Elliptic Curve Discrete Logarithm Problem and the Pollard- ρ Algorithm

Nils Reimers

07. October 2011

Structure

- 1. Discrete Logarithm
- 2. Elliptic Curves
- 3. Elliptic Curve Cryptography
- 4. Pollard- ρ Algorithm
- 5. Runtime Analysis
- 6. Conclusion

Discrete Logarithm

▶ Be G a finite, cyclic group with operation \otimes .

► Define
$$k \in \mathbb{Z}$$
: $g^k := \underbrace{g \otimes ... \otimes g}_{k-times}$.

Discrete Logarithm

• Be G a finite, cyclic group with operation \otimes .

• Define
$$k \in \mathbb{Z}$$
: $g^k := \underbrace{g \otimes ... \otimes g}_{k-times}$.

Discrete Logarithm Problem Be G a finite, cyclic group. Be $g \in G$ and be $h \in \langle g \rangle = \{g^k | k \in \mathbb{Z}\}$. Find k such that: $h = g^k$.

Discrete Logarithm Problem

Hardness of the problem (find k such that h = g^k) depends on the group

Example
Be
$$G = (\mathbb{F}_p, +)$$
 the additive group of the finite field \mathbb{F}_p .
Then $g^k \equiv k \cdot g \pmod{p}$.
Be $k \cdot g \equiv h \pmod{p}$, then $k \equiv g^{-1}h \pmod{p}$.
 g^{-1} kann efficiently be determined by the extended euclidean algorithm.

Discrete Logarithm Problem \mathbb{F}_{p}^{*}

- Be G the multiplicative group \mathbb{F}_p^* .
- It is hard to find x such that: $g^x \equiv h \pmod{p}$.
- Security of the Diffie-Hellman key exchange is based on the hardness of this problem.

Discrete Logarithm Problem

• Every discrete logarithm problem can be solved in at max $O(\sqrt{n})$ time, *n* is the order of the group.

Discrete Logarithm Problem

- ► Every discrete logarithm problem can be solved in at max O(√n) time, n is the order of the group.
- Problem: The discrete logarithm problem for \(\mathbb{F}_p^*\) can be solved in subexponential time.

Motivation

- Cryptography based on elliptic curves offer high security while using smaller key sizes compared to RSA.
- Security of the digital functions of the German machine readable passport and identify card are based on elliptic curves.

Motivation

- Cryptography based on elliptic curves offer high security while using smaller key sizes compared to RSA.
- Security of the digital functions of the German machine readable passport and identify card are based on elliptic curves.

 \Rightarrow Elliptic curves are an interesting and active research area.

Elliptic Curve

Be \mathbb{K} a field and char(\mathbb{K}) $\neq 2, 3$. For $a, b \in \mathbb{K}$ and $4a^3 + 27b^2 \neq 0$ define the following set as an elliptic curve over \mathbb{K} :

$$\mathsf{E}(\mathbb{K}) := \{\mathcal{O}\} \cup \{(x, y) \in \mathbb{K} \times \mathbb{K} \mid y^2 = x^3 + ax + b\}$$

Addition on elliptic curves - 1. Case

Addition on elliptic curves - 1. Case

Addition on elliptic curves - 1. Case

Addition on elliptic curves - 2. Case

Addition on elliptic curves - 2. Case

Addition on elliptic curves - 2. Case

Addition on elliptic curves - 3. Case

Addition on elliptic curves - 4. Case

Addition on elliptic curves

Be
$$E(\mathbb{K})$$
 an elliptic curve of the form $y^2 = x^3 + ax + b$. Be
 $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ and $P_1, P_2 \neq \mathcal{O}$. Define
 $P_1 + P_2 = P_3 = (x_3, y_3)$ as:
1. If $x_1 \neq x_2$:
 $x_3 = m^2 - x_1 - x_2, y_3 = m(x_1 - x_3) - y_1$, where $m = (y_2 - y_1)(x_2 - x_1)^{-1}$
2. If $P_1 = P_2$ and $y_1 \neq 0$:
 $x_3 = m^2 - 2x_1, y_3 = m(x_1 - x_3) - y_1$, where $m = (3x_1^2 + a)(2y_1)^{-1}$
3. If $x_1 = x_2$, but $y_1 \neq y_2$:
 $P_1 + P_2 = \mathcal{O}$
4. If $P_1 = P_2$ and $y_1 = 0$:
 $P_1 + P_2 = \mathcal{O}$

Discrete Logarithm	Elliptic Curves	Elliptic Curve Cryptography	Pollard's ρ -Algorithm	Runtime	Parallelization	Conclusion
		0000				

Group Law

The set $E(\mathbb{K})$ with the defined addition forms an abelian group with \mathcal{O} as neutral element.

Group Law

The set $E(\mathbb{K})$ with the defined addition forms an abelian group with \mathcal{O} as neutral element.

Scalarmuliplication:

$$kP := \underbrace{P + P + \dots + P}_{k-times}$$

Elliptic Curves over \mathbb{F}_p

Alice and Bob want to exchange a session key.

Alice and Bob want to exchange a session key.

1. Alice and Bob agreed on a secure, elliptic curve $E(\mathbb{F}_p)$ and on a point $G \in E(\mathbb{F}_p)$ with $\operatorname{ord}(G) \approx \operatorname{ord}(E(\mathbb{F}_p))$ and $\operatorname{ord}(G)$ prime.

Alice and Bob want to exchange a session key.

- 1. Alice and Bob agreed on a secure, elliptic curve $E(\mathbb{F}_p)$ and on a point $G \in E(\mathbb{F}_p)$ with $\operatorname{ord}(G) \approx \operatorname{ord}(E(\mathbb{F}_p))$ and $\operatorname{ord}(G)$ prime.
- 2. Alice randomly chooses *a*, computes $G_a = aG$ and sends the result to Bob.
- 3. Bob randomly chooses b, computes $G_b = bG$ and sends the result to Alice.

Alice and Bob want to exchange a session key.

- 1. Alice and Bob agreed on a secure, elliptic curve $E(\mathbb{F}_p)$ and on a point $G \in E(\mathbb{F}_p)$ with $\operatorname{ord}(G) \approx \operatorname{ord}(E(\mathbb{F}_p))$ and $\operatorname{ord}(G)$ prime.
- 2. Alice randomly chooses *a*, computes $G_a = aG$ and sends the result to Bob.
- 3. Bob randomly chooses b, computes $G_b = bG$ and sends the result to Alice.
- 4. Alice and Bob compute $G_{ab} = aG_b = bG_a = abG$.
- 5. Alice and Bob extract a session key from G_{ab} .

Elliptic Curve Diffie-Hellman - Attacker

- An attacker knows $E(\mathbb{F}_p)$, G, $G_a = aG$ and $G_b = bG$ and wants to compute $G_{ab} = abG$.
- In the chase he can compute a or b, he would be able to extract the session key.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Be $E(\mathbb{F})$ an elliptic curve, $P \in E(\mathbb{F})$ and be $Q \in \langle P \rangle = \{kP | k \in \mathbb{Z}\}$. Find k such that:

$$Q = kP$$
.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Be $E(\mathbb{F})$ an elliptic curve, $P \in E(\mathbb{F})$ and be $Q \in \langle P \rangle = \{kP | k \in \mathbb{Z}\}$. Find k such that:

$$Q = kP$$
.

• Computation of *kP* is simple, when *k* is given.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Be $E(\mathbb{F})$ an elliptic curve, $P \in E(\mathbb{F})$ and be $Q \in \langle P \rangle = \{kP | k \in \mathbb{Z}\}$. Find k such that:

$$Q = kP$$
.

- Computation of *kP* is simple, when *k* is given.
- To find k such that Q = kP is hard.

Pollard's ρ -Algorithm

Given P and Q = kP. Find distinct pairs (c, d), (c', d') such that:

$$cP + dQ = c'P + d'Q$$

Pollard's ρ -Algorithm

Given P and Q = kP. Find distinct pairs (c, d), (c', d') such that:

$$cP + dQ = c'P + d'Q$$

$$\Rightarrow (c-c')P = (d'-d)Q = (d'-d)kP$$

$$\Rightarrow (c-c') \equiv (d'-d)k \pmod{n}$$

$$\Rightarrow k \equiv (c - c')(d' - d)^{-1} \pmod{n}$$

Pollard's Iteration Functions

Be $h: E(\mathbb{F}) \to \{0, 1, 2\}$ a hash function.

$$R_{i+1} = f(R_i) = \begin{cases} R_i + P, & \text{if } h(R_i) = 0\\ 2R_i, & \text{if } h(R_i) = 1\\ R_i + Q, & \text{if } h(R_i) = 2 \end{cases}$$

Pollard's Iteration Functions

Be $h: E(\mathbb{F}) \to \{0, 1, 2\}$ a hash function.

$$R_{i+1} = f(R_i) = \begin{cases} R_i + P, & \text{if } h(R_i) = 0\\ 2R_i, & \text{if } h(R_i) = 1\\ R_i + Q, & \text{if } h(R_i) = 2 \end{cases}$$

Start the random walk at $R_0 = P$. Define the sequence (c_i, d_i) such that $R_i = c_i P + d_i Q$. Then:

$$(c_{i+1}, d_{i+1}) = \begin{cases} (c_i + 1, d_i), & \text{if } h(R_i) = 0\\ (2c_i, 2d_i), & \text{if } h(R_i) = 1\\ (c_i, d_i + 1), & \text{if } h(R_i) = 2 \end{cases}$$

Teske's Adding Walk

Be $h : E(\mathbb{F}) \to \{0, 1, \dots, s-1\}$ a hash function. Choose random integers $a_j, b_j \pmod{n}$ and compute for $j = 0, \dots, s-1$:

$$M_j = a_j P + b_j Q.$$

Define:

$$f(R)=R+M_{h(R)}.$$

Teske's Adding Walk

Be $h : E(\mathbb{F}) \to \{0, 1, \dots, s-1\}$ a hash function. Choose random integers $a_j, b_j \pmod{n}$ and compute for $j = 0, \dots, s-1$:

$$M_j = a_j P + b_j Q.$$

Define:

$$f(R)=R+M_{h(R)}.$$

Then:

$$R_{i+1} = R_i + M_j = (c_i + a_j)P + (d_i + b_j)Q$$

Cycle Detection

- The expected number of iterations for Pollard's ρ -algorithm is $O(\sqrt{n})$.
- How to find a match, without storing all generated points?

Floyd's Cycle-Detection Algorithm

▶ We compute the pairs (R_i, R_{2i}) for i = 1, 2, ... and only keep the current pair.

These pairs can be computed easily:

$$(R_{i+1}, R_{2(i+1)}) = (f(R_i), f(f(R_{2i})))$$

Floyd's Cycle-Detection Algorithm

- ▶ We compute the pairs (R_i, R_{2i}) for i = 1, 2, ... and only keep the current pair.
- These pairs can be computed easily:

$$(R_{i+1}, R_{2(i+1)}) = (f(R_i), f(f(R_{2i})))$$

It can be proven, that we will find a match R_i = R_{2i} and i < d, d the length of the ρ.</p>

Brent's Algorithm

▶ Floyd's algorithm evaluates *f* thrice in each iteration.

Brent's Algorithm

- ▶ Floyd's algorithm evaluates *f* thrice in each iteration.
- ▶ Instead check in each iteration whether $R_i = R_{|\log_2 i|}$.
- On average about 36% faster than Floyd's algorithm.

Runtime Analysis

Assuming a truly random iteration function is used. Then:

• The expected length of the ρ is $\sqrt{\pi n/2} \approx 1.25\sqrt{n}$.

Runtime Analysis

Assuming a truly random iteration function is used. Then:

- The expected length of the ρ is $\sqrt{\pi n/2} \approx 1.25\sqrt{n}$.
- Floyd's algorithm requires on average $1.03\sqrt{n}$ iterations, which equals $3.09\sqrt{n}$ evaluations of f.

Runtime Analysis

Assuming a truly random iteration function is used. Then:

- The expected length of the ρ is $\sqrt{\pi n/2} \approx 1.25\sqrt{n}$.
- Floyd's algorithm requires on average $1.03\sqrt{n}$ iterations, which equals $3.09\sqrt{n}$ evaluations of f.
- Brent's algorithm requires on average $1.98\sqrt{n}$ iterations.
- Teske's improvment of Brent's algorithm requires on average $1.42\sqrt{n}$ iterations.

Experimental Results

► 10,000 ECDLPs attacked by the variations of the Pollardalgorithm.

Experimental Results

 10,000 ECDLPs attacked by the variations of the Pollard-p algorithm.

Iteration Function	Difference to Optimum		
Pollard's function	28.8%		
4-adding walk	34.9%		
8-adding walk	8.6%		
16-adding walk	3.4%		
32-adding walk	0.9%		

Experimental Results

Kernel density estimation for Brent's algorithm

Parallelization

Executing *m* Pollard-ρ algorithms in parallel leads to a speedup factor of √m.

Parallelization

- Executing *m* Pollard- ρ algorithms in parallel leads to a speedup factor of \sqrt{m} .
- Be D a set of rarely occurring distinguished points, e.g. a fixed number of leading bits of the x-coordinate equals 0.

Parallelization

- Executing *m* Pollard- ρ algorithms in parallel leads to a speedup factor of \sqrt{m} .
- Be D a set of rarely occurring distinguished points, e.g. a fixed number of leading bits of the x-coordinate equals 0.

Runtime Analysis:

- Be θ the probability that a random point is a distinguished point.
- Choose $\theta = \alpha m / (\sqrt{\pi n/2})$ for some α .

• Expected memory:
$$O(m(1 + \alpha))$$
.

• Expected runtime:
$$\left(1+\frac{1}{\alpha}\right)\frac{(\sqrt{\pi n/2})}{m}$$
 iterations.

Conclusion

 Elliptic Curve Cryptography offer same security, while using smaller key sizes.

Security Level in Bits	Elliptic Curve Size	RSA/DSA
80	160	1024
96	192	1536
112	224	2048
128	256	3072
192	384	7680
256	512	15360