R-packages for infinitesimal robustness

Peter Ruckdeschel1 Matthias Kohl2

1 Mathematisches Institut
Peter.Ruckdeschel@uni-bayreuth.de
www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL

2 SIRS-Lab GmbH, Jena, Germany
Matthias.Kohl@stamats.de
www.stamats.de

Seminar at EPFL
October 20, 2006
Outline of Section I

Object orientation is useful — let’s use it!

Levels of abstraction in programming
Some paradigms in OOP
Object orientation in S/R
Packages for (Infinitesimal) Robust Statistics
Outline of Section II

R-Packages distr, distrEx, RandVar

R-Package distr
 Motivation
 Concept of R-Packages distr
 Example: arithmetics for distribution objects

R-Package distrEx
 Contents of distrEx
 Example: expectation operator

Illustration 1
 Illustration 1: CLT —under (nearly) arbitrary distribution
 Illustration 2: Minimum-distance- and ML-functionals
 Illustration 3: Deconvolution

R-Package RandVar
Outline of Section III

In infinitesimal robustness in 10 slides

- L_2-differentiable model
- Influence curves and asymptotically linear estimators
 - Influence curves (ICs) and ALEs
- One-step-estimators
- (Shrinking) neighborhood system $\mathcal{U}_*(P_\theta, r)$ to radius r
- Optimally robust estimators
 - Risk: Maximal bias and Maximal MSE
 - G-optimal IC
- Unknown radius r
Outline of Section IV:

R-Package R0ptEst for Infinitesimal Robust Statistics
 S4-Classes
 Methods
 Special meta-information slots
 Semi-symbolic calculus
 Illustration II: Examples of optimally robust estimation
Levels of abstraction in programming

(c.f. [Stro:92])

- **procedural programming**
 - one programmer
 - separation of programming problem to functions/procedures

- **modular programming**
 - group of programmers
 - module \(\triangleq \) set of procedures + data on which they act

- **Data abstraction**
 - user defined types: abstract data types
 - interfacing functions

- **object-orientated programming (OOP)**
 - combine user-defined types with corresp. methods to a new structure class
 - use inheritance
Some paradigms in OOP

- Capsulation
- Inheritance
 - methods/slots of mother class available for subclass
 - method overloading
 - extension by new methods / attributes

Lingo
- classes
 - members, attributes — in S: slots
 - methods
- instance, object
- templates
Object Orientation in S/R

different paradigm:

- particular version of object orientation: Function-orientated- *FOOP* as opposed to *COOP*
 - methods *not* part of object but managed by *generic functions*
 - depending on the arguments different methods are dispatched
 - example: *plot*

- for R $\geq 1.7.0$: use of S4-class concept, c.f. Chambers[98]

advantages:

- general interfaces (c.f. *lm, glm, rlm*,) possible
- by dispatching mechanism on run-time: general code using particularized methods
- code (may / will) be:
 - less redundant, better maintainable, better readable, better extensible
Packages for (Infinitesimal) Robust Statistics

(Co-)Authors (besides M. Kohl)

- Thomas Stabla: statho3@web.de
- Florian Camphausen: fcampi@gmx.de

Organization in packages

- `distr`, `distrEx`; [and `distrSim`, `distrTEst`]
- M. Kohl: `RandVar`, `ROptEst`;
 [and `RobLox`, `RobRex`, `ROptRegTS`]

Availability

- `distr`, `distrEx`, `distrSim`, `distrTEst`, `RandVar`: published on CRAN; current version 1.8;
extensive documentation available (see references)
- `ROptEst`, `RobLox`, `RobRex`, `ROptRegTS`:
 http://www.stamats.de/RobASt.htm
Situation: algorithm / program shall cope with any distribution

How to pass a distribution as an argument?

Construction up to now:

- a lot of distributions implemented to R
 - Gaussian, Poisson, Exponential, Gamma, etc.
- for each:
 - cdf \([\hat{p}]\)
 - density / probability function \([\hat{d}]\)
 - quantile function \([\hat{q}]\)
 - function to simulate r.v.’s \([\hat{r}]\)

Naming convention: <prefix><Name>
e.g. to get the median of a general distribution:

```r
mymedian ← function(vtlg, ...) {
  eval(parse(text =
    paste("x\_\text{\(\sim\)} q", vtlg,
    "(1/2,\ldots)", sep = "")
  )
  return(x)
}
```

better idea: having a “variable type” distribution and functions \(p, d, q, r \) defined for this type

then: \(q(x) \) returns the quantile function \(\Rightarrow \)

```r
median ← function(X){q(X)(0.5)}
```

\(\Rightarrow \) Development of this concept in package `distr`
Concept of R-Packages distr

- AbscontDistribution → Beta, Cauchy, Chisq, Exp, Fd, Gammad, Logis, Lnorm, Norm, Td, Unif, Weibull
- DiscreteDistribution → Binom, Dirac, Geom, Hyper, Nbinom, Pois (...all from stats package)
Methods

- overloaded: operators "+", "-", "*", "/"
e.g. \(Y \leftarrow (3\times X + 5)/4\) (determined analytically.)
- group `math` of unary mathematical operations is available for
 objects of class `Distribution` e.g. `exp(sin(3\times X + 5)/4)`
- `RtoDPQ`: default method for filling slots `d`, `p`, `q` on basis of
 simulations
- a default convolution method for two independent r.v.'s by
 means of FFT; c.f. K., R., & Stabla[04]
- particular methods for `plot`, `summary`,…
- **Caveat**: arithmetics operates on underlying random variables,
 not on distributions
Example: arithmetics for distribution objects

```r
> require("distr")
Loading required package: distr
[1] TRUE
> N <- Norm(mean = 2, sd = 1.3)
> P <- Pois(lambda = 1.2)
> Z <- 2 * N + 3 + P # exact transformation
Distribution Object of Class: AbscontDistribution
> plot(Z)
> p(Z)(0.4)
[1] 0.002415384
> q(Z)(0.3)
[1] 6.70507
> r(Z)(10)
 [1] 11.072931  7.519611 10.567212 ....
> Znew <- sin(abs(Z)) # by simulations
> plot(Znew)
> p(Znew)(0.2)
```
Contents of distrEx

Package `distrEx` extends `distr` and includes

- a general expectation operator to a given distribution F
- several functionals on distributions like median, var, sd, MAD and IQR
- several distances between distributions (e.g. Kolmogoroff–, Total-Variation–, Hellinger-distance)
- (factorized) conditional distributions
- (factorized) conditional expectations
Example: expectation operator

- for a normal variable D_1 try to realize $E D_1$, $E D_1^2$, and for some $m_1 \in \mathbb{R}$, $E(D_1 - m_1)^2$

```r
require("distrEx")
D1 <- Norm(mean=2)
m1 <- E(D1) # = 2
E(D1, function(x){ x^2 }) # $E(D_1^2)$
```

- now —without changing the code— the same for a Poisson variable; this gives the same calls but different dispatched methods

```r
D1 <- Pois(lambda=3)
m1 <- E(D1) # = 3
E(D1, function(x){ x^2 })
```
Illustration 1: CLT —under arbitrary distribution

- we want to illustrate the Lindeberg-Lévy theorem
- input should be any univariate distribution \(\text{Distr} \)
- notation: \(X_i \overset{\text{i.i.d.}}{\sim} F, S_n = \sum_{i=1}^{n} X_i, T_n = (S_n - E S_n) / \sqrt{\text{Var} S_n} \)
- output: sequence of length \(\text{len} \) of plots of \(\mathcal{L}(T_n) \)
- realized in \(\text{illustrateCLT}(\text{Distr}, \text{len}) \)
- essential code
 - a function for standardizing and centering
 \[
 \text{make01} \leftarrow \text{function}(x)(x - \text{E}(x)) / \text{sd}(x)
 \]
 - update in a loop starting with \(S_n \leftarrow 0 \)
 \[
 S_n \leftarrow S_n + \text{Distr} \\
 T_n \leftarrow \text{make01}(S_n) \\
 #\# \text{here: Distr is absolutely continuous} \\
 dTn \leftarrow d(Tn)(x)
 \]
Illustration 2: Minimum-distance- and ML-functionals

- we want to estimate the parameter θ in a parametric family
- methods: minimum-distance and ML
- in both cases in an optimization a member in the class is distinguished as “closest” to the data
- input: data and parametric model
- output: estimate
- implementation: parametric model as class with slots
 - name, distribution,
 - additionally: a slot modifparameter, a function realizing $\theta \mapsto P_{\theta}$
- generic functions $\text{MDE(model, data, distance)}$, MLE(model, data)
essential code

- to fit a distribution \(\text{distr} \) to \(\text{data} \) according to criterium \((\text{distr} , \text{data})\) we use

\[
\text{fitParam} \leftarrow \text{function}(\text{model}, \text{data0}, \text{criterium} \ldots) \\
\{
\text{define a function in theta to be optimized:}
\text{ftoOptimize} \leftarrow \text{function}(\text{theta}) \\
\{ \text{Ptheta} \leftarrow \text{modifparameter}(\text{model})(\text{theta}) \\
\text{criterium}(\text{Ptheta},\text{data0}) \}
\}
\]

#use "optimize" or "optim" dep. on dim; here:
\text{theta} \leftarrow \text{optimize}(f = \text{ftoOptimize}, \\
\text{interval} = \text{searchinterval0}, \ldots) \$minimum
\text{return}(\text{theta})\}

- criterium: e.g. negative log-likelihood or distance (e.g. Kolmogoroff-) theoretical: empirical distribution
Illustration 3: Deconvolution I

- Situation: \(X \sim K, \varepsilon \sim F, \) stoch. independent; \(Y = X + \varepsilon \)
- goal: reconstruction \(X \) by means of \(Y \)
- methods: \(E[X|Y], \) postmode\((X|Y)\)

- input: any univariate distributions \(K = \text{Regr}, F = \text{Error} \)
- output: mappings \(y \mapsto E[X|Y = y], \) postmode\((X|Y = y)\)

- realized by means of \text{PrognCondDistribution}(\text{Regr}, \text{Error})
- generates \(L(X|Y = y) \) where \(y \) is coded as parameter cond
essential code

- filling of the slots \(r, d, p, q \) for some machine-\(\text{eps} \)

\[
\begin{align*}
rf &\leftarrow \text{function}(n, \text{cond}) \quad \text{cond} - r(\text{Error})(n) \\
df &\leftarrow \text{function}(x, \text{cond}) \quad d(\text{Regr})(x) \ast d(\text{Error})(\text{cond} - x) \\
qf &\leftarrow \text{function}(x, \text{cond}) \quad \text{cond} - q(\text{Error})(1 - x) \\
pf &\leftarrow \text{function}(x, \text{cond}) \quad \text{integrate}(df, \text{low}=q(\text{Error})(\text{eps}), \text{up}=x, \text{cond}=\text{cond}) \text{value}
\end{align*}
\]

- conditional expectation \(\mathbb{E}[X|Y = y] \)

\[
\begin{align*}
\text{PXy} &\leftarrow \text{PrognCondDistribution}(\text{Regr}, \text{Error}) \\
\mathbb{E}(\text{PXy}, \text{cond}=y)
\end{align*}
\]

- posterior mode \(\text{postmode}(X|Y = y) \)

\[
\begin{align*}
\text{post.mod} &\leftarrow \text{function}(\text{cond}, e1) \{ \\
\text{optimize}(f = d(\text{PXy}), c(q(\text{PXy})(\text{eps}, \text{cond}), q(\text{PXy})(1 - \text{eps}, \text{cond})), \text{cond} = \text{cond}) \text{maximum}
\}
\end{align*}
\]
R-Package RandVar

Random variable as a class concept

Definition

- **RandVariable**
 - Map : list
 - Domain : OptionalrSpace
 - Range : OptionalrSpace

- **EuclRandVariable**
 - Range : EuclideanSpace

- **RealRandVariable**
 - Range : Reals

- **EuclRandMatrix**

Mathematical operations

- there are **many**...
- essentially: usual vector arithmetic available for conformal "RealRandVector", "EuclRandVector" and "EuclRandMatrix"
- also: group **math**, e.g. sin, cos, exp, (log), (\(\sqrt{\cdot}\), ...)
References:

L_2-differentiable model

$\mathcal{P} = \{P_\theta | \theta \in \Theta \}, \Theta \subset \mathbb{R}^k \text{ open}$

- Examples:
 - Gaussian location:
 $\mathcal{P}_1 = \{\mathcal{N}(\theta, 1) | \theta \in \Theta \}, \Theta = \mathbb{R}$
 - Gaussian scale:
 $\mathcal{P}_2 = \{\mathcal{N}(1, \theta(=\sigma^2)) | \theta \in \Theta \}, \Theta = (0, \infty)$
 - Gaussian location and scale:
 $\mathcal{P}_3 = \{\mathcal{N}(\theta_1, \theta_2) | \theta \in \Theta \}, \Theta = \mathbb{R} \times (0, \infty)$

L_2-differentiability

:: $\sqrt{dP_{\theta+h}} = \sqrt{dP_\theta} (1 + \frac{1}{2} \Lambda_\theta h) + o(|h|)$

- also: Fisher-information $\mathcal{I}_\theta := \int \Lambda_\theta \Lambda_\theta^\top dP_\theta$ finite and regular
Consequence:

- $P^n_{\theta+h/\sqrt{n}}$ and P^n_θ are contiguous
- Loglikelihood-expansion:

$$\log dP^n_{\theta+h/\sqrt{n}}/P^n_\theta = \frac{1}{\sqrt{n}} \sum_i h^\tau \Lambda_\theta(x_i) - \frac{1}{2} h^\tau \mathcal{I}_\theta h + o_{P^n_\theta}(1)$$

\implies model is LAN (locally asymptotically normal)

Differentiable parameter transformation

$$\tau : \mathbb{R}^k \to \mathbb{R}^p, \quad \tau'(\theta) = D = D(\theta)$$

Examples:

- estimation of sd in scale model \mathcal{P}_2: $\tau(x) = \sqrt{x}$
- nuisance parameter:
 estimation of location θ_1 without knowing scale θ_2 in \mathcal{P}_3
Influence curves (ICs) and ALEs

[partial] Influence curve ([p]IC)

\[\eta_\theta \in L^p_2(P\theta) \quad \text{s.t.} \quad \mathbb{E}_\theta \eta_\theta = 0, \quad \mathbb{E}_\theta \eta_\theta \Lambda^\tau_\theta = \mathbb{I}[D] \quad (\mathbb{E}_\theta = \mathbb{E}_{P\theta}) \]

here: pIC as a possible linearization of an estimator

Asymptotically linear estimator (ALE): estimators with expansion

\[\sqrt{n} (S_n - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \eta_\theta(X_i) + o_{P_\theta}(n^0) \]

for some pIC \(\eta_\theta \)

- conditions for pIC \(\iff \) local uniform as. normality of ALE

Examples

- in \(P_1 \): \(S_n = \bar{X}_n \) \(\quad \eta_\theta(x) = x - \theta \),
- in \(P_1 \): \(S_n = \text{Median}_n \) \(\quad \eta_\theta(x) = \sqrt{\pi/2} \text{sign}(x - \theta) \)
One-step-estimators

defined to starting estimate θ_0 and IC η as

$$S_{n}^{(1)} := \tau(\theta_0) + \frac{1}{n} \sum_{i=1}^{n} \eta_{\theta_0}(X_i)$$

Theorem ("One step is enough", [Ri:94])

Assumptions:

- $\sqrt{n}(\theta_0 - \theta) = O_{Q_n}(1)$ uniformly for all Q_n in the neighborhood
- IC η_θ is bounded and $\lim_{h \to 0} \sup_x |\eta_{\theta+h}(x) - \eta_{\theta}(x)| = 0$

THEN $S_{n}^{(1)}$ is an ALE to $pIC \eta_\theta$:

$$S_{n}^{(1)} - \tau(\theta) = \frac{1}{n} \sum_{i=1}^{n} \eta_{\theta}(X_i) + \text{o}_{P_\theta}(n^{-1/2})$$
(Shrinking) neighborhood system $\mathcal{U}_*(P_\theta, r)$ to radius r

- $\mathcal{U}_*(P_\theta, r)$: all $Q_{n}^{(n)} = \bigotimes_{i=1}^{n} Q_{n,i}$ with $d_*(Q_{n,i}, P_\theta) \leq r / \sqrt{n}$ for

 - $\ast = c$ convex contaminations: $d_c(P, Q)$: smallest $r \geq 0$ s.t. \exists p.m. H with $Q = (1 - r)P + rH$

 - $\ast = v$ total variation: $2d_v(P, Q) = \int |dP - dQ|$

 - $\ast = h$ Hellinger: $2d_h(P, Q)^2 = \int (\sqrt{dP} - \sqrt{dQ})^2$

THEN for all such $Q_{n}^{(n)} \in \mathcal{U}_*(P_\theta, r)$

$$\sqrt{n} \left(S_{n}^{(1)} - \tau(\theta) - \frac{1}{n} \sum_{i=1}^{n} \int \eta_\theta \, dQ_{n,i} \right) \circ Q_{n}^{(n)} \overset{w}{\to} \mathcal{N}_p(0, \text{E}_\theta \eta_\theta \eta_\theta^\top)$$

- shrinking necessary to control bias and variance simultaneously (for fixed radius, bias is of order \sqrt{n})
Risk: Maximal bias and Maximal MSE

Fact (Maximal asymptotic bias on $U_*(P_\theta, r)$: [Ri:94])

— explicit terms:

$\begin{align*}
 r \omega_*(\eta_\theta) &:= \sup_{Q_n^{(n)} \in U_*(P_\theta, r)} \frac{1}{n} \sum_{i=1}^{n} \int \eta_\theta dQ_{n,i} \\
 \text{THEN} \quad * &= c \quad \omega_c(\eta_\theta) = \sup |\eta_\theta| \\
 * &= v(p = 1) \quad \omega_v(\eta_\theta) = \sup \eta_\theta - \inf \eta_\theta \\
 * &= h \quad \omega_h(\eta_\theta) \doteq \sqrt{8} \ \maxev(E_\theta \eta_\theta \eta_\theta^T)
\end{align*}$

Maximal asymptotic MSE on $U_*(P_\theta, r)$:

$$\text{asMSE}(\eta, r) = E_\theta |\eta_\theta|^2 + r^2 \omega_*(\eta_\theta)$$

MSE problem: to given $r \geq 0$, find pIC $\hat{\eta}_r$ minimizing asMSE
MSE-optimal IC

Theorem (Solution to MSE problem: [Ri:94])

to given θ (suppressed in notation)

$\hat{\eta}_r = Y \min\{1, b/|Y|\}$ for $Y = A\Lambda - a$

(Hampel-form)

where $b > 0$ s.t. $r^2 b = \mathbb{E}(|Y| - b)_+ =: \gamma_c$

$v(p = 1) \hat{\eta}_r = c \wedge A\Lambda \vee (c + b)$

where $b > 0$ s.t. $r^2 b = \mathbb{E}(c - A\Lambda)_+ =: \gamma_v$

$h \hat{\eta}_r = D\mathbb{I}^{-1}\Lambda$

for $A \in \mathbb{R}^{p \times k}$, $a \in \mathbb{R}^p$, $c \in (-b, 0)$ Lagrange multipliers s.t. $\hat{\eta}_r$ is an IC
G-optimal IC

Theorem (More general risk: [R.:Ri:04])

- fix θ; assume that maximal asymptotic risk on $\mathcal{U}_*(P, r)$ representable as
 \[\tilde{G}(\eta, r) = G(r\omega_*(\eta), \sigma_\eta) \quad \text{for} \]
 \[\sigma_\eta^2 = \mathbb{E}_P |\eta|^2 \]
 \[G = G(w, s) \text{ convex, isotone in both arguments} \]

Then for $* = c$ or $* = v(p = 1)$:
 again as MSE-type of solutions, but b determined as
 \[r\sigma_\eta G_w(rb, \sigma_\eta) = \gamma_* G_s(rb, \sigma_\eta) \]

- examples:
 \[G = \int |x|^q \, d\mathcal{N}(w, s) \text{ (}L_q\text{-risk)}, \]
 \[G = \int \mathbb{I}(|x| > \tau) \, d\mathcal{N}(w, s) \text{ (Maximin covering probability)} \]
Unknown radius r

- situation: r not known, only available information $r \in [r_l, r_u]$
- relative inefficiency of η_r when used at radius s:

$$\rho(r, s) := \max_{\mathcal{U}} \text{asRisk}(\eta_r, s) / \max_{\mathcal{U}} \text{asRisk}(\eta_s, s)$$

- minimax radius/inefficiency:

$r = r_0$ such that $\hat{\rho}(r)$ is minimal for $\hat{\rho}(r) := \sup_{s \in [r_l, r_u]} \rho(r, s)$

Theorem (Radius-minimax procedure [R.:Ri:04])

For all homogeneous G (i.e.; $G(\nu w, \nu s) = \nu^\alpha G(w, s)$), the radius-minimax pIC does not depend on $G!$
- L2-differentiable model:

- Neighborhood system to some given radius r
Classes II

- robust model

- risk
IC

InfluenceCurve
name : character
Curve : EuclRandVarList
Risks : list
Infos : matrix

TotalVarIC
neighborRadius : numeric
clipLo : numeric
clipUp : numeric
stand : matrix

ContIC
neighborRadius : numeric
clip : numeric
cent : numeric
stand : matrix
lowerCase : OptionalNumeric

CallL2Fam : call
Methods I

- accessor and replacement functions, `show`, `plot`
- `addInfo`, `addProp`, `addRisk`
- `checkL2deriv`, `checkIC`, `evalIC`, `getRiskIC`, `infoPlot`, `ksEstimator`, `leastFavorableRadius`, `locMEstimator`, `oneStepEstimator`, `optIC`, `optRisk`, `radiusMinimaxIC`
- easy generating functions for implemented L_2-families like `NormLocationScaleFamily`, `BinomFamily`
Special meta-information slots

- information gathered during generation of objects is stored in information slots, e.g.

```markdown
### props:
[1] "The normal location and scale family is invariant under"
[2] "the group of transformations 'g(x) = sd * x + mean'"
[3] "with location parameter 'mean' and scale parameter 'sd'"
```
Semi-symbolic calculus: Situation

- **Situation:**
 - we have a certain abstract property for our model (e.g. symmetry)
 - whether this property holds or not cannot be decided (exactly) on basis of numeric evaluations (e.g. convergence?)
 - as a logical statement we can “calculate” with this property and even deduce further properties
 - important for evaluation of high dimensional integrals
Semi-symbolic calculus: Approach and Realization

► Approach
 ► in classical (linear) hierarchical inheritance relations of objects: not clear in which order we should inherit abstract properties...
 ► introduce symbolic/logical flags as members(slots) of objects and interfere into dispatching mechanism...

► Realization
1. Estimation of location and scale
 ▶ X a contaminated sample from $\mathcal{N}(\text{mean}, \text{sd}^2)$
 ▶ goal: optimally robust estimation of mean and sd
 $\hat{\text{example}}$ example for an existing implemented model

2. Generation of a new L_2-differentiable family:
 ▶ censored Poisson distribution with parameter $\lambda > 0$, i.e. we only observe realizations > 0
 ▶ goal: optimally robust estimation of λ
 $\hat{\text{example}}$ example for the new implementation of a model and then use of existing methods (without new programming!)
3. Estimation of regression and scale

- X a contaminated sample from regression model
 \[Y = X^\top \theta + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2) \]
- goal: estimation of θ (and σ)
 at (artificial) data set `exAM` by Antille and May (c.f. `robustbase`)
- optimally robust: (depending on neighborhood type)
 - Huber- and Hampel-Krasker-type ICs (without scale)
 - with scale: weight $w = \min\{1, b/\sqrt{|A_1 X|^2 u^2 + a_2 (u^2 - a_3)^2}\}$
 for u residual and b, A_1, a_2, a_3 constants determined in the algo’s depending on the radius (independent of Y but dependent on X)
Summary

covered so far:

- computation of optimal ICs for all(!) L_2-diff’ble models based on univariate distributions
- Kolmogorov minimum distance estimator as starting estimator
- provide optimally robust estimators by means of one-step constructions
Open Issues

1. use of S-classes for model formula $\sim \text{rlm}$ extending lm also available for infinitesimal robustness
2. better and standardized user-interfaces
3. (more) standardized output
4. use of other robust diagnostic plots...
5. reporting: use of XML for the storage of meta-information about generated objects
6. use of package Matrix
7. one generic method for ksEstimator
8. extension of class RiskType: getRiskIC
9. $\text{mStepEstimator} \ m = \text{Inf} : \triangleq$ iteration until “convergence”
10. better use of symmetry and group invariances
11. special group generic for invertible operators for the exact determination of image distributions
12. liesInSupport : allow for logical operations for slot ’img’ of distributions
13. Lower case for Dimension > 1

... many more
Bibliography

J. M. Chambers.
Programming with Data. A guide to the S language.

R Development Core Team.
R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, 2005

M. Kohl, P. Ruckdeschel, and T. Stabla.

P. Ruckdeschel, M. Kohl, T. Stabla, and F. Camphausen.
S4 Classes for Distributions.
Also available as manual for packages distr, distrSim, distrTEst version 1.8, Oct. 2006.