
Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Discrete Logarithm Problem and
the Pollard-ρ Algorithm

Nils Reimers

07. October 2011

Slide 1 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Structure

1. Discrete Logarithm

2. Elliptic Curves

3. Elliptic Curve Cryptography

4. Pollard-ρ Algorithm

5. Runtime Analysis

6. Conclusion

Slide 2 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Discrete Logarithm

I Be G a finite, cyclic group with operation ⊗.

I Define k ∈ Z: gk := g ⊗ ...⊗ g︸ ︷︷ ︸
k−times

.

Discrete Logarithm Problem
Be G a finite, cyclic group. Be g ∈ G and be h ∈ 〈g〉 =
{gk |k ∈ Z}. Find k such that:

h = gk .

Slide 3 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Discrete Logarithm

I Be G a finite, cyclic group with operation ⊗.

I Define k ∈ Z: gk := g ⊗ ...⊗ g︸ ︷︷ ︸
k−times

.

Discrete Logarithm Problem
Be G a finite, cyclic group. Be g ∈ G and be h ∈ 〈g〉 =
{gk |k ∈ Z}. Find k such that:

h = gk .

Slide 3 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Discrete Logarithm Problem

I Hardness of the problem (find k such that h = gk) depends
on the group

Example
Be G = (Fp,+) the additive group of the finite field Fp.
Then gk ≡

Def
k · g (mod p).

Be k · g ≡ h (mod p), then k ≡ g−1h (mod p).

g−1 kann efficiently be determined by the extended euclidean
algorithm.

Slide 4 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Discrete Logarithm Problem F∗p
I Be G the multiplicative group F∗p.

I It is hard to find x such that: g x ≡ h (mod p).

I Security of the Diffie-Hellman key exchange is based on the
hardness of this problem.

Slide 5 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Discrete Logarithm Problem

I Every discrete logarithm problem can be solved in at max
O(
√

n) time, n is the order of the group.

I Problem: The discrete logarithm problem for F∗p can be
solved in subexponential time.

Slide 6 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Discrete Logarithm Problem

I Every discrete logarithm problem can be solved in at max
O(
√

n) time, n is the order of the group.
I Problem: The discrete logarithm problem for F∗p can be

solved in subexponential time.

Slide 6 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Motivation

I Cryptography based on elliptic curves offer high security while
using smaller key sizes compared to RSA.

I Security of the digital functions of the German machine
readable passport and identify card are based on elliptic
curves.

⇒ Elliptic curves are an interesting and active research area.

Slide 7 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Motivation

I Cryptography based on elliptic curves offer high security while
using smaller key sizes compared to RSA.

I Security of the digital functions of the German machine
readable passport and identify card are based on elliptic
curves.

⇒ Elliptic curves are an interesting and active research area.

Slide 7 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve

Be K a field and char(K) 6= 2, 3. For a, b ∈ K and 4a3 + 27b2 6= 0
define the following set as an elliptic curve over K:

E (K) := {O} ∪ {(x , y) ∈ K×K | y2 = x3 + ax + b}

Slide 8 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 1. Case

Slide 9 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 1. Case

Slide 10 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 1. Case

P1 + P2 = P3

Slide 11 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 2. Case

P1 + P1 = 2P1 = P2

Slide 12 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 2. Case

P1 + P1 = 2P1 = P2

Slide 13 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 2. Case

P1 + P1 = 2P1 = P2

Slide 14 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 3. Case

P1 + P2 = P1 + (−P1) = O

Slide 15 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves - 4. Case

2P1 = 2(x1, 0) = O

Slide 16 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Addition on elliptic curves

Be E (K) an elliptic curve of the form y2 = x3 + ax + b. Be
P1 = (x1, y1),P2 = (x2, y2) and P1,P2 6= O. Define
P1 + P2 = P3 = (x3, y3) as:

1. If x1 6= x2:

x3 = m2−x1−x2, y3 = m(x1−x3)−y1, where m = (y2−y1)(x2−x1)−1

2. If P1 = P2 and y1 6= 0:

x3 = m2−2x1, y3 = m(x1−x3)−y1, where m = (3x2
1 +a)(2y1)−1

3. If x1 = x2, but y1 6= y2:

P1 + P2 = O

4. If P1 = P2 and y1 = 0:

P1 + P2 = O

Slide 17 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Group Law

The set E (K) with the defined addition forms an abelian group
with O as neutral element.

Scalarmuliplication:

kP := P + P + ...+ P︸ ︷︷ ︸
k−times

Slide 18 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Group Law

The set E (K) with the defined addition forms an abelian group
with O as neutral element.

Scalarmuliplication:

kP := P + P + ...+ P︸ ︷︷ ︸
k−times

Slide 18 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curves over Fp

y2 = x3 − x2 + 1 over F31

Slide 19 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Diffie-Hellman

Alice and Bob want to exchange a session key.

1. Alice and Bob agreed on a secure, elliptic curve E (Fp) and on
a point G ∈ E (Fp) with ord(G ) ≈ ord(E (Fp)) and ord(G )
prime.

2. Alice randomly chooses a, computes Ga = aG and sends the
result to Bob.

3. Bob randomly chooses b, computes Gb = bG and sends the
result to Alice.

4. Alice and Bob compute Gab = aGb = bGa = abG .

5. Alice and Bob extract a session key from Gab.

Slide 20 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Diffie-Hellman

Alice and Bob want to exchange a session key.

1. Alice and Bob agreed on a secure, elliptic curve E (Fp) and on
a point G ∈ E (Fp) with ord(G ) ≈ ord(E (Fp)) and ord(G )
prime.

2. Alice randomly chooses a, computes Ga = aG and sends the
result to Bob.

3. Bob randomly chooses b, computes Gb = bG and sends the
result to Alice.

4. Alice and Bob compute Gab = aGb = bGa = abG .

5. Alice and Bob extract a session key from Gab.

Slide 20 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Diffie-Hellman

Alice and Bob want to exchange a session key.

1. Alice and Bob agreed on a secure, elliptic curve E (Fp) and on
a point G ∈ E (Fp) with ord(G ) ≈ ord(E (Fp)) and ord(G )
prime.

2. Alice randomly chooses a, computes Ga = aG and sends the
result to Bob.

3. Bob randomly chooses b, computes Gb = bG and sends the
result to Alice.

4. Alice and Bob compute Gab = aGb = bGa = abG .

5. Alice and Bob extract a session key from Gab.

Slide 20 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Diffie-Hellman

Alice and Bob want to exchange a session key.

1. Alice and Bob agreed on a secure, elliptic curve E (Fp) and on
a point G ∈ E (Fp) with ord(G ) ≈ ord(E (Fp)) and ord(G )
prime.

2. Alice randomly chooses a, computes Ga = aG and sends the
result to Bob.

3. Bob randomly chooses b, computes Gb = bG and sends the
result to Alice.

4. Alice and Bob compute Gab = aGb = bGa = abG .

5. Alice and Bob extract a session key from Gab.

Slide 20 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Diffie-Hellman - Attacker

I An attacker knows E (Fp), G , Ga = aG and Gb = bG and
wants to compute Gab = abG .

I In the chase he can compute a or b, he would be able to
extract the session key.

Slide 21 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Be E (F) an elliptic curve, P ∈ E (F) and be Q ∈ 〈P〉 =
{kP|k ∈ Z}. Find k such that:

Q = kP.

I Computation of kP is simple, when k is given.

I To find k such that Q = kP is hard.

Slide 22 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Be E (F) an elliptic curve, P ∈ E (F) and be Q ∈ 〈P〉 =
{kP|k ∈ Z}. Find k such that:

Q = kP.

I Computation of kP is simple, when k is given.

I To find k such that Q = kP is hard.

Slide 22 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Be E (F) an elliptic curve, P ∈ E (F) and be Q ∈ 〈P〉 =
{kP|k ∈ Z}. Find k such that:

Q = kP.

I Computation of kP is simple, when k is given.

I To find k such that Q = kP is hard.

Slide 22 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Pollard’s ρ-Algorithm

Given P and Q = kP. Find distinct pairs (c, d), (c ′, d ′) such that:

cP + dQ = c ′P + d ′Q

⇒ (c − c ′)P = (d ′ − d)Q = (d ′ − d)kP

⇒ (c − c ′) ≡ (d ′ − d)k (mod n)

⇒ k ≡ (c − c ′)(d ′ − d)−1 (mod n)

Slide 23 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Pollard’s ρ-Algorithm

Given P and Q = kP. Find distinct pairs (c, d), (c ′, d ′) such that:

cP + dQ = c ′P + d ′Q

⇒ (c − c ′)P = (d ′ − d)Q = (d ′ − d)kP

⇒ (c − c ′) ≡ (d ′ − d)k (mod n)

⇒ k ≡ (c − c ′)(d ′ − d)−1 (mod n)

Slide 23 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Pollard’s Iteration Functions

Be h : E (F)→ {0, 1, 2} a hash function.

Ri+1 = f (Ri ) =


Ri + P, if h(Ri ) = 0

2Ri , if h(Ri ) = 1

Ri + Q, if h(Ri ) = 2

Start the random walk at R0 = P. Define the sequence (ci , di )
such that Ri = ciP + diQ. Then:

(ci+1, di+1) =


(ci + 1, di ), if h(Ri ) = 0

(2ci , 2di ), if h(Ri ) = 1

(ci , di + 1), if h(Ri ) = 2

Slide 24 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Pollard’s Iteration Functions

Be h : E (F)→ {0, 1, 2} a hash function.

Ri+1 = f (Ri ) =


Ri + P, if h(Ri ) = 0

2Ri , if h(Ri ) = 1

Ri + Q, if h(Ri ) = 2

Start the random walk at R0 = P. Define the sequence (ci , di )
such that Ri = ciP + diQ. Then:

(ci+1, di+1) =


(ci + 1, di ), if h(Ri ) = 0

(2ci , 2di ), if h(Ri ) = 1

(ci , di + 1), if h(Ri ) = 2

Slide 24 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Teske’s Adding Walk

Be h : E (F)→ {0, 1, . . . , s − 1} a hash function. Choose random
integers aj , bj (mod n) and compute for j = 0, . . . , s − 1:

Mj = ajP + bjQ.

Define:
f (R) = R + Mh(R).

Then:
Ri+1 = Ri + Mj = (ci + aj)P + (di + bj)Q

Slide 25 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Teske’s Adding Walk

Be h : E (F)→ {0, 1, . . . , s − 1} a hash function. Choose random
integers aj , bj (mod n) and compute for j = 0, . . . , s − 1:

Mj = ajP + bjQ.

Define:
f (R) = R + Mh(R).

Then:
Ri+1 = Ri + Mj = (ci + aj)P + (di + bj)Q

Slide 25 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Cycle Detection

I The expected number of iterations for Pollard’s ρ-algorithm is
O(
√

n).

I How to find a match, without storing all generated points?

Slide 26 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Floyd’s Cycle-Detection Algorithm

I We compute the pairs (Ri ,R2i ) for i = 1, 2, ... and only keep
the current pair.

I These pairs can be computed easily:

(Ri+1,R2(i+1)) = (f (Ri ), f (f (R2i )))

I It can be proven, that we will find a match Ri = R2i and
i < d , d the length of the ρ.

Slide 27 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Floyd’s Cycle-Detection Algorithm

I We compute the pairs (Ri ,R2i ) for i = 1, 2, ... and only keep
the current pair.

I These pairs can be computed easily:

(Ri+1,R2(i+1)) = (f (Ri ), f (f (R2i )))

I It can be proven, that we will find a match Ri = R2i and
i < d , d the length of the ρ.

Slide 27 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Brent’s Algorithm

I Floyd’s algorithm evaluates f thrice in each iteration.

I Instead check in each iteration whether Ri = Rblog2 ic.

I On average about 36% faster than Floyd’s algorithm.

Slide 28 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Brent’s Algorithm

I Floyd’s algorithm evaluates f thrice in each iteration.

I Instead check in each iteration whether Ri = Rblog2 ic.

I On average about 36% faster than Floyd’s algorithm.

Slide 28 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Runtime Analysis

Assuming a truly random iteration function is used. Then:

I The expected length of the ρ is
√
πn/2 ≈ 1.25

√
n.

I Floyd’s algorithm requires on average 1.03
√

n iterations,
which equals 3.09

√
n evaluations of f .

I Brent’s algorithm requires on average 1.98
√

n iterations.

I Teske’s improvment of Brent’s algorithm requires on average
1.42
√

n iterations.

Slide 29 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Runtime Analysis

Assuming a truly random iteration function is used. Then:

I The expected length of the ρ is
√
πn/2 ≈ 1.25

√
n.

I Floyd’s algorithm requires on average 1.03
√

n iterations,
which equals 3.09

√
n evaluations of f .

I Brent’s algorithm requires on average 1.98
√

n iterations.

I Teske’s improvment of Brent’s algorithm requires on average
1.42
√

n iterations.

Slide 29 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Runtime Analysis

Assuming a truly random iteration function is used. Then:

I The expected length of the ρ is
√
πn/2 ≈ 1.25

√
n.

I Floyd’s algorithm requires on average 1.03
√

n iterations,
which equals 3.09

√
n evaluations of f .

I Brent’s algorithm requires on average 1.98
√

n iterations.

I Teske’s improvment of Brent’s algorithm requires on average
1.42
√

n iterations.

Slide 29 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Experimental Results

I 10,000 ECDLPs attacked by the variations of the Pollard-ρ
algorithm.

Iteration Function Difference to Optimum

Pollard’s function 28.8%

4-adding walk 34.9%

8-adding walk 8.6%

16-adding walk 3.4%

32-adding walk 0.9%

Slide 30 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Experimental Results

I 10,000 ECDLPs attacked by the variations of the Pollard-ρ
algorithm.

Iteration Function Difference to Optimum

Pollard’s function 28.8%

4-adding walk 34.9%

8-adding walk 8.6%

16-adding walk 3.4%

32-adding walk 0.9%

Slide 30 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Experimental Results

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Gaussian Kernel

L−Factor

D
en

si
ty

Kernel density estimation for Brent’s algorithm

Slide 31 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Parallelization

I Executing m Pollard-ρ algorithms in parallel leads to a
speedup factor of

√
m.

I Be D a set of rarely occurring distinguished points, e.g. a
fixed number of leading bits of the x-coordinate equals 0.

Runtime Analysis:

I Be θ the probability that a random point is a distinguished
point.

I Choose θ = αm/(
√
πn/2) for some α.

I Expected memory: O(m(1 + α)).

I Expected runtime:
(
1 + 1

α

) (
√
πn/2)

m iterations.

Slide 32 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Parallelization

I Executing m Pollard-ρ algorithms in parallel leads to a
speedup factor of

√
m.

I Be D a set of rarely occurring distinguished points, e.g. a
fixed number of leading bits of the x-coordinate equals 0.

Runtime Analysis:

I Be θ the probability that a random point is a distinguished
point.

I Choose θ = αm/(
√
πn/2) for some α.

I Expected memory: O(m(1 + α)).

I Expected runtime:
(
1 + 1

α

) (
√
πn/2)

m iterations.

Slide 32 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Parallelization

I Executing m Pollard-ρ algorithms in parallel leads to a
speedup factor of

√
m.

I Be D a set of rarely occurring distinguished points, e.g. a
fixed number of leading bits of the x-coordinate equals 0.

Runtime Analysis:

I Be θ the probability that a random point is a distinguished
point.

I Choose θ = αm/(
√
πn/2) for some α.

I Expected memory: O(m(1 + α)).

I Expected runtime:
(
1 + 1

α

) (
√
πn/2)

m iterations.

Slide 32 of 33 Nils Reimers



Discrete Logarithm Elliptic Curves Elliptic Curve Cryptography Pollard’s ρ-Algorithm Runtime Parallelization Conclusion

Conclusion

I Elliptic Curve Cryptography offer same security, while using
smaller key sizes.

Security Level in Bits Elliptic Curve Size RSA/DSA
80 160 1024

96 192 1536

112 224 2048

128 256 3072

192 384 7680

256 512 15360

Slide 33 of 33 Nils Reimers


	Discrete Logarithm
	Elliptic Curves
	Elliptic Curve Cryptography
	Pollard's -Algorithm
	Runtime
	Parallelization
	Conclusion

