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Definition. A diophantine equation is an equation of the form

h = 0 ,

where h ∈ Z[x1, . . . , xn] is not constant.

■ Named for Diophantus of Alexandria (3rd century A.D.), author of
the Arithmetica

■ We’re usually interested in integral or rational solutions.
■ In this talk, we’re going to concentrate on integral solutions.
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Theorem (Wiles, 1994). If n > 2 is an integer, then the diophantine
equation

xn + yn = zn

has no integral solutions (x, y, z) such that xyz 6= 0.

■ “conjectured” by Fermat around 1637
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Theorem (Wiles, 1994). If n > 2 is an integer, then the diophantine
equation

xn + yn = zn

has no integral solutions (x, y, z) such that xyz 6= 0.

■ “conjectured” by Fermat around 1637

For n = 2, there are infinitely many solutions, including Pythagorean triples.

■ Dehomogenizing gives an equation for the unit circle.
■ Nontrivial integral solutions correspond to rational points on the unit

cicle.
■ We can find all such points using projection onto a rational line.

So geometry is useful to study diophantine equations.
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Given a diophantine equation, we usually ask the following questions:

(I) Is there at least one integral solution?
(II) Are there finitely many integral solutions?
(III) Can we list or parametrize all integral solutions?

We can ask the same questions for rational solutions.
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Problem (Hilbert, 1900).
Find an algorithm that, given a diophantine equation, decides whether there is
an integral solution or not.
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Problem (Hilbert, 1900).
Find an algorithm that, given a diophantine equation, decides whether there is
an integral solution or not.

Theorem (Matiyasevich, 1970).
Such an algorithm cannot exist.

The proof

■ uses techniques from mathematical logic;
■ builds on earlier work of Robinson, Davis and Putnam.

Nobody knows if such an algorithm can exist for rational solutions!
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Let D be a positive integer and consider

y2 = Dx2 + 1.
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Let D be a positive integer and consider

y2 = Dx2 + 1.

If D = N2 is a square, then

y2 −Dx2 = (y −Nx)(y +Nx) = 1

only has the integral solutions (0,±1).
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Let D be a positive integer and consider

y2 = Dx2 + 1.

If D = N2 is a square, then

y2 −Dx2 = (y −Nx)(y +Nx) = 1

only has the integral solutions (0,±1).

If D is not a square, then the integral solutions form an infinite group,
isomorphic to Z× Z/2Z.
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Let D be a positive integer and consider

y2 = Dx2 + 1.

If D = N2 is a square, then

y2 −Dx2 = (y −Nx)(y +Nx) = 1

only has the integral solutions (0,±1).

If D is not a square, then the integral solutions form an infinite group,
isomorphic to Z× Z/2Z.

Example. For D = 61, the smallest integral solution is

(226153980, 1766319049).
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We now restrict to diophantine equations of the form

y2 = f(x),

where f ∈ Z[x] has degree d > 2 and is separable.
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We now restrict to diophantine equations of the form

y2 = f(x),

where f ∈ Z[x] has degree d > 2 and is separable.

Theorem (Siegel, 1929).
There are only finitely many integral solutions.
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We now restrict to diophantine equations of the form

y2 = f(x),

where f ∈ Z[x] has degree d > 2 and is separable.

Theorem (Siegel, 1929).
There are only finitely many integral solutions.

Unfortunately, the proof is completely ineffective, so we can’t use it to

■ decide whether there is at least one integral solution;
■ list all integral solutions.

In the remainder of this talk, we discuss how to tackle these problems in
practice.
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Theorem (Baker, 1970).
There is an explicitly computable constant cf such that we have

|x| ≤ cf

for every pair (x, y) ∈ Z2 satisfying y2 = f(x).
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Theorem (Baker, 1970).
There is an explicitly computable constant cf such that we have

|x| ≤ cf

for every pair (x, y) ∈ Z2 satisfying y2 = f(x).

So there’s an obvious algorithm for listing all integral solutions:

■ Compute cf .
■ Test for all x ∈ Z such that |x| ≤ cf whether f(x) is a square.
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Unfortunately cf is usually too large for practical purposes.
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Unfortunately cf is usually too large for practical purposes.

Example. For f(x) = x5 − 16x+ 8, Baker’s original papers give

cf ≈ 1010
10

600

.
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Unfortunately cf is usually too large for practical purposes.

Example. For f(x) = x5 − 16x+ 8, Baker’s original papers give

cf ≈ 1010
10

600

.

Improving Baker’s bounds is still an active field of research.

For f = x5− 16x+8, improvements due to Matveev, Györy and Bugeaud give

cf ≈ 10600

Still much too large for the naive algorithm above!
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Idea. Use a geometric approach.

Suppose that f ∈ Z[x]

■ is separable and
■ has odd degree 2g + 1 > 2.

Then the equation y2 = f(x) defines a smooth affine curve.

Its smooth projective model C is a hyperelliptic curve of genus g > 0.

The points on C are of the form

■ (x, y), where y2 = f(x) or
■ the unique point O ∈ C at infinity.
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If g = 1, the curve C is an elliptic curve.

For every extension field K of Q, the set of K-rational points

C(K) = {(x, y) ∈ K2 : y2 = f(x)} ∪ {O}

forms a group.
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If g = 1, the curve C is an elliptic curve.

For every extension field K of Q, the set of K-rational points

C(K) = {(x, y) ∈ K2 : y2 = f(x)} ∪ {O}

forms a group.

The group law can be defined geometrically and the group operations are
regular functions on C.
Hence C is a one-dimensional abelian variety: a projective variety with
compatible group structure.

The group structure is extremely helpful in analyzing rational and integral
points on C.
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If g > 1, then C is not an abelian variety, but we can embed C into an
abelian variety.

A divisor on C is a finite formal sum D =
∑

P∈C nP · P , where all np ∈ Z.

■ The degree of
∑

P nP · P is
∑

P nP .
■ Divisors on C carry an obvious group structure.
■ Let Div0C denote the subgroup of degree 0 divisors.
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If g > 1, then C is not an abelian variety, but we can embed C into an
abelian variety.

A divisor on C is a finite formal sum D =
∑

P∈C nP · P , where all np ∈ Z.

■ The degree of
∑

P nP · P is
∑

P nP .
■ Divisors on C carry an obvious group structure.
■ Let Div0C denote the subgroup of degree 0 divisors.

A rational function ϕ ∈ Q(C)× defines a divisor

div(ϕ) =
∑

P∈C

ordP (ϕ) · P,

where ordP is the order of vanishing in P .

■ Such divisors are called principal.
■ They form a subgroup PrinC of Div0C .
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We define
Pic0C := Div0C/PrinC .

The absolute Galois group GQ := Gal(Q/Q) acts on the divisors.
This induces an action on Pic0C and we define

Pic0C(Q) := (Pic0C)
GQ .
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We define
Pic0C := Div0C/PrinC .

The absolute Galois group GQ := Gal(Q/Q) acts on the divisors.
This induces an action on Pic0C and we define

Pic0C(Q) := (Pic0C)
GQ .

Theorem (Weil, 1948)
There is an abelian variety J of dimension g such that

J(Q) = Pic0C(Q),

where J(Q) denotes the Q-rational points on J .
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We define
Pic0C := Div0C/PrinC .

The absolute Galois group GQ := Gal(Q/Q) acts on the divisors.
This induces an action on Pic0C and we define

Pic0C(Q) := (Pic0C)
GQ .

Theorem (Weil, 1948)
There is an abelian variety J of dimension g such that

J(K) = Pic0C(K)

for every extension field K of Q, where J(K) denotes the K-rational points
on J .



Properties of Jacobians
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We call J the Jacobian of C.

■ If g = 1, then J is isomorphic to C.
■ We can embed C into J via ι(P ) = [P −O].

◆ Since O is Q-rational, this embeds C(Q) into J(Q).
◆ So we can use information on J(Q) to get information on C(Q).

■ The group J(Q) is called the Mordell-Weil group of J/Q.
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Theorem (Mordell-Weil, 1920’s).
The group J(Q) is finitely generated. In other words, we have

J(Q) ∼= Zr × J(Q)tors

where

■ the rank r is a nonnegative integer and
■ the torsion subgroup J(Q)tors ⊂ J(Q) is finite.
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Theorem (Mordell-Weil, 1920’s).
The group J(Q) is finitely generated. In other words, we have

J(Q) ∼= Zr × J(Q)tors

where

■ the rank r is a nonnegative integer and
■ the torsion subgroup J(Q)tors ⊂ J(Q) is finite.

In practice, we can

■ always compute J(Q)tors;
■ often compute r, though no general algorithm is known;
■ sometimes compute generators of J(Q) when g ≤ 3 and the coefficients

of f are reasonably small.
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Bugeaud-Mignotte-Siksek-Stoll-Tengely have an algorithm that can compute
all integral points (x, y) ∈ C(Q) such that |x| ≤ c′f ≈ 102000

provided we have generators for J(Q).

Combined with the upper bound cf obtained using Baker’s method, can list
all integral points.
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Bugeaud-Mignotte-Siksek-Stoll-Tengely have an algorithm that can compute
all integral points (x, y) ∈ C(Q) such that |x| ≤ c′f ≈ 102000

provided we have generators for J(Q).

Combined with the upper bound cf obtained using Baker’s method, can list
all integral points.

■ Currently this is only applicable for g ≤ 3.
■ Even then, computing generators for J(Q) is usually quite difficult (and

often impossible).

Most other approaches rely on p-adic analysis.
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■ p: prime of good reductioan for C, i.e. p ∤ 2 · disc(f)
■ f̃ := f mod p ∈ Fp[x]

Then y2 = f̃(x) defines a hyperelliptic curve C̃.
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■ p: prime of good reductioan for C, i.e. p ∤ 2 · disc(f)
■ f̃ := f mod p ∈ Fp[x]

Then y2 = f̃(x) defines a hyperelliptic curve C̃.

Let Qp denote the field of p-adic numbers, the completion of Q wrt. the
absolute value ∣∣∣pn

a

b

∣∣∣
p
= p−n, p ∤ ab.

■ Can define the reduction P̃ ∈ C̃(Fp) of a point P ∈ C(Qp).
■ We want to do analysis on C(Qp).
■ In particular, we want a well-behaved integration theory on C(Qp).
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Problem: Topologically, C(Qp) is totally disconnected.

We can write C(Qp) as a disjoint union of residue disks

C(Qp) =
⋃

Q∈C̃(Fp)

DQ,

where
DQ = {P ∈ C(Qp) : P reduces to Q mod p}.

It’s easy to define p-adic integrals (e.g. of holomorphic differentials) inside
residue disks, but how can we integrate from one disk to another?
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Coleman constructed path-independent p-adic integrals
∫ Q

P
ω for

P,Q ∈ C(Qp) and a meromorphic 1-form ω on C(Qp), regular at P and Q.
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Coleman constructed path-independent p-adic integrals
∫ Q

P
ω for

P,Q ∈ C(Qp) and a meromorphic 1-form ω on C(Qp), regular at P and Q.

Properties.

■ Linearity:
∫ Q

P
(αω1 + βω2) = α

∫ Q

P
ω1 + β

∫ Q

P
ω2.

■ Additivity:
∫ R

P
ω =

∫ Q

P
ω +

∫ R

Q
ω.

■ Fundamental theorem of calculus:
∫ Q

P
df = f(Q)− f(P ).

■

∫
D
ω = 0 if D ∈ Div0(C) represents a torsion point on J .

■ Coleman integrals can be computed in practice (Balakrishnan, 2010).

More generally, we can define and compute iterated Coleman integrals, e.g.
double integrals: ∫ Q

P

η · ω :=

∫ Q

P

η(R)

∫ R

P

ω.
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The holomorphic differentials on C(Qp) are generated by ω0, . . . , ωg−1, where

ωi =
xidx

2y
.

We define

fi(P ) :=

∫ P

O

ωi

on C(Qp).

■ By properties of the Coleman integral, can extend these to J(Qp).
■ By restriction, get Qp-valued functionals f0, . . . , fg−1 on J(Q).



Chabauty’s theorem
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Theorem (Chabauty, 1941).
Suppose that g ≥ 2 and r < g. Then there exist α0, . . . , αg−1 ∈ Qp, not all
equal to 0, such that

g−1∑

i=0

αifi(P )

vanishes on J(Q).
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Theorem (Chabauty, 1941).
Suppose that g ≥ 2 and r < g. Then there exist α0, . . . , αg−1 ∈ Qp, not all
equal to 0, such that

g−1∑

i=0

αifi(P )

vanishes on J(Q).

Proof. The p-adic closure J(Q) of J(Q) in J(Qp) has dimension at most
r < g.
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Theorem (Chabauty, 1941).
Suppose that g ≥ 2 and r < g. Then there exist α0, . . . , αg−1 ∈ Qp, not all
equal to 0, such that

g−1∑

i=0

αifi(P )

vanishes on J(Q).

Proof. The p-adic closure J(Q) of J(Q) in J(Qp) has dimension at most
r < g.

Corollary.

ρ(P ) :=

g−1∑

i=0

αifi(ι(P ))

vanishes on C(Q) ⊂ C(Qp).



Chabauty’s Theorem II
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■ On a residue disk D of C(Qp), can write ρ|D as a convergent p-adic
power series.

■ Such power series only have finitely many zeroes which we can compute in
practice to finite precision pN .

Corollary. If g ≥ 2 and r < g, then there are only finitely many rational
points on C.
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■ On a residue disk D of C(Qp), can write ρ|D as a convergent p-adic
power series.

■ Such power series only have finitely many zeroes which we can compute in
practice to finite precision pN .

Corollary. If g ≥ 2 and r < g, then there are only finitely many rational
points on C.

This is superseded by Faltings’ theorem: If g ≥ 2, then C(Q) is finite.

But, in contrast to Faltings’ proof, Chabauty’s proof can often be used in
practice to actually find C(Q) (and hence the integral points on C)!

■ originally due to Coleman (1985)
■ improved and applied by Flynn, Bruin, Stoll, Poonen, Schaefer
■ can be combined with other methods, e.g. the Mordell-Weil sieve
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What if r ≥ g?

■ In this case Chabauty fails completely, unless dim J(Q) < g.
■ Conjecture. r = g and J simple ⇒ dimJ(Q) = g.
■ Kim has a program to develop a “non-abelian” Chabauty method.

◆ replace single Coleman-integrals by iterated Coleman integrals
◆ replace the Jacobian by a higher-dimensional “Selmer variety”

■ First step: Make this practical for r = g and integral points!



r = g: strategy
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Recall Chabauty’s idea:

■ We have Qp-valued functionals f0, . . . , fg−1 on J(Q).
■ So if r < g, then some linear combination of the fi must vanish on J(Q).
■ Compose with ι : C(Q) →֒ J(Q) to get a function that

◆ vanishes on C(Q) ⊂ C(Qp),
◆ can be written as a convergent power series on every residue disk.
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Recall Chabauty’s idea:

■ We have Qp-valued functionals f0, . . . , fg−1 on J(Q).
■ So if r < g, then some linear combination of the fi must vanish on J(Q).
■ Compose with ι : C(Q) →֒ J(Q) to get a function that

◆ vanishes on C(Q) ⊂ C(Qp),
◆ can be written as a convergent power series on every residue disk.

Idea for r = g. Construct a Qp-valued quadratic form h on J(Q) such that
h ◦ ι = τ − ρ on C(Qp), where

■ ρ takes values on integral points in an explicitely computable finite set T ;
■ τ can be written as a convergent power series on every residue disk.
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Recall Chabauty’s idea:

■ We have Qp-valued functionals f0, . . . , fg−1 on J(Q).
■ So if r < g, then some linear combination of the fi must vanish on J(Q).
■ Compose with ι : C(Q) →֒ J(Q) to get a function that

◆ vanishes on C(Q) ⊂ C(Qp),
◆ can be written as a convergent power series on every residue disk.

Idea for r = g. Construct a Qp-valued quadratic form h on J(Q) such that
h ◦ ι = τ − ρ on C(Qp), where

■ ρ takes values on integral points in an explicitely computable finite set T ;
■ τ can be written as a convergent power series on every residue disk.

Then we can write h =
∑

1≤i≤j≤g αijfifj , so ρ can be written as a
convergent power series on every residue disk.
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The p-adic height
h : J(Q) → Qp

■ is a quadratic form;
■ was defined by several authors (Bernardi, Schneider, Perrin-Riou,

Mazur-Tate, Coleman-Gross);
■ has properties analogous to the canonical (or Néron-Tate) height;
■ decomposes as a finite sum h =

∑
q hq over the prime numbers;

■ is a linear combination

h =
∑

1≤i≤j≤g

αijfifj

if r = g, since then the products fifj , 1 ≤ i ≤ j ≤ g form a basis of the
Qp-valued quadratic forms on J(Q).



Local heights at p
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The local height hp is given in terms of Coleman integration.

Theorem 1 (Balakrishnan-Besser-M., 2013) If P ∈ C(Qp), then hp(ι(P ))
is equal to a double Coleman integral

τ(P ) := hp(ι(P )) =

g−1∑

i=0

∫ P

O

ωi · ω̄i,

where {ω̄0, · · · , ω̄g−1} are certain explicitly computable differentials on C.
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The local height hp is given in terms of Coleman integration.

Theorem 1 (Balakrishnan-Besser-M., 2013) If P ∈ C(Qp), then hp(ι(P ))
is equal to a double Coleman integral

τ(P ) := hp(ι(P )) =

g−1∑

i=0

∫ P

O

ωi · ω̄i,

where {ω̄0, · · · , ω̄g−1} are certain explicitly computable differentials on C.

In particular, hp = τ

■ can be written as a convergent power series on every residue disk;
■ can be computed in practice (Balakrishnan, 2011).
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If q 6= p, then hq is defined in terms of arithmetic intersection theory on a
regular model of C over Spec(Z).
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If q 6= p, then hq is defined in terms of arithmetic intersection theory on a
regular model of C over Spec(Z).

Theorem 2 (Balakrishnan-Besser-M., 2013) If r = g, then there is an
explicitly computable finite set T ⊂ Qp such that

ρ(P ) := −
∑

q 6=p

hq(ι(P )) = τ(P )− h(ι(P ))

only takes values in T on integral points.
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If q 6= p, then hq is defined in terms of arithmetic intersection theory on a
regular model of C over Spec(Z).

Theorem 2 (Balakrishnan-Besser-M., 2013) If r = g, then there is an
explicitly computable finite set T ⊂ Qp such that

ρ(P ) := −
∑

q 6=p

hq(ι(P )) = τ(P )− h(ι(P ))

only takes values in T on integral points.

In practice, we can use Gröbner bases and linear algebra to compute

■ ρ(P ) for given P ∈ C(Q) (M., 2010);
■ the set T .
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Theorem 1 and Theorem 2 can be used for the following algorithm, where
r = g:

■ Find representatives D1, . . . , Dg of nontorsion points in J(Q),
independent mod torsion.

■ Compute

◆ the global p-adic heights h(Dj) and
◆ the single Coleman integrals

∫
Dj

ωi

■ Deduce αij such that h =
∑

1≤i≤j≤g αijfifj .
■ Find power series expansions for τ and for the fifj in every residue disk,
■ Compute the set T such that ρ(P ) ∈ T for all integral P ∈ C(Q).
■ Compute all solutions to ρ(P ) ∈ T across the various residue disks.

The integral points in C(Q) will be contained in this solution set.
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Example 1. Consider C : y2 = x3(x− 1)2 + 1

■ C has genus g = 2.
■ J(Q) has rank 2 and trivial torsion.
■ Q1 = (2,−3), Q2 = (1,−1), Q3 = (0, 1) ∈ C(Q) are integral points on C.

■ Set D1 = Q1 −O, D2 = Q2 −Q3, then
■ the classes [D1] and [D2] in J(Q) are independent.
■ p = 11 is a prime of good reduction.
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■ Compute the height pairings h(Di, Dj) and the Coleman integrals∫
Di

ωk

∫
Dj

ωl and deduce the αij from (α00, α01, α11)
t =




∫
D1

ω0

∫
D1

ω0

∫
D1

ω0

∫
D1

ω1

∫
D1

ω1

∫
D1

ω1∫
D1

ω0

∫
D2

ω0

∫
D1

ω0

∫
D2

ω1

∫
D1

ω1

∫
D2

ω1∫
D2

ω0

∫
D2

ω0

∫
D2

ω0

∫
D2

ω1

∫
D2

ω1

∫
D2

ω1




−1

·




h(D1, D1)
h(D1, D2)
h(D2, D2)




■ Use power series expansions of τ and of the Coleman integrals fi to give a
convergent power series describing ρ in each residue disk.

■ Compute
T = {0, 1/2 · log11(2), 2/3 · log11(2)}.
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For example, on the residue disk containing (0, 1), the only solutions to
ρ(P ) ∈ T modulo 1111 have x-coordinate 0 or

4 · 11 + 7 · 112 + 9 · 113 + 7 · 114 + 9 · 116 + 8 · 117 + 118 + 4 · 119 + 10 · 1110
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For example, on the residue disk containing (0, 1), the only solutions to
ρ(P ) ∈ T modulo 1111 have x-coordinate 0 or

4 · 11 + 7 · 112 + 9 · 113 + 7 · 114 + 9 · 116 + 8 · 117 + 118 + 4 · 119 + 10 · 1110

Here are the recovered integral points and their corresponding ρ-values:

P ρ(P )

(2,±3) 2
3 log(2)

(1,±1) 1
2 log(2)

(0,±1) 2
3 log(2)
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■ Recall that can find the (finitely many) P ∈ C(Qp) such that ρ(P ) ∈ T ,
up to some finite precision pN .

■ In general, some of these correspond to integral points P ∈ C(Q), some
don’t.

Suppose that P ∈ C(Qp) is a solution and we want to show that P does not
correspond to a Q-rational point.
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■ Recall that can find the (finitely many) P ∈ C(Qp) such that ρ(P ) ∈ T ,
up to some finite precision pN .

■ In general, some of these correspond to integral points P ∈ C(Q), some
don’t.

Suppose that P ∈ C(Qp) is a solution and we want to show that P does not
correspond to a Q-rational point.

Simplifying assumptions:

■ g > 1 (different methods exist for g = 1)
■ J(Q) ∼= Zg is free.
■ We know generators [D1], . . . , [Dg] of J(Q).

Suppose P is Q-rational. Then there are a1, . . . , ag ∈ Z such that

ι(z) = a1[D1] + . . .+ ag[Dg].
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Suppose P is Q-rational. Then there are a1, . . . , ag ∈ Z such that

ι(P ) = a1[D1] + . . .+ ag[Dg].

Hence

fi(ι(P )) =

∫ P

O

ωi = a1

∫

D1

ωi + . . .+ ag

∫

Dg

ωi for all i ∈ {0, . . . , g − 1}.
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Suppose P is Q-rational. Then there are a1, . . . , ag ∈ Z such that

ι(P ) = a1[D1] + . . .+ ag[Dg].

Hence

fi(ι(P )) =

∫ P

O

ωi = a1

∫

D1

ωi + . . .+ ag

∫

Dg

ωi for all i ∈ {0, . . . , g − 1}.

Working modulo pN , we can compute a1 mod pN , . . . , an mod pN as




a1 mod pN

...
ag mod pN


 =




∫
D1

ω0 · · ·
∫
Dg

ω0

...
. . .

...∫
D1

ωg−1 · · ·
∫
Dg

ωg−1




−1

·




∫ P

O
ω0
...∫ P

O
ωg−1


 .
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Hence it suffices to show that the residue class c ∈ J(Q)/pNJ(Q)
corresponding to (a1 mod pN , . . . , ag mod pN ) does not contain the image of
a rational point on C.
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Hence it suffices to show that the residue class c ∈ J(Q)/pNJ(Q)
corresponding to (a1 mod pN , . . . , ag mod pN ) does not contain the image of
a rational point on C.

This is a job for the Mordell-Weil sieve (Sharashkin, Flynn, Bruin-Stoll):

■ v: prime of good reduction
■ The following diagram commutes:

C(Q)
ι

//

��

J(Q)

αv

��

C̃(Fv) ιv
// J̃(Fv)
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Hence it suffices to show that the residue class c ∈ J(Q)/pNJ(Q)
corresponding to (a1 mod pN , . . . , ag mod pN ) does not contain the image of
a rational point on C.

This is a job for the Mordell-Weil sieve (Sharashkin, Flynn, Bruin-Stoll):

■ v: prime of good reduction
■ The following diagram commutes:

C(Q) //

��

J(Q)/pNJ(Q)

αv

��

C̃(Fv)
βv

// J̃(Fv)/p
N J̃(Fv)

■ If αv(c) /∈ βv(C̃(Fv)), then we’re done.
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Hence it suffices to show that the residue class c ∈ J(Q)/pNJ(Q)
corresponding to (a1 mod pN , . . . , ag mod pN ) does not contain the image of
a rational point on C.

This is a job for the Mordell-Weil sieve (Sharashkin, Flynn, Bruin-Stoll):

■ S: finite set of primes of good reduction
■ The following diagram commutes:

C(Q) //

��

J(Q)/pNJ(Q)

αS

��∏
v∈S C̃(Fv)

βS

//
∏

v∈S J(Fv)/p
NJ(Fv)

■ If αS(c) /∈ βS

(∏
v∈S C̃(Fv)

)
, then we’re done.
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Now use the Mordell-Weil sieve to show that the list

(2,±3), (1,±1), (0,±1) ∈ C(Q)

of integral points on C : y2 = x3(x− 1)2 + 1 is complete.

First attempt:

■ Use p = 11, N = 6.
■ After taking out residue classes containing integral points, we are left with

12 residue classes in J(Q)/116J(Q).
■ Applying the Mordell-Weil sieve using S = {7, 17, 5903}, can eliminate 10

of these.
■ No prime 5903 ≤ v ≤ 107 seems to help with the remaining classes.
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Second attempt: Apply quadratic Chabauty to C with

■ p1 = 5, N1 = 4,
■ p2 = 11, N2 = 6.
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Second attempt: Apply quadratic Chabauty to C with

■ p1 = 5, N1 = 4,
■ p2 = 11, N2 = 6.

After taking out residue classes containing integral points, we are left with
209 residue classes in J(Q)/MJ(Q), where M = 54 · 116.

■ We use the set of primes S = {17, 863, 7193}.
■ This Mordell-Weil sieve computation shows that none of the 209 residue

classes contains the image of a rational point on the curve.
■ So we’ve found all integral points on C.
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Let C be the genus 4 hyperelliptic curve

y2 = x4(x− 2)2(x− 1)(x+ 1)(x+ 2) + 4.

Since r = 4 = g > 3, the previously available methods are not applicable.

We use

■ quadratic Chabauty for p = 5, 7, 11,
■ the Mordell-Weil sieve for v = 7, 13, 29, 53, 73, 103, 109, 181, 317.

This shows that

(0,±2), (1,±2), (2,±2), (−1,±2), (−2,±2)

are the only integral points on C.
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■ Extension to number fields: work in progress

◆ works quite well for g = 1, real quadratic fields
◆ imaginary quadratic fields especially interesting

■ Other types of curves: superelliptic, smooth plane quartics.
■ r > g?
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