrently.
When this takes place, it is important to keep the linkage
stable when doing separate iterations.

A pragmatic consideration when designing the linking in
the concrete case has been to design the system so a smart car
can navigate among ordinary cars. It is impractical to require
all cars to be smart (automated) and able to communicate
with other cars. This has implications on the sensors and
actuators, see Fig. 2, as well as on the design of symbolic
guards and actions.

Section VII presents a short conclusion including com-
ments on related work.

II. SYMBOLIC MODEL

In this section, we summarize and adapt the model of [7].
In the model, a multi-lane highway has an infinite extension
with positions represented by real numbers in R and with
lanes represented by natural numbers. We assume that all
traffic proceeds in one direction, with increasing position
values, in pictures shown from left to right. The highway
is populated by uniquely identified cars, denoted by capital
letters A,B, Let I denote the set of car identifiers and
L= {0, . . . ,N} denote the set of lanes.

At each moment of time, the traffic on the highway is
given by a traffic snapshot. It records for each car the current
position pos (at the rear end of the car), speed spd, and on
which lanes the car reserves or claims space. The idea is
that a reserved space is owned by a unique car. Thus for
safety, we have to show that reserved spaces of different
cars are mutually exclusive. In contrast, a claimed space is
used when preparing a lane change and may overlap with
claimed or reserved spaces of other cars. However, then the
lane change must not take place. The extension of reserved
and claimed spaces is given by the safety distance, which is
the length of the car plus a conservative approximation of
the braking distance of the car.

Definition 1: A traffic snapshot T comprises functions
pos,spd,res,clm of the following type:
• pos : I→ R where pos(C) is the position of car C along
the lanes,
• spd : I→ R where spd(C) is the current speed of car C,
• res : I→P(L) where res(C) is the set of lanes C reserves,
• clm : I→P(L) where clm(C) is the set of lanes C claims.

We denote the set of all traffic snapshots by TS.

The space occupied on the reserved and claimed lanes is
given by the symbolic function se, the safety envelope. For
a given traffic snapshot T , the safety envelope of car C,
seT (C), is the interval

seT (C) = [pos(C), pos(C)+d]

starting at the current position pos(C) of the car and of some
symbolic length d > 0, which is intended to be the sum of
the size of the car, and its current braking distance, which is
dependent on its current speed spd(C). The exact value of d
is not known in the symbolic model, but will be determined
in the concrete dynamic model.

A. View

The safety proof considers a finite segment of a traffic
snapshot T called a view, the intuition being that the safety
of maneuvers can be shown using local information only.

Definition 2: A view V = (L,X ,E) consists of the follow-
ing: L = [l,n]⊆ L is an interval of lanes visible in the view,
X = [r, t]⊆ R is the extension visible in the view, and E ∈ I
is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and
extension observed. For this, we use sub- and superscript
notation: V L′ = (L′,X ,E) and VX ′ = (L,X ′,E), where L′ and
X ′ are subintervals of L and X , respectively.

B. Spatial Logic

Properties of traffic snapshots within a given view are
specified in an intuitive and yet precise way, with a two-
dimensional spatial interval logic, called MLSL (Multi-Lane
Spatial Logic) [7]. Formulae of this logic express the spatial
status of neighboring lanes. For a lane, the spatial status
describes whether parts of it are reserved or claimed by a
car or completely free. To this end, MLSL has atoms re(γ),
cl(γ), and free, and two chop operators: the horizontal chop
φ1aφ2 expresses that φ1 holds left and φ2 right, and the

vertical chop
φ2
φ1

that φ1 holds below and φ2 above.

Variables ranging over car identifiers are denoted by small
letters c, d, u and v. The car owning the current view, use
the special variable ego. The set of all variables is Var.

Definition 3 (Syntax): The syntax of the multi-lane spatial
logic MLSL is given by the following formulae:

φ ::=true | u = w | free | re(γ) | cl(γ) |

φ1∧φ2 | ¬φ1 | ∃w : φ1 | φ1aφ2 |
φ2
φ1

where γ is a variable or a car identifier, and u and w are
variables. We denote the set of all MLSL formulae by Φ.

The logic is given a simple semantics that defines the
shape of traffic snapshots.

Definition 4 (Semantics): Let u and w be variables and
γ be a variable or a car identifier. The satisfaction |=
of formulae is defined inductively with respect to a triple
M = (T ,V,ν) comprising a traffic snapshot T , a view

V = (L,X ,E) with L = [l,n] and X = [r, t], and a valuation
ν : Var→ I consistent with V , i.e., with ν(ego) = E:

M |= true for all M
M |= u = w ⇔ ν(u) = ν(w)
M |= free ⇔ |L|= 1 and |X |> 0 and

∀C ∈ I : (L⊆ res(C)∪ clm(C)⇒ seT (C)∩ (r, t) = /0)
M |= re(γ) ⇔ |L|= 1 and |X |> 0 and

L⊆ res(ν(γ)) and X ⊆ seT (ν(γ))

M |= cl(γ) ⇔ |L|= 1 and |X |> 0 and
L⊆ clm(ν(γ)) and X ⊆ seT (ν(γ))

The formulae φ1 ∧ φ2, ¬φ , and ∃w : φ have their standard
semantics. Novel are the chop operators.

M |= φ1aφ2 ⇔ ∃s : r ≤ s≤ t and
(T ,V[r,s],ν) |= φ1 and (T ,V[s,t],ν) |= φ2

M |= φ2
φ1

⇔ (l ≤ n and ∃m : l−1≤ m≤ n and

(T ,V [l,m],ν) |= φ1 and (T ,V [m+1,n],ν) |= φ2) or
(l > n and (T ,V,ν) |= φ1 and (T ,V,ν) |= φ2),

where intervals [l,n] with l > n are empty. We write T |= φ

if (T ,V,ν) |= φ for all views V and consistent valuations ν .

The notation 〈φ〉 is used for the two-dimensional modality
somewhere φ , defined in terms of both chop operators:

〈φ〉 ≡ truea

 true
φ

true

a true.

For example, Safe ≡ ∀c,d : c 6= d → ¬〈re(c)∧ re(d)〉 ex-
presses the safety property that any two different cars have
disjoint reserved spaces.

C. Transitions

A traffic snapshot gives a static picture of the highway. The
following transitions describe the changes that may occur at
a traffic snapshot T = (pos,spd,res,clm).

Time can pass, which results in the cars moving along the
highway to the right.

T
t−→T ′ ⇔ T ′ = (pos′,spd′,res,clm)∧ pos′ > pos (1)

The new position and speed of each car is given by the
dynamics of the car, which is determined at the concrete
level. Note that reservations, res, and claims, clm, do not
change in time passing transitions.

A car may claim a neighbouring lane n if and only if it
does not already claim another lane or is in the progress of
changing the lane and therefore reserves two lanes.

T
c(C,n)−−−→T ′ ⇔ T ′ = (pos,spd,res,clm′) (2)

∧|clm(C)|= 0∧ |res(C)|= 1
∧{n+1,n−1}∩ res(C) 6= /0
∧clm′ = clm⊕{C 7→ {n}}

The overriding notation, ⊕, means that clm is updated for
car C to the value n, while it is unchanged for other cars.

Furthermore, a car may withdraw a claim (3) or reserve
a previously claimed lane (4) or withdraw the reservation of
all but one of the lanes it is moving on (5).

T
wd c(C)−−−−→T ′ ⇔ T ′ = (pos,spd,res,clm′) (3)

∧clm′ = clm⊕{C 7→ /0}
T

r(C)−−→T ′ ⇔ T ′ = (pos,spd,res′,clm′) (4)
∧clm′ = clm⊕{C 7→ /0}
∧res′ = res ⊕ {C 7→ res(C)∪ clm(C)}

T
wd r(C,n)−−−−−→T ′ ⇔ T ′ = (pos,spd,res′,clm) (5)

∧res′ = res⊕{C 7→ {n}}
∧n ∈ res(C)∧ |res(C)|= 2.

III. ABSTRACT CONTROLLER

In the unconstrained transition system, the reservation
transition (4) may occur at any moment, which may lead
to dangerous overlaps of reserved spaces. It is the task of a
lane-change controller to prevent it.

A controller is specified by a timed automata [2] with
clocks ranging over R and data variables ranging over L
and I. Its semantics is the previously given transition system,
where the valuation ν is extended with clocks, data variables,
and the current state q of the controller, cf. Fig. 1, i.e.,
C = (T ,V,ν ,q). To restrict the transitions which may occur
while time is passing and in lane-change maneuvers, MLSL
formulae appear in transition guards and state invariants.

A. Changing Lanes

Consider the controller in Fig. 1, where the formulas
φ0 and φ2 are kept symbolic. The abstract lane-change
controller LCP of [7] is an instantiation of this controller.
LCP assumes that every car, E, knows the full extension
of claims and reservations of all cars within its view. It
has perfect knowledge of its neighbouring cars; E perceives
another car C as soon as C’s safety envelope enters the view
of E. In the following and in Section V, we identify the
car variables ego and c with their values, the cars E and C,
respectively.

At the initial state q0 of LCP, the car has reserved exactly
one lane, which is saved in the variable n. An auxiliary
variable l stores the lane the ego car wants to move to.
Here, the invariant φ0 in q0 expresses disjointness of ego’s
reservation with the reservations of all other cars, i.e., the
following collision check

cc≡ ∃c : c 6= ego∧〈re(ego)∧ re(c)〉

is negative. Thus in LCP, we instantiate φ0 ≡ ¬cc.
Suppose ego intends to change to a neighboring lane, then

it adheres to the following protocol. First, it claims a space
on the target lane adjacent to and of the same extension as
the reservation on its current lane. Subsequently, it checks
for a potential collision, i.e., whether its claim intersects with
the reservation or claim of any other car. This is expressed
by the MLSL formula pc:

pc≡ ∃c : c 6= ego∧〈cl(ego)∧ (re(c)∨ cl(c))〉 .

q0 : φ0 q1 q2 :
φ2

x ≤ to

q3 : x ≤ tlc

n+ 1 ≤ N/
c(ego, n+ 1);

l := n+ 1

0 ≤ n− 1/

c(ego, n− 1);

l := n− 1

¬ φ2/
wd c(ego) φ2/

x := 0

¬ φ2/
wd c(ego)

φ2/

r(ego);x := 0

x ≥ tlc/
wd r(ego, l);n := l

Fig. 1. Controller with symbolic formulas φ0 and φ2, of which the lane-
change controller LCP is an instantiation with φ0 ≡ ¬cc and φ2 ≡ ¬pc.

If pc occurs, ego withdraws its claim and gives up the wish to
change lanes for the moment. Otherwise, without any delay,
ego turns its claim into reservations of both neighboring
lanes. During this double reservation ego changes lane.
Once this is completed within time tlc, ego withdraws its
reservation on the original lane and continues to drive on
the target lane. During this protocol, only turning the claim
into a reservation may violate the safety property. Thus in
LCP, we instantiate φ2 ≡ ¬pc.

B. Safety of LCP

We stipulate now that every car is equipped with the con-
troller LCP (or that its driver manually follows its protocol).
The desired safety property Safe is that at any moment the
spaces reserved by different cars are disjoint. In MLSL,

Safe≡ ∀c,d : c 6= d⇒¬〈re(c)∧ re(d)〉 ,

states that in any lane any two different cars have disjoint re-
served spaces. The quantification over lanes arises implicitly
by the negation of the somewhere modality in Safe. A traffic
snapshot T is safe if T |= Safe holds. The safety property
depends on the following assumptions.

A1 There is an initial safe traffic snapshot T0.
A2 Every car C keeps the safety property invariant

under time transitions: for every transition T
t−→T ′

whenever T is safe, also T ′ is safe.
Under these assumptions, in [7], the following result is

proven by induction on the number of transitions needed to
reach T from T0.

Theorem 1 (Safety of LCP): Every traffic snapshot T
that is reachable from T0 by time transitions and transitions
allowed by the controller LCP is safe.

IV. CONCRETE MODEL

As explained in the previous section, MLSL is used to
formulate specifications for motion of vehicles on a high-
way. However, this two dimensional spatial logic does not
address temporal properties. To this end, we abstract the time
evolution. Specifically, a controller for each vehicle C will
be developed that keeps the distance to the car in front at
d defined in seT , or if there is no car in the range of a

distance sensor the controller maintains a reference velocity
vref. Recall that d is the sum of the size of the car, its velocity-
dependent braking distance and a safety margin.

Therefore, when there is no change of lane the motion of
vehicles is made safe by the controller. Formally, for any
safe snapshot T , the snapshot T ′ after any time transition
T

t−→T ′ is safe:

∀(C,D) ∈ I× I, seT S (C)∩ seT S (D) = /0.

The aim of this section is to present a physical model of a
vehicle, which describes the position pos(C) and the speed
spd(C) of a vehicle C. It will lay the basis for the controller
design in Section VI.

A vehicle C is characterised by its current velocity, vC :
I→R+, defined on a time interval I = [0,τ] given in [m/s].
The length τ of the time interval is fixed but arbitrary – the
maximal considered time interval between two consecutive
snapshots.

The acceleration and braking of the vehicle C is realised by
a torque T ≡ TC : I→R given in [Nm]. The torque is applied
to the wheels from the transmission and braking system, and
it belongs at any given time to an interval [T ,T]≡ [TC,TC],
where TC < 0 is the maximal torque of the brakes, and TC > 0
is the torque at full throttle.

To model aerodynamic drag force, we introduce a drag
coefficient CW. The drag force is proportional to the square
of the velocity

CW(t)v2
C(t).

As indicated in the above equation, CW varies in time, it
depends on the distance δ between the cars C and D. The
drag coefficient is an empirical quantity approximated by

CW(δ ,vD) =CC

(
1− exp

(
− aδ

CDvD

))2

,

where CC, CD are the aerodynamic coefficients of the cars C
and D, and a is a constant [22]. In short, the aerodynamic
coefficient of a vehicle is determined by its geometry: shape
and size. The drag coefficient is positive, Image(CW) ⊆
[0,CC]. It converges to CC for small distances δ and large
velocities vD.

The dynamics of the vehicle C is given by

(Mr2 + J)v̇C(t) =−CW(δ (t),vD(t))r2vC(t)2 + rT (t),

where M is the mass of the vehicle C [kg], J is the combined
moments of inertia of the wheels [kgm2], and r is the radius
of the wheels [m].

Let X be the state space of the vehicle C (with the vehicle
D driving in in front). It is the vector space of the velocity
vC of the vehicle C, and the distance δ from C to D, i.e.,
X = R2. We assume that both the velocity and the distance
are available as indicated in Fig. 2, where sensor v̂ measures
vC and d̂1 measures δ . If the vehicle D is out of range the
distance sensor delivers the value ∞.

A feedback controller is a function T : X → [T ,T], which
takes the current state to the torque. Negative values are re-
alised by the braking system; whereas, the positive values are

realised by the transmission (the throttle). As a consequence,
T (t) = T (vC(t),δ (t)).

To simplify the notation, we introduce

x(t)≡ (δ (t),vC(t)) ∈ R2

z(t)≡ vD(t) ∈ R

b≡ r
Mr2 + J

∈ R

a(x1,z)≡ rbCW(x1,z) ∈C∞(R2,R+)

u(t)≡ bT ∈ R
(−u,u)≡ (−bT ,bT) ∈ R2

+

x0 ≡ (d0,v0
C) ∈ R2. (1)

As a result, the equations of motion are given by the
following Cauchy problem with x(0) = x0:

ẋ1(t) = z(t)− x2(t)

ẋ2(t) =−a(x1(t),z(t))x2(t)2 +u(t), (2)

where u(t) ∈ [u,u]. The subscripts of x refer to the compo-
nents of the vector x.

Remark 1: The equation (2) can be used to compute the
safety or braking distance ds(v0

c) as a function of the initial
velocity v0

c of the vehicle C. To this end, let z(t) = 0, i.e.,
the car in front instantaneously stops

ẋ1(t) =−x2(t) and ẋ2(t)≤ u

for x0 = (0,v0
C). By the Gronwall theorem, the time to stop is

t ≤ t̂ ≡− v0
C
u . Hence, the braking distance is at most ds(v0

C) =

− (v0
C)

2

2u (notice that u < 0).

V. LINKING

Using the abstract model and the concrete model, we
must map the symbolic observables and events to observer
functions in the controllers. In this work, we assume that
each car is equipped with the observers, realised by suitable
sensors, and actuators listed in Fig. 2.

The abstract controller LPC takes a view of the traffic
snapshot, represented by MLSL formulae built with the
atoms free,re(c),cl(c). By Theorem 1, this suffices for the
safety check at the abstract level. However, the check as-
sumes that the reserved or claimed spaces are large enough.
Whether this assumption is true, depends on the concrete
controller based on the car dynamics.

Here, we explain how the abstract controller LCP is linked
to observers at the concrete level. The idea is that the
MLSL formulae appearing as invariants and guards of LCP
are replaced by comparisons of observer values read at the
concrete level.

To have a perfect match between the two levels, we first
introduce an intermediate level by modifying one invariant in
the abstract controller LCP, namely the invariant φ0 in state
q0, which in LCP formalises “no collision”:

¬cc≡ ¬∃c : c 6= ego∧〈re(ego)∧ re(c)〉 .

Since the overlap re(ego)∧re(c) is symmetric, the controller
in ego must check forward or backward for any other car c.

b1

b2

v

vref

T

s

d4 d2

d1

d5 d3

We assume that each car is equipped with the following observers:
v̂ gives its own velocity,
d̂1 gives the distance to the car ahead in the same lane,
d̂2 (d̂3)give the distance to the car ahead in the left (right) neighboring

lane,
d̂4 (d̂5)give the distance to the car behind in the left (right) neighboring

lane, and
b̂1 (b̂2)tell whether a car on the lane next to the left (right) one is

“blinking”, indicating a desired lane change to the left (right)
neighboring lane.

Also, each car has its blinkers and a torque T as actuators. Steering s and
desired reference velocity vref are inputs from the driver.

Fig. 2. Car with observers and actuators

However, considering all cars together, it suffices that each
car ego checks only that there is “no collision forward”. Let c
ahead ego abbreviate an MLSL formula expressing that car c
is immediately ahead of ego. Then we replace the invariant
φ0 in state q0 of the controller in Fig. 1 by the following
formula:

¬ccf ≡ ¬∃c : c 6= ego∧〈re(ego)∧ re(c)〉∧ 〈c ahead ego〉 .

We recall the resulting “forward looking” controller LCPf .
Note that logically ¬ccf in LCPf is weaker than ¬cc in
LCP, admitting more traffic snapshots. However, when all
cars check ¬ccf instead of ¬cc, safety remains guaranteed.
This is formalized as follows. Consider the abstract setting
A, where all cars are equipped with LCP, and the abstract
forward setting A f , where all cars are equipped with LCPf .

Proposition 1 (Safety of LCPf): Every transition among
traffic snapshots permitted in Af is also permitted in A.

Now we turn to the concrete setting. In the concrete
controller, we will use the observables ds yielding the safety
distance needed for car ego at its current speed and d̂1
measuring the distance to the next car c ahead. The formula
¬ccf is satisfied if the inequality ds < d̂1 holds. Thus at the
concrete level, we instantiate

φ0 ≡ ds < d̂1,

which implies ¬ccf at the abstract level, i.e., admits no more
traffic snapshots than ¬ccf .

Next, consider the formula “no potential collision”

¬pc≡ ¬∃c : c 6= ego∧〈cl(ego)∧ (re(c)∨ cl(c))〉 ,

which appears as invariant φ2 in state q2 and as guard of
the transition from state q2 to state q3 in LCP, extending the
reservation of ego. This guard is decisive for the safety of
lane change.

To link ¬pc with the concrete controller, we distinguish
the cases of reservation and claim of c.
Case 1 : φre ≡ ¬∃c : c 6= ego∧〈cl(ego)∧ re(c)〉 .

This formula states that no (other) car c on ego’s target
lane has a reservation that overlaps with ego’s claim. The car
c may be (i) ahead of ego (or aligned with ego) or (ii) behind
ego. In subcase (i), the concrete controller looks forward
using the observables ds giving the safety distance needed
for car ego at its current speed and d̂t (with t either 2 or 3)
measuring the distance to the next car c in front of ego on
the target lane of its lane change maneuver. The concrete
controller checks the inequality ds < d̂t . In subcase (ii), the
concrete controller looks backward using the observables d̂b
(with b either 4 or 5) measuring the distance to the next car
behind ego on the target lane and ds,max, the maximal braking
distance of any car, i.e., an overapproximation of the actual
braking distance of that car. The concrete controller checks
the inequality ds,max < d̂b. Thus, φre is satisfied if ds < d̂t ∧
ds,max < d̂b holds. Note that due to the overapproximation via
ds,max this check may be stronger than necessary, permitting
fewer lane changes than ¬pc, but this preserves safety.

Case 2 : φcl ≡ ¬∃c : c 6= ego∧〈cl(ego)∧ cl(c)〉 .
The formula states that no other car c on ego’s target lane

has a claim that overlaps with ego’s claim. Such a car c may
only be in a lane next to ego’s target lane. In this case, the
concrete controller checks with its sensor bt (with t either
1 or 2) on the side of the target lane for a turn signal of
some car c on the lane next to the target lane. The formula
φcl is satisfied if ¬bt holds. Thus at the concrete level, we
instantiate

φ2 ≡ (ds < d̂t ∧ds,max < d̂b)∧¬bt ,

which implies ¬pc at the abstract level.

Altogether, instantiating in the controller in Fig. 1 the
formulae φ0 and φ2 by the distance inequalities and blinker
sensor values as stated above, we obtain a concrete lane-
change controller that we call LCPc. Consider the concrete
setting C, where all cars are equipped with LCPc.

Proposition 2 (Safety of LCPc): Every transition among
traffic snapshots permitted in C is also permitted in Af .

VI. CONCRETE CONTROLLERS

In this section, we deal with the assumption A2 on the
distance controller made in Theorem 1. We propose a sliding
mode controller for a vehicle C that maintains the velocity of
the vehicle at the reference vref until the distance d between
C and the vehicle D in front is reached. Subsequently, the
distance d is kept. If D is out of range of the distance sensor,
the controller keeps the velocity at vref. In the following, we
assume that at full throttle, the control u is strong enough
to overcome the drag. To this end, we notice that a(x1,z) ∈
[0,rbCC] for any (x1,z)∈ R2

+, where the constant b is defined
in (1). Let the speed limit be denoted by v̄. Consequently,
we assume that the maximal control u > rbCCv̄2. By a safe
control, we understand a control that keeps the motion of a
vehicle safe.

Definition 5 (Safe Control): A safe controller for the con-
trol system (2) and a function z : R+→ [0, v̄] is a function u :
R3 7→R such that the solutions of the dynamical system (2)

with u(t) = u(x(t),z(t)) satisfy the following condition: If
x1(0)≥ d, then x1(t)> 0 for all t ∈ R+.

In plain words, Definition 5 pronounces that an on-
board controller is safe if: whenever the distance from the
controlled car to a car in front is initially greater than d then
a collision between these two cars will never happen.

Proposition 3 (Existence of a safe controller): Consider
the control system (2) and a function z : R+ → [0, v̄]. Let
0≤ vref < v̄, d ≡ d(v̄), and α ≡ rbCCv̄2. Suppose that u < 0.
Let k > 0, define

L1(x)≡ x2− vref, L2(x,z)≡ z− x2 + k(x1−d),

and the following polyhedral set P(z)

P(z)≡ {x ∈ R2| L1(x)≤ 0 and−L2(x,z)≤ 0}.

Then the following control

u(x,z) =
{

u for x ∈ R2 \P(z)
u for x ∈ P(z)

(3)

is safe. Furthermore, the following two properties hold:
1) If x2(0) > vref then x2(t) < x2(0) for all t ∈ R+ and

there is τ ∈ R+ such that x2(t)≤ vref for t > τ .
2) Let β ≡ inf{ż(t)| t ∈ R+} and γ ≡ sup{ż(t)| t ∈ R+}.

Suppose that u < β and u > α + γ , and assume
0 < k < min{β −u,u−α− γ}/v̄. Then

a) Let 0≤ x1(0)< d, and suppose that u(t)= u holds
on an interval [0,τ]. Then x1(t) > x1(0) for all
t ∈ [0,τ].

b) limt→∞ x1(t) = d.

Proof: If x1(0) ∈ R2 \P(z), then the following holds.
There is a family of open intervals {(τα ,τα)| α ∈ Λ} such
that x(τα) ∈ P(z) and if t ∈ (τα ,τα) then x(t) ∈ R2 \P(z),
hence u(t) = u, and x1(t)> 0. If t ∈ R\

⋃
α∈Λ(τα ,τα) then

x ∈ P(z), and thus x1(t)≥ d.
We prove Property 1 and Property 2 of the proposition.

To this end, we observe that for x ∈ R2 \P(z),

L̇1(x,z) =−a(x1,z)x2
2 +u≤ u < 0 (4)

L̇2(x,z, ż) = ż+a(x1,z)x2
2 + k(z− x2)−u

≥ β − kv̄−u > 0. (5)

Whereas, for x ∈ P(z),

L̇1(x,z) =−a(x1,z)x2
2 +u≥−α +u > 0 (6)

L̇2(x,z, ż) = ż+a(x1,z)x2
2 + k(z− x2)−u

≤ γ +α + kv̄−u < 0. (7)

By (4), Property 1 holds.
We will show Property 2.a. To this end, we notice that

u(t) = u whenever x(t) ∈ Pz(t). We consider two cases z(t)>
x2(t) and z(t) ≤ x2(t). If z(t) > x2(t) then ẋ1(t) = z(t)−
x2(t) > 0 and Property 2.a follows. Suppose that z(t) ≤
x2(t). Then 0 < k(x1(t)− d) ≥ z(t)− x2 + k(x1(t)− d) =
L2(x(t),z(t))≥ 0, which is a contradiction.

To show Property 2.b, we observe that by Inequalities (4)–
(7), any flow line of (2) intersects the boundary of P at a point
say x̃ (transversally), i.e., there is t1 ≥ 0 such that x(t1) = x̃.

If L1(x̃) = 0, then the solution (in a Filippov sense) x(·)
is such that L1(x(t)) = 0 for all t ∈ [t1, t2], where t2 is the
time at which L2(x(t2),z(t2)) = 0. Subsequently, the Fillipov
solution x(·) is such that L2(x(t),z(t)) = 0 for all t ≥ t2.
As a consequence, z(t)− x2(t)+ k(x1(t)− d) = 0, which is
equivalent to

d
dt
(x1(t)−d) =−k(x1(t)−d).

Hence, limt→∞ x1(t) = d.
The above proposition shows that there is a control that

keeps the distance from the vehicle C to the vehicle in
front safe while the velocity of C does not exceed the
reference. Also whenever the vehicle C accelerates, u(t) = u,
and initially the distance x1(0) is less than d then the distance
increases, i.e., the traffic situation is not less safe than it was
at the beginning. If the distance between C and D was greater
than d then there is no future time that they will hit each
other.

To avoid discontinuous control and hence abrupt switches
between acceleration u and deceleration u, the control (3) can
be replaced by a continuous approximation. The following
notation will be instrumental:

L1 ≡ L−1
1 (0) = {x ∈ R2| L1(x) = 0},

L2,z ≡ {x ∈ R2| L2(x,z) = 0}, and
H1 ≡ {x ∈ R2| L1(x)≤ 0}, H2,z ≡ {x ∈ R2| −L2(x,z)≤ 0}.

For an ε > 0, we define a map h : [−ε,ε]→ [0,1] by y 7→
1
2

(1
ε

y+1
)
. Let Lε

1 be the ε-neighborhood of L1 (with respect
to the Hausdorff metric), Lε

2,z be the ε-neighborhood of L2,z,
Hε

1 be the ε-neighborhood of H1, and Hε
2,z be the

ε-neighborhood of H2,z. Furthermore, we define Pε(z) by

Pε(z)≡Hε
1 ∩Hε

2,z.

Let xi(x) = x−πLi(x), where πL1 and πL2 are the projection
on L1 and L2,z, respectively.

For l ≡ l(x) = argmax{|xi(x)|| i ∈ {1,2}} let

y(x) = |xl |sign(〈nl ,xl〉),

where 〈·, ·〉 is the scalar product on R2, n1 and n2 are the
normal vectors to L1(·) and L2,z(·),

n1 = (0,−1),n2 = (k,−1).

Let P−ε(z)≡ Pε(z)\ (R2 \ (Hε
1 ∪Hε

2,z)). We define
h̄ : P−ε(z)→ [0,1] by

h̄(x) = h(y(x)).

The control is then u(x,z) = u for x ∈ R2 \Pε(z)
(1− h̄(x))u+ h̄(x)u for x ∈ P−ε(z)

u for x ∈ P(z)\P−ε(z).

The parameter ε is to be chosen as a tradeoff between
accuracy of tracking the distance d and “evenness” of the
control.

A. Lateral Motion

So far, we have not discussed lateral motion. For the
details of modeling, we refer to [15]. In short, the kinematic
model of the vehicle C is given by the global position

Ẋ = vC cos(ψ +β) and Ẏ = vC sin(ψ +β), (8)

where vC is the velocity of the vehicle C, β is the slip angle
of the vehicle defined below, and ψ is the yaw angle, which
defines the orientation angle of the vehicle w.r.t. the x-axis

ψ̇ =
vC

l
cos(β) tan(θ). (9)

In (9), l is the vehicle base, the distance between the rear and
the front wheels, and θ is the angle between the front wheel
and the longitudinal axis of the vehicle, with θ ∈ [θ ,θ] for
θ < 0 and θ > 0; θ as the control input.

The slip angle of the vehicle is given be the relation

β ≡ β (θ) = tan−1
(

lr tan(θ)
l

)
,

where lr is the distance between the center of gravity and
the rear wheel.

The control for lateral motion is discussed in [15]. For
completeness of our study, we propose a facile feedforward
control for changing the lane. To this end, we introduce

b(θ)≡ vC

l
cos(β (θ)) tan(θ).

With this notation, the solution of (8) and (9) belongs to the
graph of the function Fθ ,y0,ψ0

Fθ ,y0,ψ0 : ψ 7→ ỹ0(y0,ψ0)−
vC

b(θ)
cos(ψ +β (θ)),

where ỹ0(y0,ψ0) = y0 +
vC

b(θ) cos(ψ0 + β (θ)), and y0 is the
initial lateral position, and ψ0 is the initial orientation angle.

To change the lane, we change the state (Y,ψ) from (y0,0)
to (y1,0), where without loss of generality it is assumed that
y0 > y1. We suppose that the velocity vC during the entire
maneuver is kept constant. Suppose that (θ0,θ1) ∈ [θ ,0)×
(0,θ] are such that the equation Fθ0,y0,0(ψ) = Fθ1,y1,0(ψ), or
equivalently

ỹ0(y0,0)− ỹ0(y1,0)

+vc

(
cos(ψ +β (θ1))

b(θ1)
− cos(ψ +β (θ0))

b(θ0)

)
= 0,

has the solution ψ̂ . The proposed maneuver turns the front
wheels from 0 to the angle θ0 > 0, waiting until the ori-
entation angle ψ is ψ̂ , and then turns the wheels to the
angle θ1 < 0, waiting until the orientation angle ψ reaches
0, and finally turns the front wheels back to 0. The proposed
control is feedforward, thus a linear control [15] is to be
implemented to remove deviations from the lateral reference
y1.

The time tlc of the maneuver depends on the vehicle
velocity, vC, and it is used in the guard of the abstract
controller LCP depicted in Fig. 1. To avoid a collision during
the maneuver of changing the lanes, it is assumed that the
minimum distance d to the front cars in the current lane and

the neighboring target lane is big enough, i.e., greater than
the sum of the maximal braking distance of the car C and
the distance vCtlc traveled by C during the lane change.

VII. CONCLUSION

The paper has presented an approach to hybrid systems
modelling where an abstract model is built in theories that
are decidable modulo symbolic guards and actions while a
concrete model uses conventional continuous time for which
controllers are developed. The key point is that these two
worlds are linked by linking predicates, so the concrete
model is a refinement of the abstract one. Several approaches
to controller design for hybrid systems have pursued a sep-
aration of the dynamics from the control layer. Specifically,
Raisch et al. [13], [12] introduce abstraction and refinement
to support a hierarchical design. However, this line of work
stays within the same underlying model, whereas the work
here operates with separate models, more in accordance
with the work in [16], which treats semantic alignment of
heterogeneous models. The linking predicates used in the
current work may make alignment easier, because they relate
specific quantities and not full models.

Symbolic Models are well known from a controller side,
which can be built using timed automata. Also the use of
symbolic guards and actions is intuitively easy. When this is
done, it is feasible to use model checking with a simplified
environment model that assigns values from (very) finite
domains to predicates, and actions.

Defining a suitable state space is intrinsically difficult.
We have used a spatial logic to structure it, also for other
types of roads [6]. The logic gives a compact formulation of
properties and configurations, and an ability to compose and
decompose them as well as a potential for deductions [9].
Work on spatial logic often focuses on qualitative spatial rea-
soning [20] as exemplified in the region connection calculus
[17]. The logic used here is inspired by the Duration Calculus
[23], and the Shape Calculus [18]. In [19], hybrid automata
are considered where invariants and guards are expressed in
a spatio-temporal logic S4u, yet without separation of space
and dynamics as here.

Concrete Models are highly application dependent. In the
current presentation, the modelling and controller design is
kept general. For real applications, there is much detailed
engineering to do, but this is not in the scope of this
paper. During the development, one must have an eye on
the predicates of the symbolic model, so it is feasible to
construct observers that match the guards, and handle set
points presented by the actions.

Linkage. The linking predicates are the formal outcome
of negotiating the interface between the two models. They
represent the point where many real application projects fail,
because engineering traditions from software development
and control system development meet without explicit ne-
gotiation. The transfer of temporal properties from abstract
to concrete transitions systems via (bi)simulations is well-
understood in the area of model checking, see [5].

Overall the approach seems well suited for application
areas, where semi-autonomous entities have to coordinate to
achieve common objectives. In a tightly coupled application,
it is most likely easier to stay with a one level concrete
model, typically a conventional hybrid automaton.

Traffic Maneuvers There are various other approaches
dealing with the safety of traffic maneuvers. A very influen-
tial effort was the California PATH (Partners for Advanced
Transit and Highways) project on automated highway sys-
tems for cars driving in groups called platoons [21]. The
maneuvers include joining and leaving the platoon, and lane
change. Lygeros et al. [11] sketch a safety proof for car
platoons taking car dynamics into account, but admitting safe
collisions, i.e., collisions at a low speed. Not all scenarios of
multi-lane traffic are covered in their proof. More recently,
Platzer et al. [3], [10] represent traffic applications in a
differential dynamic logic dL that is supported by the
theorem prover KeYmaera [14]. This logic does not separate
space (symbolic model) from dynamics (concrete model),
which is at the heart of our approach. The paper [1] proposes
a bottom-up strategy, where a concrete model is gradually
abstracted to Markov chains, of which the set of reachable
states is analyzed.

Acknowledgments: This work was partially supported by the
German Research Foundation (DFG) in the Transregional Collab-
orative Research Center (SFB/TR 14) AVACS (www.avacs.org).

REFERENCES

[1] M. Althoff, O. Stursberg, and M. Buss. Safety assessment of
autonomous cars using verification techniques. In American Control
Conference (ACC) 2007, pages 4154–4159. IEEE, 2007.

[2] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183
– 235, 1994.

[3] N. Arechiga, S. M. Loos, A. Platzer, and B. H. Krogh. Using theorem
provers to guarantee closed-loop system properties. In American
Control Conference (ACC) 2012, pages 3573–3580. IEEE, 2012.

[4] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge Univ. Press, 1998.

[5] O. Grumberg. Abstraction and reduction in model checking. In
H. Schwichtenberg and R. Steinbrüggen, editors, Proof and System-
Reliabilty, volume 62 of Nato Science Series II. Math., Physics and
Chemistry, pages 213–260. Kluwer Academic Publishers, 2002.

[6] M. Hilscher, S. Linker, and E.-R. Olderog. Proving safety of traffic
manoeuvres on country roads. In Zhiming Liu, Jim Woodcock, and
Huibiao Zhu, editors, Theories of Programming and Formal Methods,
volume 8051 of LNCS, pages 196–212. Springer, 2013.

[7] M. Hilscher, S. Linker, E.-R. Olderog, and A. Ravn. An abstract model
for proving safety of multi-lane traffic manoeuvres. In Shengchao Qin
and Zongyan Qiu, editors, ICFEM 2011, volume 6991 of LNCS, pages
404–419. Springer, 2011.

[8] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming.
Prentice Hall, 1998.

[9] S. Linker and M. Hilscher. Proof theory of a multi-lane spatial logic.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Int’l Conf.
on Theoret. Aspects of Comput. (ICTAC), volume 8049 of LNCS, pages
231–248. Springer, 2013.

[10] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid,
distributed, and now formally verified. In M. J. Butler and W. Schulte,
editors, FM 2011, volume 6664 of LNCS, pages 42–56. Springer, 2011.

[11] J. Lygeros, D. N. Godbole, and S. S. Sastry. Verified hybrid controllers
for automated vehicles. IEEE Trans. on Automatic Control, 43(4):522–
539, 1998.

[12] T. Moor, J. Raisch, and J.M Davoren. Admissiblity criteria for a
hierarchical design of hybrid systems. In Proc. IFAD Conf. on Analysis
and Design of Hybrid Systems, pages 389–394, St. Malo, France, 2003.

[13] T. Moor, J. Raisch, and S. O’Young. Discrete supervisory control of
hybrid systems based on l-complete approximations. Discrete Event
Dynamic Systems, 12:83–107, 2002.

[14] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Spinger, 2010.

[15] R. Rajamani. Vehicle Dynamics and Control. Mechanical engineering
series. Springer Science, 2006.

[16] A. Rajhans and B. H. Krogh. Compositional heterogeneous abstrac-
tion. In HSCC 2013, pages 253–262. ACM, 2013.

[17] D. A. Randell, Zhan Cui, and A. G. Cohn. A spatial logic based
on regions and connection. In Proc. 3rd Int’l Conf. Knowledge
Representation and Reasoning, 1992.

[18] A. Schäfer. A calculus for shapes in time and space. In Z. Liu and
K. Araki, editors, ICTAC 2004, volume 3407 of LNCS, pages 463–478.
Springer, 2005.

[19] Zhucheng Shao and Jing Liu. Spatio-temporal hybrid automata for
cyber-physical systems. In Z. Liu, J. Woodcock, and H. Zhu, editors,
ICTAC 2013, volume 8049 of LNCS, pages 337–354. Springer, 2005.

[20] J. van Benthem and G. Bezhanishvili. Modal logics of space. In
M. Aiello, I. Pratt-Hartmann, and J. Benthem, editors, Handbook of
Spatial Logics, pages 217–298. Springer Netherlands, 2007.

[21] P. Varaija. Smart cars on smart roads: problems of control. IEEE
Transactions on Automatic Control, AC-38(2):195–207, 1993.

[22] M. Zabat, N. Stabile, S. Farascaroli, and F. Browand.
The aerodynamic performance of platoons: A final report.
http://escholarship.org/uc/item/8ph187fw, UC Berkeley, 1995.

[23] C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. IPL,
40(5):269–276, 1991.

