Efficient Memory Representation of
XML Document Trees

Giorgio Busattd, Markus Lohrey, Sebastian Manett

a Departmentiir Informatik, Universiat Oldenburg, Germany
gi orgi 0. busatto@ nf or mati k. uni - ol denbur g. de

b EMI, Universitat Stuttgart, Germany
| ohrey@nformati k. uni -stuttgart.de

¢ National ICT Australia Ltd- and University of New South Wales, Sydney, Australia
sebasti an. manet h@.i cta. com au

Abstract

Implementations that load XML documents and give access to them via, e.g.Ohkk D
suffer from huge memory demands: the space needed to load an XMiméotus usu-
ally many times larger than the size of the document. A considerable amount ofrgnismo
needed to store the tree structure of the XML document. In this paper, @idaehs pre-
sented that allows to represent the tree structure of an XML documentdfiicient way.
The representation exploits the high regularity in XML documents by comprefiseir
tree structure; the latter means to detect and remove repetitions of tree qeftamally,
context-free tree grammars that generate only a single tree are usegefeompression.
The functionality of basic tree operations, like traversal along edgeresepred under this
compressed representation. This allows to directly execute queries (paditular, bulk
operations) without prior decompression. The complexity of certain cortipuizh prob-
lems like validation against XML types or testing equality is investigated for cosspre
input trees.
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1 Introduction

There are many scenarios in which trees are processed byutengpograms. Of-
ten itis useful to keep a representation of the tree in maimamg in order to retain
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fast access. If the trees to be stored are very large, theniniportant to use a
memory efficient representation. A recent, most promingatrle of large trees
are XML documents which are sequential representationsdgred (unranked)
trees, and an example application which requires to métrigpart of) the docu-
ment in main memory is the evaluation of XML queries. Thedait typically done
using one of the existing XML data models, e.g., the DOM. Bematks show that
a DOM representation in main memory is 4-5 times larger tharotiginal XML
file. This can be understood as follows: a node of the felah > needs 4 bytes
in XML; but as a tree node it needs at least 16 bytes: a nameaguppius three
node pointers to the parent, the first child, and the nexirgjl{see, e.g., Chapter 8
of [24]). There are some improvements leading to more cotmegecesentations,
e.g., Galax [10] uses only 3—4 times more main memory tharsittesof the file.
Another, more memory efficient data model for XML is that ofiadry tree. As
shown in [25], the known XML query languages can be readigl@ted on the
binary tree model.

In this paper, we concentrate on the problem of represebtirayy trees in a space
efficient way, so that the functionality of the basic tree rapiens (such as the
traversal along edges) is preserved. Instead of comprestis is often called
data optimizatior{19]. There are two fundamentally different approachesnalbs
tree representation: pointer-based and succinct pdiegerf19]. The latter means
to pack the tree into a small bit-array in such a way that baaiégations through
the tree can be realized in constant time; recently therebkaa new progress
in succinct tree representations [11,16,17]. With respeatemory requirements,
succinct representation are more competitive than pebdsed representations;
with respect to traversal speed, however, pointer strastare much more compet-
itive than succinct representations. Here we deal withtpoibased tree represen-
tations. As common, we use as size measure the number obmimteded. The
actual cost of a pointer is implementation dependent anotisansidered here. Our
technique is a generalization of the well-known sharingahmon subtrees. The
latter means to determine during a bottom-up phase, usirash table, whether
the current subtree has occurred already, and if so to reprédy a pointer to its
previous occurrence. In this way the minimal unique DAG€died acyclic graph)
of the tree is obtained in linear time. For common XML docutsethe size (mea-
sured in number of pointers) of the minimal DAG is about 1/16he size of the
original tree [4]. Our representation is based on sharingbaimon subgraphs of a
tree. The resulting sizes are 1/2—1/4 of the size of the nahdAG (even if mul-
tiplicity counters are used in the DAG to represent consee@dges to the same
subtree). To our knowledge, this is the most efficient peoibtesed tree represen-
tation currently available. At the same time, the complegitquerying, e.g. using
XQuery, stays the same as for DAGs [22]. We therefore belieatour represen-
tation is better suited for in-memory storage of XML docunsethan DAG-based
representations. Note that our representation can alstcbenentally updated; as
experiments show [13], even after thousands of updateadtiéonal overhead on
the structure stays below 40% with respect to the size of cesspng from scratch.



In a succinct pointer-less representation, any treemddes has the same memory
requirement, no matter if the tree is highly regular (i.entains many occurrences
of identical subtrees) or non-regular. Thus, for very larggular trees, which are
typical in applications, the size of our compressed reprtasien will be smaller
than that of any succinct pointer-less representatiorhdukl be noted that suc-
cinct pointer-less and pointer-based representationsa@mpeting approaches,
but can be combined: our compression algorithm generatesicéree grammars
which themselves consist of many small trees. These treesfaurse be stored
succinctly instead of using pointers [13]. The result isrgnéeed to be smaller than
those obtained by any of the two approaches in separation.

Of course, an XML document contains more components thartrgs nodes: a
node may have attributes, and a leaf may have characteBi#tatypes of values
we keep in string buffers. When traversing the XML tree, wepkie¢éormation on
how many nodes before (in document order) the current ngdeaye attributes
and (ii) how many have character data. Thus, it suffices teediwo additional
bits per node indicating whether the node has attributedaracter data. These
numbers determine for a node the correct indices into thibatie and data value
buffers, respectively. With this in mind, it is straightfaard to implement a DOM
proxy for our representation. Note that attribute and attaravalues can be stored
more space efficiently using standard techniques [1]. TheLXiM compression
tool XMill [21] separates data values into containers anujgesses them individ-
ually using standard methods. The result is stored togettikrthe tree structure.
For typical XML files, about 50% of the total file size is made oy data val-
ues, whereas the remaining 50% is made up by the tree sieudtus likely that
compressing the tree structure by the technique preseatedhll further improve
XMill's compression ratio.

We now describe our representation in more detail. Constueitreec(c(a, a),
c(a,a)),or,in XML <c><c><a/ ><al ></ c><c><a/ ><al ></ ¢></ c>. Itcon-
sists of seven nodes and six edges. The minimal DAG for teeshas three nodes
u, v, w and four edges (‘first-child’ and ‘second-child’ edges frarto v and from

v to w). The minimal DAG can also be seen as the minineglular tree grammar
that generates the tree [23]: the shared nodes correspamahterminals of the
grammar. For example, the above DAG is generated by theaegeke grammar
with productionsS — ¢(V, V), V. — ¢(W, W), andIW — a. A generalization of
sharing of subtrees is the sharing of arbitrary patteres, ¢onnected subgraphs
of a tree. In a graph model it leads to the well-known notiorsleéring graphs
which are graphs with special “begin-sharing” and “endrsitd edges, called fan-
ins and fan-outs [20]. Since fan-in/out pairs can be negtesl structure makes a
doubly-exponential compression ration possible. In @stira DAG is at most ex-
ponentially smaller than the tree it represents. A shariraply can be seen as a
context-free (cf) tree grammd23]. In a cf tree grammar nonterminals can appear
inside of an intermediate tree (as opposed to at the leavés iregular case); for-
mal parameterg, ys,... are used in productions in order to indicate where to



glue the subtrees of the nonterminal which is being repla€gutling the smallest
sharing graph for a given tree is equivalent to finding thel&siacf tree grammar
that generates the tree. Unfortunately, the latter proliéeNP-hard: already find-
ing the smallest cf (string) grammar for a given string is &dPaplete [5]. The first
main contribution of this paper is a linear time algorithrattfinds a cf tree gram-
mar for a given tree. On common XML documents the algorithmigoms well,
obtaining grammars that ade5—2 times smaller than the minimal DAGs. As an
example, consider the treée= c(c(a,a),d(c(a,a), c(c(a,a),d(c(a,a),c(a,a)))))
from Fig. 1 which has 18 edges. The minimal DAG, written ase@ fgrammar,
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Fig. 1. Treet = ¢(c(a,a),d(c(a,a), c(c(a,a),d(c(a,a), c(a,a))))).
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Fig. 2. Regular and cf tree grammars generafitigirom Fig 1.

can be seen on the left of Fig. 2. It is the initial input to olgasithm BPLEX
which tries to transform the grammar into a smaller cf treengnar. It does so
by going bottom-up through the right-hand sides of produnsj looking for mul-
tiple (non-overlapping) occurrences of patterns, i.ennaeted subgraphs. In our
example, the tree pattern pat (consisting of two nodeséaleedndd and their left
children labeled”) appears twice in the right-hand side of the first productin
patternp in a tree can conveniently be represented by a#yedth formal param-
etersyy, ..., y, at leaves: simply add tp for each edge, leading from a nodejof
to a node outside gf, a new leaf and label thggh such leaf (in preorder) by the
parametery;. Thus,tpa = ¢(C,d(C,y1)) in our example. This tree becomes the
right-hand side of a new nonterminBland the right-hand side of the production
for the start nonterminab becomesB(B(C')). The resulting cf tree grammar is



shown on the right of Fig. 2. Clearly, this grammar generatastty one tree. Such
a cf tree grammar is callestraight-line(for short, SL). The straight-line notion is
well-known from string grammars (see, e.g., [29,30]).

The BPLEX algorithm is presented in Section 3. In Section 4 seuss the appli-
cation of BPLEX to XML documents. Experimental results aresented in Sec-
tion 5. In Section 6 we study two problems for SL cf tree gramsithat are im-
portant for XML documents: (1) to validate against an XML ¢yand (2) to test
equality of the trees generated by two SL cf tree grammaneeSBPLEX gener-
ates SL context-free tree grammars of a more restricted {additionally: linear
in the parameters) we also consider problems (1) and (2hfsrréstricted case.
Concerning (1), it is shown that for an XML tyf#& represented by a (determinis-
tic) bottom-up tree automatall with m states, we can test whether or not the tree
represented b has typel in time O(m* x | B| x size(G)). Here k is the maximal
number of parameters of the nonterminalsfize(G) is the sum of the sizes of
all right-hand sides of the gramm@t, and|B| is the size of the transition function
of the automatorB. Note that a Core XPath quety can be transformed into an
equivalent deterministic bottom-up tree automaton wit/“!) many states. This
leads to an algorithm for Core XPath evaluation on XML docutseapresented
by SL context-free tree grammars, whose running time isx@peential ink - |Q)|
(wherek is the maximal number of parameters) and (ii) polynomiahia $ize of
the grammar. This result nicely fits to a result from [4], wdérwas shown that
a Core XPath queryy) can be evaluated on an XML document represented by a
DAG D intime O(2!! x | D|), where| D| is the number of nodes @. Concerning
problem (2), it is proved that the equivalence of two SL cétggammars can be
tested in (i) polynomial space with respect to the sum ofssafehe two grammars
and (ii) in polynomial time with respect to the sum of sizeshié grammars are
assumed to be linear (i.e., no parameter appears more tleanrothe right-hand
side of any production).

2 Preliminaries

The empty string over some alphabet will be denoted.b finite setX together
with a mappingank : ¥ — Nis called aranked alphabetThe set of albX-labeled,
ordered, rooted, and rankéesis denoted byly.. Here, “ordered” and “ranked”
means that the children of afilabeled node ( € X) has exactlyrank(f) many
children, which are linearly ordered. Such a treill be also represented as a
term: If the root oft is labeled withf andt; is the subtree of, which is rooted at
thei-th child of the root oft (1 < ¢ < n = rank(f)), thent can be represented by
the termf(¢q,...,t,). For asetd, T (A) is the set of all trees ovet U A, where
all elements ofA have rank). We fix a set ofparameterst” = {y;,vs,...} and,
for k > 0, Yr = {w1,...,yx}. For a ranked tre¢, V (¢) denotes its set of nodes
andE(t) its set of edges. Each nodelif{t) can be represented by a sequencd



integers describing the path from the root ¢ the desired node (Dewey notation).
Formally, for a sequence € N* and a tree. we define the node[t] € V()
inductively as follows: Let[t] be the root oft. Now assume that = i.v with

i € Nandv € N*. If t is not of the formt = f(¢,...,t,) with f € ¥ andn > i,
thent, is undefined. Otherwise, we selt] = v[t;]. In the rest of the paper, we
will often identify the nodeu[t] with the sequence. The label of the node[t] is
denoted byt[u] and the subtree of rooted atu is denoted by /u. For example,
for the treet from Fig. 1,1.1[¢] is the left-most leaf of and we have[l.1] = a.
For symbolsa,, ..., a, of rank zero and trees, ... t,, [a1 « t1,...,a, <« t,]
denotes the substitution of replacing each leaf labe)dxy the treet;, 1 <i < n.

Tree Grammars

Context-free (cf) tree grammars are a natural generalizafief grammars to trees
(see, e.g., Section 15 in [18]). A cf tree gramndarconsists of ranked alphabets
N andX: of nonterminal and terminal symbols, respectively, of atstanterminal
S (of rank zero), and of a finite set of productions of the fofy,, ..., y.) — t,
where A is a nonterminal inV of rank & > 0 andt is a tree over nonterminal
symbols, terminal symbols, and parameter¥jiwhich may appear at leaves, i.e.,
t € Tyus(Yr). For treess, s’ € Tyus We writes =¢ ¢ if s’ is obtained froms
by replacing a subtred(sy, ..., sg) by the treet[y; «— si,...,y. < si| where
A(y1,-..,yr) — tis aproduction of7. Thus, the parameters are used to indicate
where to glue the subtrees of a nonterminal occurrence, ajyelying a production
to it. The language generated 6Yis

L(G)={seTx | S=¢ s}

Observe that a parameter can cause copying (if it appeaestimam once in a right-
hand side) or deletion (if it does not appear in a right-hadd)s For example, the

cf tree grammar with productions — A(a), A(y1) — A(c(yr, 1)), A1) — n
generates the language of all full binary trees over therpisgmbol ¢ and the
constant symbok. The grammars which are generated by our BPLEX algorithm
(“SLT grammars”, see below) will have neither copying notetien, i.e., every
parameter will appear exactly once in a right-hand side.

A cf tree grammar isegular if all nonterminals have rank It is straight-line(for
short, SL) if each nonterminal has exactly one production (with right-hand side
denotedhs(A)) and the nonterminals can be ordered4as. . ., A, in such a way
that A, is the start nonterminal andis(A;) has no occurrences of; for j < ¢
(such an order is called “SL order”). Thus, an SL cf tree gramn@can be defined
by a tuple(N, 3, rhs) where the set of nonterminal is ordered (let4,, ..., A,

be the order onV) andrhs is a mapping fromV to Ty s(Y') such that for all

1 < i < niths(A;) € Tia,,,,.. a30s(Ye), Wherek is the rank ofA;. A cf tree
grammar idinear if, for every productionA(y,, ..., y,) — t, each parametey;



occurs at most once ity and it isnondeletingif eachy; occurs at least once in
t. In the sequel we us8LT grammairto stand for “SL linear nondeleting cf tree
grammar”.

3 The BPLEX Algorithm

The purpose of grammar-based tree compression is to find b graamar that
generates a given tree. The size of such a grammar can baelewidy smaller
than the size of the tree, depending on the grammar forma&lgsen. For exam-
ple, finding the smallest regular tree grammar that generatgven tree¢ can be
done in linear time, and the resulting grammar is equivatetite minimal DAG of
the tree. The minimal regular tree gramndaris also straight-line (any grammar
that generates exactly one element can be turned into ang®hngar). The initial
input to our compression algorithm BPLEX is the gramrgar BPLEX takes an
arbitrary SL regular tree grammar as input and outputs alleh&LT grammar.
As mentioned in the Introduction, moving from regular torefet grammars corre-
sponds to generalizing the sharing of common subtrees tehiéweng of arbitrary
tree patterns (connected subgraphs of a tree).

The basic idea of the algorithm is to find tree patterns thaeapmore than once in
the input grammar (in a non-overlapping way), and to repthee by new nonter-
minals that generate the corresponding patterns. We catetthniquemultiplexing
because multiple occurrences of the replaced patterngpresented only once in
the output. The order in which the algorithm scans the nad#teiright-hand sides
of the input grammar corresponds to scanning the generaedottom up; for this
reason, the algorithm is called BPLEX (foottom-up multiplexing

Before we explain the BPLEX-algorithm in more detail, we fireed some defi-
nitions. Assume thatz is an SLT grammar with nonterminals,, ..., A, (in SL
order). Letl < h. With </, we denote the ordering on the union

l

Ve = V(thsg(4))

i=1

(here we assume w.l.0.g. that the node détshs;(A1)),...,V(rhsg(4,)) are
pairwise disjoint) obtained by scannimbys¢(4;) throughrhsg(A,), each in left-
to-right postorder. A nodg € V/, will be identified with itsaddress: = (j,u) €
{1,...,1} x N*in G, wherej is such thap € V (rhsg(4;)) andulrhsg(A4;)] = p
(i.e.,u is the path in the treghs;(4;) to the nodey). If = is a node i/}, that is not
the root ofrhsg(A;), thennext(<L,, ) is the node following: in the order<L,.

BPLEX (see Fig. 3) takes as input an SL regular tree grantim@vith say/ non-
terminalsA, ..., A;) and three parameters specifying



procedure BPLEX(G: grammar,K y: int, Kg: int, Kg: int): grammar
begin
A; := last symbol in the SL ordering @f
z := leftmost leaf ofrhss(A4;)
while true do
RepM := RepM(G, z, K)
NewM := NewM(G, z, Ky, Kg, Kg)
if NewM # () or RepM # () then
m := max-matciNewM, RepM)
if m € RepM then
G := G[m «— A], with rhsg(A) = py,
else
k = rank(pp,)
A = fresh(G, k)
G :=add(G, A(y1, ..., Yx) — Pm)
G :=Gm, ¢y — A
fi
elseif3w € V4 : 2z <L, w then 2z := next(<L,, 2)
else break
fi
od
return G
end BPLEX

Fig. 3. The BPLEX algorithm.

(1) the maximum numbeK y of nodes and productions that are examined when
computing patterns matching at a given node,

(2) the maximum sizé(s of a new pattern, and

(3) the maximum rank; of a new pattern.

In our analysis of BPLEX, we will considek y, Kg, and K as fixed constants.
This will be crucial in order to obtain a linear running tine BPLEX. ¢ From,
BPLEX computes a sequence of SLT grammars, each having at leastermi-
nals. Moreover, we store a current address the current SLT grammar. At each
step, BPLEX computes a set mfpeated matchelsy comparing the tree patterns
occurring atz with the right-hand sides of the lasfy productions ofG with in-
dex greater thaih, and a set ohew matche®y finding pairs of non-overlapping
occurrences of tree patterns:zaénd at theKy, most recently visited nodes (thus
exploiting the well-known idea of a sliding window that appg e.g. in many im-
plementations of the LZ77 compression scheme, cf. the sisson in Section 7). If
at least one match is found, BPLEX performs the sharing tratiges the highest
size reduction for the grammar, it moves to the next noderafke. If there is no
next node, then it returns the current SLT grammar.



We now examine the algorithm in detail. We describe the megof the compu-
tation through a sequence of configuratigs, z;), . . ., (G, z;,) where, for each
1 <i < h, G;is an SLT grammar generating the uncompressed treez;aacn
address irnG; denoting the node that is examined during #b iteration (thecur-
rentaddress)G; = G is the input to the algorithn7), is the output. The starting
addresg; is the left-most leaf ofhsg, (4;) and the final address, = (1, ¢) is the
root ofrhsg, (A;). Forl < i < h, grammarG; has nonterminalsl,, ..., A;,, with
[y =land, fori > 1, eitherl; = [,_y orl; = [;_; + 1 and A;, = fresh(G;_1, k) for
somek > 0. By fresh(G, k) we denote a nonterminal of rakkthat does not occur
inG.

A tree pattern can be described by a tree with parametersaatdgparameters
denote subtrees that are not part of the pattern). Fornellyee) patternp (of
rank k) is a tree in which each € Y, occurs exactly once. Given a treeand a
nodeu € N* of ¢, the patterrp matcheg atw if there are trees,, .. ., ¢, such that
t/u = pO, where® is the substitutiorty; < ¢1,...,y, < t]. The triple(p, u, ©)

is called amatchof p (in ¢) atu. Given a matchn = (p,u, ©), letp,, = p. Two
matchesp, u, ©) and(p’, «', ©') in the same treeareoverlappingif either there is
anodev € N* in p such thap[v] ¢ Y anduv = «’ or there is a node’ € N* in p/
suchthap'[v'] € Y andu/v’ = u. Two matchesn = (p, u, [y1 < t1,...,yk < tx])
andm’ = (p,u,[y1 <« ti,...,yp < t,]) of the same patterp (but in possibly
different trees) arenaximalif ¢;[c] # t;[¢] for all 1 < i < k (intuitively: there is
no possibility to extendn andm’ at the leafs to matches of some larger common
pattern). Given a grammar with nonterminals4,, . . . , A, a patterrp matchess
at the address = (j,u) (1 < j < h, u € N*) if p matcheshsq(A;) atw; in this
case we call the triplev = (p, z, ©) a match ofp (in G) atz = (j, u) and say that
z is the address of: in G.

The replacement of patterns is defined as follows.E&é&te an SLT grammar with
nonterminalsA,, ..., Ay, p a pattern of rankc with a corresponding production
Ai(ylv s 7yk) - P in G! andm = <p7 (]7 U), [yl — tl; e Uk tk]) a match
of p in G wherei # j. The matchmn is replaced byA; by replacing the subtree
rhsg(A;)/u of rhsg(A;) with the treeA;(ts, ..., tx). The resulting grammar is
denoted byG[m «— A;]. Similarly, for two non-overlapping matches, andm of
pin G (which means that either,; andm, are matches in two different right-hand
sides ofGG or m; andms, are matches in the same right-hand sidé /djut are not
overlapping according to the above definitioG)fm,, my «— A;] is the grammar
obtained from by replacing each mateth; andm, by A;.

We now discuss how the size of an SLT grammar changes whemrences of

a tree pattern are replaced by a nonterminal that genetagegattern. Thesize

of a tree (without parameters) is itaumber of edgesSince the SLT grammars
that are generated by BPLEX have the property thak glhrameters of a non-
terminal appear exactly once in the right-hand side of itedpction, and in the
ordery,, 9, . . ., Y, We do not need to explicitly represent the parameters assnod



of the tree. Instead, we attach to a node label the informatibich of its sub-
trees is a parameter (note that the number of parameteramngars generated
by BPLEX is typically very small, 10 or less; experiments show that compres-
sion hardly improves when allowing more that parameters, i.e., when setting
Kgr > 10). Hence, we do not count the edges to parameters and defiszéoé a
treet with k& occurrences of parameterssas:(t) = |E(t)| — k. For a tree grammar
G, size(G) is the sum of the sizes of the right-hand sides of the prodostofG.
Clearly, size(G) — size(G[m «— A]) = size(p) andsize(G) — size(G[my, my —
A]) = 2 x size(p). If the production prod is not id7 already then the size of the
grammaradd (G, prod) obtained by adding prod G is size(G) + size(rhs(prod)).

Let us turn our attention to the computation of pattern $asing thei-th iteration,
when computing gramma¥,;,; from G;, BPLEX computes first the set

RepM = RepM<GZ7 Zi KN) =
{m|3jed{l,...,min{l;,l + Kn}} : mis amatch othsg, (A4,) in G; atz;}

of all matches at the current addressof patterns from{rhsq,(4;) | | < j <
min{l;,l + Ky}}. This computation considers at mdsty productions of index
greater thari. Note that one can check whethés, (A,) matches; at z; in at
mostsize(rhsg, (A4;)) steps by reading the label of at meste(rhsg, (A4;)) many
descendant-nodes gfand thereby binding parameterscbé;, (A,) to descendants
of z;. Since, every right-hand sidés, (A;) with j > [ will have size at moskg
(see the discussion below) we can bound the total cost of abngpRepM by
Ky x Kg. This is a constant, sind€y and K g are assumed to be constants.

BPLEX also computes the set
NewM = NGWM(GZ, Ziy KN, Ks, KR)
of all matchesn at z; such that:

o 0 < size(pn) < Ks;

¢ there exists @ompanion match,, of the same pattern,, in G; at some nodev
among the lask'y nodes preceding; in the order<lGl_ such thatn andc,, are
non-overlapping;

e if size(p,) < K, then either (1)n andc,, are maximal, or (2)n andc,, can
only be extended to larger matches that overlap;

e the rank ofp,, is at mostK 5.

The setNewM can be computed by comparing top-down the tree rootegwith
the trees rooted at the lakty nodes preceding; in the order<lGi. Since the com-
putation stops whenever it encounters a pattern that isddh@nK s, the cost of
computingNewM is bounded by the constahaty x K.

BPLEX chooses a matchh € RepM U NewM with maximal size, denoted by

10



S = B(E(C)) C — (A, A)
E(y1) — c(C, D(y1)) A—a

D(y1) — d(C,y1)
Fig. 4. SLT grammar generatiq@(c(a, a), d(c(a, a), c(c(a, a),d(c(a,a), c(a,a)))))}.

max-matckiRepM, NewM). If m € RepM, then the match is replaced by the right-
hand side of the corresponding productionul NewM, then BPLEX adds a new
productionA — p,, to the grammar, wittd = fresh(G;, rank(p,,)), and replaces
the matchesn andc,, by A. In both cases, the size of the grammar is reduced by
size(pm ). If no matches are found, BPLEX tries to move the addrgss the next
node with respect to the orde; .

Theorem 1 For a given SL regular tree grammak, BPLEX produces in time
O(size(G)) an equivalent SL cf tree grammar, where each nonterminal bak r
at mostKy.

PROOF. Each of the set®epM andNewM can be computed in tim&y x Kg,
which is a constant. Hence, each execution of the while Indjg. 3 takes constant
time. The linear running time of BPLEX follows, since for arput grammaiG,
the while loop cannot be executed more tRaxn size(G) times (each execution of
the loop either moves the address forward or reduces thefike grammar). O

We now illustrate the computation of BPLEX on the regular geemmar on the
left of Fig. 2. BPLEX does not perform any sharing in the thirdiasecond pro-
duction; it then scans the first production. When the highiestencountered (ad-
dress(1,2)) a matchm of patternd(C,y,) is found, together with a companion
¢, Matching in(1,2.2.2). This has sizd and is chosen for replacement. The new
nonterminalD of rank 1 is added to the grammar together with the production
D(y,) — d(C,y), and the two matches are replaced so that the first production
becomesS — ¢(C, D(c¢(C, D(C)))). The new pattermhs(D) does not match the
new grammar i = (1,2) and no pairs of new matches are found either. Therefore
z is changed to the root of the production ¢ = (1, ¢)). Here, the right-hand side

of D does not match, while the patterfC, D(y,)) matchesin(l, <) andin(1,2.1),

and these two matches are maximal. Therefore a new nonw@riiof rank 1 is
added together with the productidf(y,) — ¢(C, D(y,)), and the matches are re-
placed byFE, producing the output grammar shown in Fig. 4. Both this gramm
and the cf tree grammar on the right of Fig. 2 have %iadote that BPLEX has not
detected pattern = ¢(C, d(C, y;)) appearing in Fig. 2, because the smaller pattern
d(C,y,) is replaced beforg has been scanned completely.

11



<agenda>
<per son><nane/ ><st r eet / ></ per son>

5 times

<per son><nane/ ><street/ ></ per son>
</ agenda>

Fig. 5. An XML skeleton.

4 Memory-Efficient XML Tree Representation using BPLEX

An XML document is a sequential representation of a nesstdiructure. As an
example, consider the XML document skeleton (i.e., withdatt values) in Fig. 5.

As mentioned in the Introduction, there are different datalats for XML, which
vary in their sizes. For example, DOM trees contain bidioeal pointers between

a node and its children, its parent node, and its direct ledt @ght sibling; the
resulting size is approximately 4-5 times larger than tize sif the original XML
document. In this section we explain how BPLEX can be used nergge a small
pointer-based representation of the tree structure of am ¥btument. BPLEX
operates on ranked trees, that is, trees in which the ranladi symbold is a
fixed numberrank(d). We now discuss two different ranked tree representations
for XML document trees.

Binary Tree Model

One convenient and well-known way of modeling the tree stimecof an XML
document in a ranked way is to view it Bgary tree the first-child of an XML
element node is represented by a left-child pointer and éx¢-sibling of an ele-
ment node is represented by a right-child pointer. In thig,wlae pointers allow
constant time top-down and next-sibling access througtrdeestructure. Other
accessors can be supported by storing additional infoomatynamically when
traversing the tree. For instance, if the sequence of paddritaversed first-child
nodes is maintained, then it is possible to access in carttaa the parent node
and inO(depth time the next-in-preorder node, whetepthrefers to the depth of
the XML document, i.e., to the maximal length of such anaeséguences; more
precisely, the next-in-preorder node of a given node is etg-sibling, i.e., right
child, if it exists, and otherwise it is the next-sibling diet lowest parent of tra-
versed first-child nodes that has a next-sibling node. &ntyjlkeeping a sequence
of parents of traversed right-child nodes provides corndiare previous-sibling
andO(depth) time previous-in-preorder access.

Note that a leaf (resp. the last sibling) of the document lr&e no left (resp. no
right) child edge in the binary tree representation; thiseisoted by the superscript
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agenda

per|son— person — person — person — person
na|mé na‘mé’ na|mé na‘mé' namé
strlae‘f strc‘ae‘f strlae? str(‘ae‘f strlae‘f

Fig. 6. Binary tree representation of an unranked tree.

2 (resp. 1), and by O for a last sibling leaf. In Fig. 6 the byriaee representation of
the tree structure for the XML document from Fig. 5 is showittfvgecond child
edges of person-nodes drawn horizontally). This binary b@s 15 edges. Let us
now consider how BPLEX works on this tree. As before, we firgh @ (ranked)
tree into its minimal DAG, represented as a regular tree gramand then apply
BPLEX to the grammar. In our example, the corresponding eggube grammar
has the three productions

S — agenda(personiA, persoiA, persoiA, persoiA, person(A))))))
A — namé(B)

B — street

and its size is 11. Consider tiieproduction of this grammar. Its right-hand side
contains four occurrences of the pattern= persoriA,y;). Thus, given a pro-
ductionC(y,;) — personiA,y;), each of the occurrences can be replaced by the
nonterminalC'. However, there is one further occurrence of a similar pajie=
person(A), which can be obtained by removing the parametdrom the pattern
p. Note that, sinced is a first child inp, removingy, changes person into person
In general, we allow a nonterminal of rankm to appear with any rank < » < m

in the right-hand sides of productions, provided it is iradéx which parameters are
to be deleted; in the implementation, missing parametersrarked by a special
“empty tree marker”. With this “overloading” semantics abguctions in mind,
BPLEX turns the above regular tree grammar into the follovgragmmar of size 6:

S — agenda(C(D(D))) A — namé(B)
D(y1) — C(C(y1)) B — street (1)
C(y1) — persorfA, yi)

In this grammar, thé-production generates copies along a path of the binary tree
Repeated applications of such copying productions causmexpial size increase.

In this way, the size of the input grammar can, in certain galse reduced expo-
nentially. Consider our example, but now with000 person entries (thus, a binary
tree with30000 edges). The corresponding minimal regular tree gramihady
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has size0001 while BPLEX outputs the following grammar of si2é:

S — agenda(Ags(As(AL(As(A(A))))
Ai(y1)  — As(Aa(y1))
Ao(yr)  — As(A4s3(nr))

Ap(y) — As(Ais(y))
A(y1) — persomAyy, yi)
A14 — namé(A15)

A — street

In this grammar, the symbal;; generates the tree pergoamestreety, )). More
generally, forj = 1,...,13, A, generates a chain with*>~7 occurrences of this
pattern and one parametgrat the end of the chain. Itis easy to see thgenerates
the correct tree witi0000 person entries.

Multiary Tree Model

Another way of modeling the tree structure of an XML documemtranked way is
to explicitly store the numbeér of children of an element nodewith its label, and
to provide, for each < i < k, a child-pointer fromu to its i-th child (that is, to
the (i — 1)-sibling of u’s first-child). In this way, the pointers provide constame
top-down access. If, dynamically, the sequence of paresesitogether with their
child numbers are stored, then parent, previous-siblingd reext-sibling nodes can
be accessed in constant time, and previous-in-preordenextein-preorder nodes
can be accessed(depth) time. We refer to this model as theultiary tree model

It should be clear that, given an XML document, the number @hfers in the
binary tree model is precisely equal to the number of poinitethe multiary tree
model. The multiary tree model is slightly more flexible thha binary tree model
with respect to traversal operations; however, with resfgegpdate operations the
multiary tree model is less flexible than the binary tree doezause in the latter,
children pointers are stored in fixed-size arrays. Beforengsgnt our experimental
results in the next section, we now want to show that both tegeesentations,
DAGs and SLT grammars, are sensitive to the choice of theesemtation (binary
or multiary tree).

A multiary tree representation of the XML document of befoomsists of a root

node labeleédigenda which has associated with it an array of five pointers, each to

a node labele@ger son which in turn has an array of two pointers to nodes labeled
name andst r eet , respectively. For each pointer to a child node we can aditi
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ally also keep the inverse pointer from the child to its paresde. This doubles
the number of pointers in the representation. Our investiga are independent of
this choice: we always count in number of edges (these nusriimre to be mul-
tiplied by the implementation cost of an edge, which pogsiilolves the cost of
two pointers). The size of the multiary tree representaticthe XML document in
Fig. 5 is thus 15 edges.

DAGs: Binary Trees versus Multiary Trees

Before presenting experimental results with BPLEX, we disdtssrelation to an-
other tree compression method that has been applied to XMtalRbat we ap-
plied BPLEX to the minimal regular tree grammar of a binargtrepresentation

of an unranked tree. An unranked tree has itself a uniguenmainDAG (minimal
regular tree grammar) which can be obtained in the same wiyr aanked trees.
However, the size of the minimal DAG of an unranked tree cadifferent from

the one of the minimal DAG of its binary representation! Inshoases the min-
imal unranked DAG is smaller than the binary one. The reasdhat chains of
second child edges in the binary tree become sibling subingbe unranked tree.
To see this, consider the binary tree in Fig. 6. Clearly, iteimal DAG has only
one copy of the subtree naiistree} and hence has only 11 edges. On the other
hand, the minimal DAG of the corresponding unranked treedmégs one copy of
the subtree persgnamestreej and therefore has only 7 edges. As an example of
a binary tree with a minimal DAG that is smaller than the on¢hefcorresponding
unranked tree, consider the unranked tree

t = u(p<x7 b? C7 b7 C)7p(y7 b? C7 b’ C)7p<z7 b7 C7 b? C)) (2)

Its minimal unranked DAG has 18 edges, but the minimal biltek has only 12,
because only one copy of the subtiég?(b*(°))) appears.

Multiplicities.  In fact, the size of the minimal DAG representation can even b
further reduced by using multiplicity counters for conga®iequal subtrees [4].
Then the DAG for the unranked tree of the agenda-example Fignb can be rep-
resented using only 3 edges, or equivalently, by an (undjregular tree grammar
with multiplicity counters and productions

A — agend@5|P), P — persorinamestreej.

Of course, multiplicity counters take up space, but follegvKoch et al. this space
is neglected. Thus, BPLEX produces the grammar in (1), wiaamaller (siz&)
than the minimal DAG of the unranked tree (si@ebut such a minimal DAG has
a smaller representation (siagwhen multiplicity counters are added. From now
on, we call the minimal DAG with multiplicity counters for amranked tree its
MDAG. This representation can easily be turned into a redgrda grammar with
thesame sizé¢hat generates the binary representation of the originanked tree.
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This grammar also contains multiplicity counters at nodesich are expanded
to chains of nodes. We implemented a version of BPLEX whichk&@n such
grammars (and does not change the multiplicity counters)it Aurns out, only in
a few cases we obtained small improvements over BPLEX on tharpregular
tree grammar corresponding to the minimal DAG. Thus, theathge of counters
is compensated for, by the ability of BPLEX to exponentialyrpress chains of
nodes. On a few files, the minimal binary DAG was even smatlan the mDAG,
due to similar chains as in the tre&om (2); cf. in Tab. 2 the two catalog files and
the file NCBLgene.chrl.

SLT Grammars: Binary Trees versus Multiary Trees

As we have seen before, copies of subtrees in the binary tigiet mot be copies

of subtrees in the multiary tree, and vice versa. This mdaatshe minimal DAGs

for the binary and multiary tree may differ (in both ways). Weaw want to show

that this property carries over to SLT grammars too: theeecapies of connected
subgraphs that appear in the binary tree but not in the myliiee, and vice versa.
First, consider the tree

A(a(p),b(q), ¢(r), d(a(s), b(t), c(u), d(v), e(w)), e(x)).

In the multiary tree representation, there are no pattefraze at least one, which
appear at least twice in the tree. Hence, the minimal myltrae SLT grammar for
this tree has the same size as this tree. In the binary reyie¢iem, however, we
obtain two copies of the right-child chain of node9, ¢, d, e; hence, the minimal
binary SLT grammar is by four edges smaller than the tree.

Now, consider the tree

a(b(k, (1, d(a(b(m, c(n, (0, e(q))))), €)))).

Clearly, the multiary tree representation of this tree has twcurrences of the
chain of nodes, b, ¢, d, e; hence, the minimal multiary tree SLT grammar is by
four edges smaller than the tree. In the binary representdiowever, there are no
patterns of size at least one, which appear at least twiagcéj¢he minimal binary
SLT grammar for this tree has the same size as the tree itself.

These examples show that, in principle, it is unclear whetitie multiary tree or
binary tree will give rise to better compression by DAGs oif $rammars. Inter-
estingly, our experimental results in the next section stwat, in the DAG case
almost always the unranked DAG is smaller than the binary whée in the SLT

grammar case, BPLEX performs equally well on the multiary laindry represen-
tation.
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Input File Size (MB) Element Count | Max Depth | Average Depth
SwissProt 457,4 10,903,568 6 4.45
DBLP 103.6 2,611,931 5 3.00
Treebank 55.8 2,447,727 37 9.42
1998statistics 0.64 28,306 6 5.99
catalog-01 /02 11/104 | 225,194 /2,240,231 8 5.65
dictionary-01 / 02 11/104 | 277,072 /2,731,764 8 6.91
JST_snp.chrl 36 655,946 8 4.82
JST_gene.chrl 11 216,401 7 5.77
NCBI_snp.chrl / gene 190/24 | 3,642,225/ 360,350 4 4
medline_0378 123 2,790,421 7 4.95
Table 1

Characteristics of XML documents used in experiments.

input file size of tree min. binary min. unranked BPLEX(30000,20,10)

in #edges DAG size mDAG size output size #NTs
SwissProt 10,903,568 | 1,437,445 | 13.2% | 1,100,648 | 10.1% | 311,328 2.9% | 112,822
DBLP 2,611,931 533,183 | 20.4% 222,754 8.5% | 115,902 4.4% 21,724
Treebank 2,447,727 | 1,454,494 | 59.4% | 1,301,688 53.2% | 519,542 21.2% 81,900
1998statistics 28,306 2,403 8.5% 726 2.6% 410 1.4% 169
catalog-01 225,194 6,990 3.1% 8,503 3.8% 3,817 1.7% 1,252
catalog-02 2,240,231 52,392 2.3% 32,267 1.4% 26,774 1.2% 2,385
dictionary-01 277,072 77,554 | 28.0% 46,993 17.0% 20,150 7.3% 4,446
dictionary-02 2,731,764 681,130 | 24.9% 441,322 16.2% | 160,329 5.9% 25,288
JST_snp.chrl 655,946 40,663 6.2% 25,047 2.3% 12,858 1.8% 4,231
JST_gene.chrl 216,401 14,606 6.7% 5,658 2.6% 4,000 1.8% 1,114
NCBI_snp.chrl 3,642,225 809,394 | 22.2% 15 | <0.1% 59 | <0.1% 26
NCBI_gene.chrl 360,350 14,356 4.0% 11,767 3.3% 7,160 2.0% 3,634
medline_0378 2,790,421 629,853 | 22.6% 695,505 | 24.9% | 132,733 4.8% 34,873

Table 2

BPLEX in highest compression mode. All sizes are in number of edges.dWistze =
30000, max. pattern size = 20, max. rank = 10.

5 Experimental Results

We implemented BPLEX in C using gcc and the Expat XML parsibgaliy (see
http://expat.sourceforge.net/). See http://bplex.seiarge.net/ for a preliminary
version of BPLEX. Our experiments were done on a Pentium 3GGB RAM,
running Linux. We tested BPLEX on three different sets of XMbcdments. The
first one contains documents used in [4]: SwissProt (praleia), DBLP (a bib-
liographic database), Treebank (a linguistic databasel) 1898statistics (baseball
statistics). The second set contains XML documents gestibgt XBench [34], and
the third contains documents from the Japanese Single dligdePolymorphism
database (see http://snp.ims.u-tokyo.ac.jp).
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input file multiary tree BPLEX(500,10,10) binary tree BPLEX(500,10,10)
output size #NTs output size #NTs
SwissProt 686,399 6.3% | 15,153 (10,291) | 330,595 3.0% | 108,724 (103,551)
DBLP 218,638 8.4% 2,452 (2,048) | 128,231 4.9% 16,270 (9,922)
Treebank 594,208 24.0% | 34,119 (27,443) | 593,770 24.0% 69,672 (62,484)
1998statistics 724 2.6% 45 (44) 418 1.5% 160 (86)
catalog-01 3,259 1.4% 590 (534) 3,894 1.7% 1,201 (1,040)
catalog-02 25,832 1.2% 876 (817) 27,725 1.2% 2,049 (1,606)
dictionary-01 37,506 | 14.0% 1,485 (498) | 23,498 8.5% 3,154 (2,597)
dictionary-02 337,456 12.0% 6,962 (2,784) | 188,088 6.9% 20,857 (19,211)
JST_snp.chrl 11,225 1.7% 353 (309) 12,876 1.8% 3,607 (2,732)
JST_gene.chrl 4,962 2.3% 135 (130) 4,374 1.8% 933 (559)
NCBI_snp.chrl 14 | <0.1% 11 (11) 1,606 | <0.1% 19 (10)
NCBI_gene.chrl 360,349 1.4% 606 (553) 7,390 2.1% 3,517 (3,284)
medline_0378 223,861 7.8% 8,411 (4,019) | 143,792 5.0% 32,234 (29,461)

Table 3
Binary versus ranked BPLEX. Window size = 500, max. pattern size ma8, rank = 10.
Number of nonterminals in brackets are for minimal DAG grammars.

Table 2 shows for each document the size of its tree stru@turaiumber of edges)
together with the sizes in three different representatidine minimal unranked
DAG (with multiplicities) is in most of the cases smaller thidne minimal binary
DAG. The smallest sizes are generated by BPLEX, ranging lezt@Wel % and 21%
of the size of the original tree structure; as input for BPLEX used the minimal
binary DAG, represented as an SLT grammar. As input paramée BPLEX
we used: window siz80000, maximal pattern siz0, maximal rankl0. The last
column shows the number of nonterminals (#NTs) of the BPLEXsot.

The only examples where the binary DAG is smaller than the @R#e catalog-01
and a file of the medical bibliographies medline. As can ba SBELEX performs
surprisingly well on medline. Note that for the file NCBhp.chrl, the small size
of the minimal mDAG (15 edges) is due to a multiplicity counta long list of
siblings all labeled by the same nonterminal is represeinygdst one edge (plus
a counter). In the binary minimal DAG we do not have multipies, and hence
its size is much larger (809,394 edges); interestingly, BRisable to reduce this
size to only59 edges (and, if the window size is increaseddp000 then we obtain
only 48 edges). This is because a long list is broken down exporigriiyaBPLEX
— viz copy productions or the form;(y;) — Ai+1(Ai+1(v1)), as outlined in the
example of the person list in the previous section. With allsmadow size of500,
BPLEX introduces fewer copy productions and hence compdessly to 1, 606
edges.

We also implemented a version of BPLEX that runs on the myltisze model

of an XML document, instead of the binary tree model. Theltesare shown in

Table 3; note that the numbers were obtained with lower parars than those of
Table 2: window size= 500, maximal rank= 10, and maximal pattern size 10.
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The table also shows in the last column the number of nontedsiin the gram-
mars generated by BPLEX, and, in brackets, the number of momtals of the
corresponding minimal DAG grammars. As can be seen, theasthicompression
ratios are similar to those of BPLEX running on binary treegnbst cases, running
on the binary tree gives slightly better compression; notedver that in the multi-
ary tree model we obtain grammars with far fewer nonterrsitizn in the binary
tree model. One of the reasons for this is the use of mulii@gin the minimal
mMDAG; we run multiary tree BPLEX on the mDAG, i.e., we take attege of the
multiplicity counters. This can be seen on NC&ip.chrl: it has an mDAG with 15
edges which is transformed by BPLEX to an SLT grammar with lgesdThese
experiments suggest that, in practice, tree compressi@PhyEX is not sensitive
to un-/rankedness of the input, i.e., whether we work in ihaty or multiary tree
model.

Performance and Parameter Tuning

Recall from Fig. 3 the three parameters of BPLEX: the window $iz;, the max-
imal rank K of a pattern, and the maximal siz&; of a pattern. Our experiments
show that the algorithm performs well with small valuesiof and K5 and that
values abové and10 respectively do not increase compression much. For ingtanc
with K = 3 (and Ky = 30000, Kr = 10) we obtain for Treebank a compression
ratio of 22.0%, as compared to tBé.2% obtained withKs = 20; similarly, for
dictionary-02 we obtai.0% compression ratio fok's = 3, compared witt.9%

for Ks = 20. The same happens féf: taking it equal t® gives22% and6% for
Treebank and dictionary-02, respectively.

The main factor for good compression is the window size. BPlagKieves best
compression with a window size of 100; values above(, 000 do not change
compression much in our examples. For instancekfix= 10 and K5 = 20; then
on medline we get fory = 10, 100, 1000 the compression ratios4%, 5.2%,
and 4.9%, respectively; Similarly, for Treebank we obtain%, 26%, and24%,
respectively, and for dictionary-02 we obtai®%, 7.4%, and6.7%, respectively.
Our current implementation runs slowly on large window sjzequiring several
hours to obtain all the results shown in Tab. 2. For instano@ing on medline with
Ky = 10,100, 1000 takesl0, 41, and116 seconds, respectively; similarly, running
on Treebank takes45, 2094, and3165 seconds, respectively. This is mainly due
to the non-optimized way in which matches of patterns aredoand recorded,
which results in a large constant hidden in thén)-expression for the running
time of BPLEX. Interestingly, even with a small window size, [HEX already
compresses considerably better than binary DAGs and uadambAGs. If we use
Ky = Kr = Kg = 3 then each of our examples compresses in less than one
minute; compression rates are SwissProt 4.1%, Treebank 8déodictionary-01
12%. It remains to test the impact of our compression witlpeesto the total
memory consumption for an XML document in main memory.
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6 Algorithms on SLT Grammars

SLT grammars are well suited to efficiently represent XML wlments. Consider
now a grammar in memory which represents a large XML docuniémw can we
process the XML tree, without decompressing the grammay?éad access like,
e.g., reading the label of the root node, or moving along @& dbm one node to
another, can be realized on the grammar representatiorawistiditional per-step
overhead of at most the sizeof the grammar [23]. Additionally, a stack of height at
mosth must be maintained at all times. Thus, the price to be paibddeing a small
representation that can be accessed without decompressaosiow down for each
read operation. For some special applications, however pibssible to eliminate
the slow-down, or to even achieve speed ups. In this sect®mwestigate such
applications.

XML Type Validation

XML type validation means to check whether a given XML docuiris valid with
respect to an XML type. Popular formalism for XML types (viauyin their expres-
siveness) are DTD, XML Schema, or RELAX NG. Here we want to klveleether
the tree structure of an XML document, represented by an 8eefgrammag, is
valid with respect to an XML type. Essentially this can beeontime linear in the
size of the grammag, if both the maximal number of parametédref G and the
XML type definition are fixed. In particular, the numbeappears as an exponent
in the constant of the algorithm (see Proposition 2). In BPLEX6 controlled by
the input parametek ;. Practical experiments show that small values maller
than5) already achieve very competitive compression ratiosaat, fwe observed
that for all the files shown in Tab. 2 takingr bigger thanl0 does not improve
compression anymore. It can therefore be assumed ikatery small with respect
to the size of.

All XML type formalisms mentioned above can convenientlyrbedeled by reg-
ular tree languages [27], a classical concept from fornmajuage theory [18]. We
therefore consider the problem of checking whether, forlacf3ree grammar,
L(G) is included in a regular tree language Assume thatR is given by a de-
terministic bottom-up tree automatds (formally defined below). Our inclusion
check is similar to constructing the (context-free) inéetgon grammar-~ of a
context-free tree gramma{ with R: the productions of{ are obtained by run-
ning the automato® on the right-hand sides di’s productions. For simplicity,
consider first the string case, i.€, is a context-free grammar anfél is a DFA:
HA's nonterminals are triples of the forfg, A, p] denoting thatB moves from
stateq to statep on some string generated By's nonterminalA. If A — XY
is a production ofH then for every state the grammarH has the production
lq, A, p| — [q, X, r][r,Y,p]. This well-known triple-construction [2] can be gen-
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eralized to context-free tree grammars by consideringearamnbals of the form
[(q1,92,---,qx), A, p] where A is a nonterminal of rank and ¢y, ..., q,p are
states of the tree automataéh (see Theorem 3.2.8 of [12] where a similar triple-
construction is presented for inside-out (I0) macro gramsfrthat construction can
easily be generalized to trees, thus showing that 10 coffitegttree languages are
closed under intersection with regular tree languages).

We now come back to the case of validating an SL cf tree grantm&inceG
generates only one tree we do not construct an intersectamrgar, but a single
run of (an appropriate extension of) the automaoim order to determine whether
L(G) = {t} C L.

Formally, a deterministic bottom-up finite-state tree audton is a tupleB =
(Q,%, {05 }sex, F) where( is a finite set of states; is a ranked alphabet,,
QF — Qforo € ¥ of rankk, andF C (Q is a set of final states. For a tree
t € Tx(Yx) and a mappin® : Y, — @ which assigns to each parameter a state,
we define the stat®t, ©) €  inductively as follows: I = y; for somel < i < k,
thend(t,©) = O(y;). Now assume that= o(ty,...,t,) for someos € ¥ of rankn
and trees, ..., t, € Tx(Yyx). Then,i(t,0) = 0,(0(t1,0),...,d(t1,0)). In case

t € T, (i.e.,t does not contain parameters), ¥&t) = §(¢,0), where® is the
empty mapping. The language acceptedibis L(B) = {s € Tx | §(s) € F}.
The size| B| of B is the size of the transition functioh In [22] it was shown that
our validation problem is PSPACE-complete, and that theofalg proposition
holds. For completeness, we present a proof.

Proposition 2 (cf. Theorem 1 of [22]) Given an SL cf tree gramndaand a deter-
ministic bottom-up tree automatdit can be checked whethé(G) N L(B) = &
in worst case timé& (m* x |B| x size(G)), wherem is the number of states &f
andk is the maximal number of parameters of nonterminal§ of

PROOF. The proof of this proposition is straightforward: lét = (N, X, rhs)
with N = {4,,...,A,} andL(G) = {t}. Let B = (Q, ¥, 6, F) be a deterministic
bottom-up tree automaton. We now run the tree automatamn the right-hand
sides of the productions @f. We do this bottom-up, starting with the right-hand
siderhs(A,,). More formally, we compute for every mappi&y: Y, — @ (where

k is the rank ofA,) the stated(rhs(A,), ©). In this way, we obtain a mapping
Sa, 1 QF — Q with 54, (q1,...,q,) = 0(rhs(4,), ©), where® is the mapping
with ©(y;) = ¢; forall 1 < i < k. We add the mapping,, to the transition
mappings, (o € X) of the automatorBB. Extended in this way, we can now run
B on the right-hand sidehs(A,,_;) and compute the mappirdg, _,. Note that the
nonterminal4,, may occur inchs(A,,_; ), hence we need the transition mapping
when runningB onrhs(A,,_1). We continue in this way and compute all mappings
d4, for 1 < i < n. Note that for each nonterminal; of rank k, |Q[* = m”
many values ob 4, are computed and that the computation of each value takes tim
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O(size(rhs(A;)) x | B|). Hence, in total at mogb (m” x | B| x size(G)) computation
steps are needed. This number can be greatly decreasedrgytgpidownin a
“lazy” manner throught, starting withrhs(A; ). Note though, that the price for the
improvement is the necessity to maintain recursive callsisicler the run of3 on
rhs(A;). If B arrives at a nonterminad; (: > 1) of rankk, in statesq, . . ., ¢,
then we issue a recursive call to compudte(q, ..., q). Such a call means to
substitutey; for y;, 1 < j < k, in rhs(A;) and then to rurB on the resulting tree.
During the run further recursive calls may be generatedvifiaed 4, (¢1, . . ., qx) IS
determined, then it is stored in a table in order to avoidatomputation. The total
number ofd 4,-values that are actually computed in this way may be muchlema
than the worst case boundaf. O

Note that in order to use Proposition 2 in the context of XMpdy, the corre-
sponding type definition has to first be transformed into #efaeinistic bottom-up
finite) tree automaton. If the type is given as DTD or as XML &ula, then the
transformation into a deterministic tree automaton can dreedn time linear in
the size of the representation. However, the details aree roonvoluted: in the
case of DTD, dast-child, previoussibling binary tree encoding should be used
to guaranteed that the resulting automaton is of linear. #\nel in the case of
XML Schemas, a deterministtop-downtree automaton should be used (note that
a result similar to Proposition 2 holds for top-down treeoansdita; see [22]). For
RELAX NG (which employs full regular tree languages and ndedginism) it
cannot be avoided that the size of the corresponding detesticitree automaton
(no matter if top-down or bottom-up) is sometimes exporatt the size of the
RELAX NG type definition. This is not a serious issue thoughewhsing BPLEX
(which outputs linear grammars): fbnear SL cf tree grammars (SLT grammars)
Proposition 2 can be extended to the case that the autondaitenondeterminis-
tic: the 54, are now functions fron®* to 2%, wherek is the rank ofA;; they are
computed by checking for all statesp;, ..., pr of B whether there is a run on
rhs(A,)[y1 < p1,...,yr < pi arriving in p. It follows that the problem can be
solved in timeO(m**! x | B| x size(G)), see [22] for a detailed proof and a dis-
cussion explaining the importance of the linearity of theunSL cf tree grammar.

Equality Test

Consider two SL cf tree grammats andGs. Is it possible to test whether botky

and G, generate the same treewithout fully uncompressing the grammars, i.e.,
without deriving the tre¢? More precisely, we are interested in the time complexity
of testing equivalence af; andG..

In the string case, i.e., if7; andG, are SL cf string grammars, then the problem
can be solved in polynomial time with respect to the sum ofsizes ofG; and
G5 [29]. The proof relies on the fact that, for an SL cf stringmgraarG (in Chom-
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sky normal form) of sizex, the length of the string derivable from a nonterminal of
G is < 2", and therefore can be storedrirbits. Since basic operations (compar-
ing, addition, subtraction, multiplication, etc.) on suhmbers work in polynomial
time with respect ta, we can compute in polynomial time the length of the word
generated by any nonterminal 6f. Since in the tree case this property does
hold anymore (because the size of the tree generated by aht&le grammar of
sizen can be2?") it looks unlikely that the equivalence problem can alsodieesl

by an algorithm running in polynomial time. In fact, we do kabw whether such
an algorithm exists. The following theorem shows that trebfam can be solved
using polynomial space, and hence in exponential time. @rother hand, if the
grammars; and G, are linear, then they can be transformed into SL cf string
grammars generating a depth-first left-to-right travec§dahe corresponding tree;
then, the result of [29] can be used to show that in this cadmtpequivalence can
be done in polynomial time.

Theorem 3 Testing equivalence of two SL cf tree grammé&fsand G can be
done in polynomial space, and in polynomial timé&'ifand GG, are linear.

Before we prove Theorem 3, we first have to introduce some tlefisiconcerning
derivations of SL tree grammars. Lét = ({A,,..., A, }, ¥, rhs) be an SL tree
grammar. The gramma¥ generates precisely one treé.e., L(G) = {t}. Given a
nodeu € N* of ¢, how can we obtain fron¥ the label[u]?

As shown in [23]t[u] can be obtained using only spa@ésize(G)) as follows. A
pointed productions a pair(i, p) wherel < i < n andp is a node inchs(A;). A
stack configurations a non-empty sequenee = (i1, p1) -+ * (4m, pm), m > 1, of
pointed productions such that= 1 and for everyl < v <n — 1, rhs(A;, )[p.] =
A;, ... The stack configuratiom pointsto the nodep,, of the treerhs(4;,), and the
labelof w, denoted labw), is defined as the labehs(A;,)[p,] € ¥ (and undefined
if it is not in ¥). The idea of determining the lab#k] is to build up a stack con-
figuration by scanning the sequenc&om left to right. This sequence will finally
point to aX-labeled node and the label of this node|ig.

As an example for the above definitions, consider the SL traengarH with
productions

A — Ay(As(e))
As(y1) — Asz(Asz(y1))

As(y1) — (v, ).

Then,w; = (1,¢) points to theA,-labeled root node afl;’s right-hand side, while
wy = (1,€)(2,¢)(3,1) points to the left occurrence of the paramegerin As’s
right-hand side. The stack configuration = (1,¢)(2,¢)(3,¢) points to thec-
labeled node ofis’s right-hand side; thus, the label of; is c: lab(ws) = c.

We now define two operations on stack configurations: ddwre N) and Expand.
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For a stack configuratiom = w’(i, p), down,(w) is defined as’' (i, pv) if pvis a
node inrhs(A4;), and is undefined otherwise. Thus, dewn) is a stack configura-
tion, which points to the-th child of the node to which the stack configuration
points. The idea of the Expand-operation is to expand a stakguration, until
it points to a>-labeled node. Formally, the stack configuration Exgandwhere
w = w'(i, p), is defined as

(i) wif rhs(A;)[p] € %,

(i) Expanddown,(w")) if rhs(A;)[p] = v., and
(iii) Expandiw’(i, p)(j, )) if ths(A;)[p] = A;.
Thus, if w already points to &-labeled node then Expand just retuinssee (i).
In case (ii), wherew points to a parametey,, w’ cannot be the empty sequence,
because then we would have= 1. But since the rank of the initial non-terminal
A, is zero, rh§A;) does not contain the parametgt Henceu' is a stack config-
uration, which points to anl;-labeled node, where the rank 4f is at leastv (so
that thev-th parametey, can appearinrhisl;)). Hence, down(w’) is defined. The
Expand-operation now removes the pointed produdtiom) from w (which points
to a leaf of rh§A;) labeled with the parameter,) and directly moves to the-th
child of the A;-labeled node to which’ points (by applying downto w’). Finally,
if w points to anA;-labeled node (case (iii)) then the Expand-operation fusisa
the pointed productiofy, ¢) to w (so that the resulting stack configuration points
to the root of rh§A;)) and continues expansion.

In our example,

Expandw,) = Expand(1,¢)) = (1,¢)(2,¢)(3,¢) = w;
downy (w;3) = down ((1,¢)(2,¢)(3,¢)) = (1,¢)(2,¢)(3,1) = wy
and
Expandw,) = Expanddown;((1,¢)(2,¢)))
= Expand(1,¢)(2, 1))
= Expand(1,¢)(2,1)(3,¢))
= (1,e)(2,1)(3,¢).
Using these definitions we can now determine the labeldfas lalFind(G, u))
where Find is recursively defined, for an SLT gramrtqra sequence of integers
v, and an integer as follows:
Find(G,e) = Expand(1,¢))
Find(G, vi) = Expanddown;(Find(G, v))).

Note that in the definition of Find, the mapping dows only applied to a stack
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configuration which points to a terminal-labeled node. liudd be clear that the
stack configuration Find+, «) points to a node with labefu]. Additionally, no
stack configuration in the computation ever consists of nttwaan pairs, because
the first components of pointed productions in a stack cordigan are pairwise
different.

In the example

Find(H, 1) = Expanddown, (Find(H,¢)))
= Expanddown, (Expand(1,¢))))
= Expanddown, (ws))
= Expandws) = (1,¢)(2,1)(3,¢).

This means that[1] = ¢, because lalfFind(H, 1)) = rhs(As)[e] = c.

PROOF OF THEOREM 3. LetG; = ({Ay, ..., Ay}, X, rhsy) andGy = ({ By,
.., By, }, 3, rhsy). By Savitch’s Theorem (see, e.g., [28]) and the complement cl
sure of PSPACE, it suffices to give a nondeterministic polylabspace algorithm
that testanequivalence. Roughly speaking, the algorithm guessesspmneling
paths in the trees, andt,, generated byr; and G, respectively. The key issue
is that any node: € N* of ¢; can be (non-uniquely) represented in polynomial
space with respect to the size@f. In fact, the node: in ¢; can be represented by
the stack configuration Firid;, ). Recall that the length of Firidr;, ») is at most
n;. Of course, the node is in generalnot uniquely represented by Fit@;, u);
in particular, corresponding nodes generated by pararoefsfing have the same
Find-representation (as an example: consider the grandimaith productions
A; — Ay(e) andAy(y1) — c(y1,v1); then FindG, 1) = (1, 1) equals FindG, 2),
and points to the-node). The algorithm starts with the two sequences (k)
and FindG,, ), representing the root nodestefandt,, respectively. If their labels
are different we accept. Otherwise, we guess a child nuirdoedt move down to the
i-th child (by applying dowpand Expand), resulting in Fid', i) and FindGs, 7).
If the corresponding labels are different we accept, etihidfe is no child number
(we are at a leaf) we reject. Sin¢g andG, move synchronized through, we do
not need to store € N*; in fact,u’s length might be exponential in the sizes(of
A pseudo code of this procedure is shown in Fig. 7. It shouldlear that there is
a run returningrue if and only if there is a node with ¢, [u] # t5[u].

Now let G; and G, be linear. This means that for any nontermiaabf G, or
G, of rank k, the treeA(y,, . .., yx) derives to a tree over X U Y}, in which y;
occurs at most oncd, < j < k. It is straightforward to change the grammars
in such a way that (1) every,; occurs exactly once inand (2) the order of the
parameters it (going depth-first left-to-right) i3/, ..., y,. The idea is now to
construct cf string grammars,, H, which generate depth-first left-to-right traver-
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procedure INEQUIVALENT(G, G5 grammar): bool
begin
s1 = Find(Gy, ¢)
S := Find(Ga, ¢)
while true do
if lab(sy) # lab(s,) then return true
else
fi=lab(s;)
if rank(f) = 0 then return false
guess an integerc {1,...,rank(f)}
sy := Expanddown(s;))
s9 := Expanddown;(sz))
fi
od
end INEQUIVALENT

Fig. 7. Checking inequivalence of two SL cf tree gramn@{sandGs.

sals oft; andt,, respectively. Let € {1,2}. For every nonterminall of GG; of
rankk > 0 let A1, A1, ..., Ar—1%, Aro be new nonterminals aff;, and for ev-
eryo € Y ofrankk > Oletogq,019,...,06-1k,0ko DE NEW terminals ofd;.
Nonterminals and terminals of rank zero are taken ovéf tolhe right-hand side

of the nonterminald, ; is the traversal starting at the root of the right-hand side
of A (indicated by the index) up to the first parametey, in the right-hand side

of A (indicated by the paramete}. The right-hand side ofi, , ., is the traversal
starting at the parametgy, in the right-hand side ofi up to the parametey, . ;.
Similarly, a terminal symbo{, ,.;; means thay was entered coming from itsth
child and was exited by moving to it$ + 1)-th child. It should be clear how to
construct the productions &f;. As an example, consider the tree grammar produc-
tion A(y1,v2.y3) — B(g9(v1,a,b), h(B(y2,ys3))) and the nonterminal, , of the
constructed string grammar; its productiomis, — g12a 9230930 B12ho1 Bo 1.
Clearly,t; = t, if and only if the stringw; generated by{; equals the stringy,
generated by{,. Moreover,H, and H, are SL cf string grammars of polynomial
size with respect t6/; andG,, respectively. By the result of [29], testing = w»

can be done in polynomial time with respect to the size§pandH,. O

7 Related Work

Grammar-based tree compression was independently peesieni33]. However,

their algorithm seems less effective than BPLEX, and in paldr it generates
grammars with a very large number of parameters (typicalersal thousands).
This means that our algorithms of Section 6 are not likelygapplicable to the
grammars they produce, because they sensibly depend ourtiieenof parameters
in a grammatr.
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There are succinct pointer-less representations of tsees[19,16,11]. In this way,
ann-node tree can be representedy+ o(n) bits, while allowingO(1) time for
most read operations on a tree [16]. In the context of XMLnpatless tree rep-
resentations can, e.g., be found in XPRESS [26]: label patha XML document
are encoded by real number intervals following an arithoticoding; this allows
to run path queries directly on the compressed instance. mkthod is typically
applied directly to XML documents on the file system. While XFF&8has smaller
guery evaluation times than other systems working on cosseie XML files (like,
e.g., XGrind [32]), it is unclear how well it compares to atlapproaches (like
ours) when documents are loaded into memory. In [13] a satcapresentation
for SLT grammars is introduced; using this representattas, for instance, possi-
ble to represent our SLT grammars for DBLP and medline, usitg 288KB and
358KB, respectively.

It is also possible to use strings to represent XML trees imorg [35]; their ex-
periments show that this offers good compression, whilebsting able to query
efficiently the representation. XQueC uses a queriable Xbfiresentation that is
based on compression of data values [1]. An advanced impl&ti@n which ba-
sically uses DAG sharing together with compression of dalaes is presented
in [9]; their results are convincing, which strengthens bleéief in our approach,
because replacing DAG sharing by SLT grammars should imaegli improve
their system.

Consider now the problem of finding the smallest cf string greanfor a given
string. This problem is NP-complete and various approxiomaalgorithms have
been studied [5]. In particular, the size of the smallestrafgnar is lower bounded
by the size of the smallest LZ77 representation of the sifviten the size of the
sliding window is unbounded) [5,31]. The question arisegtivbr a similar result
holds in the tree case. But for trees it is unclear how an efffidi&77 representa-
tion would look like. The problem is how to specify tree preBxhat have appeared
before [8]. In the string case, the LZ77 representation taiobd by performing a
left-to-right scan of the input string; at each moment, tineg starting at the cur-
rent position is matched against all prefix strings, andahgést match is selected.
For example, the stringbbbaabbabbb is compressed by LZ77 int@bball, 3][1, 4],
where a paifi, j] represents the substring starting at positiaf length . In or-
der to bound the time needed for matching, many implememsiof LZ77 use a
sliding window of fixed size instead of the complete prefixthe tree case there
is no accepted version of LZ77. The problem is thsthould be replaced by a path
p, andj should be replaced by an unlabeled ttegith parameters at leaves (or,
alternatively, by a list of paths to parameters) [8], butrspairs|p, t] require too
much space in order to obtain good compression.

In [31] a technique to decrease the size of an SL cf grammaeisepted; the idea

is to change the grammar in such a way that its derivatiors toeeome balanced
trees, in the sense of AVL trees. This technique gives goadpcession ratios,
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when applied to an SL cf grammar obtained from the minimal LE&presentation
of the string. Even though there is no obvious way to extend trees, it might
be possible to apply the technique of [31] to SL cf tree gransmfanother variation

of Lempel-Ziv compression, known as LZ78, can more readdgxtended to trees.
For LZ78 on strings, new patterns are composed by addingea tetalready exist-
ing patterns. A pattern is specified as a gair.) wherei is the index of a previous
pattern and: is a letter; the casé = 0 represents the one-letter patternn this
scheme the stringbbbaabbabbb is compressed t, a)(0,b)(2,b)(1,a)(3,a)(3,b).
Thus, the paif2, b) is the concatenatiobb of b (the second pattern) amgdand sim-
ilarly (3, a) representsba. The LZ78 encoding has a natural interpretation as an SL
cf string grammar (see e.g. [5]). LZ78 can be extended t tbgeusing a dictio-
nary of tree patterns where, during a top-down scan of thetitipe, new patterns
are obtained from existing ones by appending subpatterparameter positions;
in the simplest case, only a one-node subpattern is appeBSdet a technique is
presented in [6]; other variations, each using a differeethod for extending the
patterns, are presented in [7]. In [6] no experimental tesrke provided. In [7] the
proposed algorithms are applied to term compression, alodst performance is a
size reduction to abou0% of the original. It remains to be investigated how these
techniques perform on XML documents.

In [14] it was shown that evaluation of Core XPath queries orG3As PSPACE
complete. Recently we have shown that this result can be dateto linear SL
cf tree grammars [22]; this means that, while achievingdoetbmpression than
DAGs by using BPLEX, the complexity of evaluating a Core XPdith remains
the same for outputs of BPLEX as it is for DAGs.

8 Conclusions and Future Work

A linear time algorithm was presented that transforms amgivee into a small
SLT grammar. The algorithm can be used to “compress” thedterture of an
XML document into a highly efficient, pointer-based memagpnesentation. The
representation preserves the basic tree operations anblecaocessed via DOM
(using an appropriate proxy). On average, the size of a cesspd instance is one
half of the size of the minimal unique DAG of the tree, whichumnn is about 1/10
of the size of the original tree [4]. For some computatiorrabems on trees, we
presented efficient algorithms that directly work on SLTrgnaars; in particular we
considered (1) validation against XML types given by detaistic bottom-up tree
automata and (2) testing equality of documents. In [22] wesmered Core XPath
evaluation. It remains to implement these ideas and testvineiwthey behave on
practical queries. To further increase memory efficienay,representation could
be combined with a compression of data values (e.g., sitaildre one of [1]). Itis
also possible to directly keep results of queries in conga@$ormat; this idea has
been considered for DAG compression and a fragment of XQ3$ryt also has
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been considered for compression by SLT grammars and magrdransducers as
qguery formalism [23]. Itis not difficult to change BPLEX to ®krbitrary SL cf tree
grammars as input; in this way it might be possible to achfaxther compression
by running BPLEX on its own output.

Several recent programming languages allow to process Xétuwehents via pat-
tern matching constructs. Such constructs are compiledantomata which carry
out the matching in the document. It seems straightforwarektend this compi-
lation to automata which directly work on SLT grammars. lis thay an efficient
XML query evaluator is obtained because XQueries and XSkahshbe translated
to pattern matching statements. In this context, othenapétions might become
important (e.g. lazy sequences [15]).

We would like to test how our technique can be used for XML fienpression.
We hope that the performance of existing compressors, |idlXcan be further
improved by using BPLEX for the compression of tree structure
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