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To test if simultaneous spectral and temporal processing is required to extract robust features for auto-

matic speech recognition (ASR), the robust spectro-temporal two-dimensional-Gabor filter bank

(GBFB) front-end from Sch€adler, Meyer, and Kollmeier [J. Acoust. Soc. Am. 131, 4134–4151 (2012)]

was de-composed into a spectral one-dimensional-Gabor filter bank and a temporal one-dimensional-

Gabor filter bank. A feature set that is extracted with these separate spectral and temporal modulation

filter banks was introduced, the separate Gabor filter bank (SGBFB) features, and evaluated on the

CHiME (Computational Hearing in Multisource Environments) keywords-in-noise recognition task.

From the perspective of robust ASR, the results showed that spectral and temporal processing can be

performed independently and are not required to interact with each other. Using SGBFB features per-

mitted the signal-to-noise ratio (SNR) to be lowered by 1.2 dB while still performing as well as the

GBFB-based reference system, which corresponds to a relative improvement of the word error rate by

12.8%. Additionally, the real time factor of the spectro-temporal processing could be reduced by more

than an order of magnitude. Compared to human listeners, the SNR needed to be 13 dB higher when

using Mel-frequency cepstral coefficient features, 11 dB higher when using GBFB features, and 9 dB

higher when using SGBFB features to achieve the same recognition performance.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4916618]
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I. INTRODUCTION

After years of investigation on robust automatic speech

recognition (ASR), human listeners still outperform ASR

systems in realistic acoustic environments (Lippmann, 1997;

Meyer et al., 2011; Barker et al., 2013). Inspired by the abil-

ity of the human auditory system to decode speech signals in

the most difficult acoustic conditions, many principles of au-

ditory signal processing were integrated into ASR systems in

attempts to improve their recognition performance. These

approaches usually targeted the feature extraction stage

(front-end), where the more tangible peripheral auditory

processes can be mapped to signal processing algorithms

and which is more specific to auditory processes than the

recognition stage (back-end). The current study aimed to

improve the front-end by extracting spectro-temporal modu-

lation features with independent spectral and temporal proc-

essing instead of joint spectro-temporal processing.

Many of the speech representations (or features) used in

ASR systems stem from spectro-temporal representations of

sound that already incorporate basic auditory principles,

such as the log Mel-spectrogram (LMSpec). The LMSpec is

a spectrogram with a logarithmic amplitude and a Mel fre-

quency scaling. It considers very basic auditory principles of

the human auditory system, such as the resolution across fre-

quencies and logarithmic perception of intensity. However,

these static spectro-temporal representations themselves are

not well suited as robust speech features because environ-

mental changes, such as additive noise and reverberation,

strongly affect them. The characteristics of the inherently

dynamic speech signals are better represented in changes

that occur in the spectro-temporal representations across fre-

quencies and over time; this is why many robust features are

extracted by encoding spectral or temporal changes. An

example for spectral processing is the still widely used Mel-

frequency cepstral coefficients (MFCCs), which perform a

discrete cosine transform in the spectral dimension of a

LMSpec (Davis and Mermelstein, 1980). An example for

temporal processing is the calculation of discrete temporal

first and second order derivatives, called deltas and double

deltas, which are usually used to encode the dynamics of

MFCC and other features. Many other, differently motivated

spectral and temporal processing schemes were combined

with the goal of improving the robustness of ASR systems

(e.g., Hermansky, 1990; Hermansky et al., 1992; Hermansky

and Sharma, 1999; Nadeu et al., 2001; Hermansky and

Fousek, 2005; Moritz et al., 2011) but without relating the

spectral to the temporal processing nor vice versa.

In approaches to join spectral and temporal modulation

processing, and thus allowing for higher order dependencies

between both, Kleinschmidt (2002) and Kleinschmidt et al.
(2002) found that the physiologically motivated (Qiu et al.,
2003) two-dimensional (2D) spectro-temporal Gabor filters

were good candidates. Aside from their use in ASR systems, a

number of studies suggested the use of 2D Gabor filters to

extract spectro-temporal features for acoustic signal and

speech analysis (e.g., Chi et al., 2005; Mesgarani et al., 2006;
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Ezzat et al., 2007). Because in early approaches to extract fea-

tures with 2D Gabor filters the filter parameters were deter-

mined in a data driven way, and as a consequence some

feature dimensions were highly correlated, Meyer and

Kollmeier (2011) mapped these Gabor features to an interme-

diate phoneme probability layer by means of a tandem setup

to use them with standard Gaussian Mixture Model (GMM)

and Hidden Markov Model (HMM) based recognition back-

ends. Recently, in an approach to structure the 2D Gabor filter

parameter space and gain a set of universal 2D Gabor filters

for robust speech recognition, the 2D Gabor filter bank

(GBFB) features were introduced and shown to improve the

robustness of ASR systems when they are used directly with

standard GMM/HMM back-ends by Sch€adler et al. (2012)

and Moritz et al. (2013). The 2D spectro-temporal filters of

the GBFB, which were used to extract robust speech features

by 2D-convolving each of them with a LMSpec, are depicted

in Fig. 1 and cover a range of spectral and temporal modula-

tion frequencies that were found to be beneficial for robust

ASR. The extraction of GBFB features is explained in detail

in Sec. II B. Meyer and Kollmeier (2011) attributed the

improvements in robustness to a locally increased SNR due to

the higher sensitivity to speech patterns of the more complex

spectro-temporal patterns, most notably to the ability of dis-

criminating upward and downward spectro-temporal patterns

(cf. off-axis filters in Fig. 1). Schr€oder et al. (2013) found that

using GBFB features can improve the recognition perform-

ance in a speech-unrelated acoustic event detection task; this

confirms the universality of the GBFB filter set for acoustic

recognition tasks. However, a model of joint spectro-temporal

processing does not allow changes to the spectral processing

without having an effect on the temporal processing and vice

versa; this would imply that all models of separate spectral

and temporal processing are insufficient. It is unknown to

what extent spectral and temporal processing in the auditory

system of mammals interact with each other (Depireux et al.,
2001; Qiu et al., 2003). Further, the more complex 2D filter-

ing process results in considerably higher computational costs

for the feature extraction. If spectral and temporal processing

were independent processes, the mentioned limitations would

not apply.

In this study, it was investigated whether the improve-

ments in robustness gained with the structured, spectro-

temporal GBFB approach require the complex joint 2D

spectro-temporal processing or if a separate spectral and

temporal processing with two 1D GBFB can be used to

extract features that perform similarly or better. The basic

idea was to replace the inseparable up- and downward 2D

patterns of the GBFB with separable patterns and then per-

form the spectral and the temporal filtering separately with

1D Gabor filters. A 1D Gabor filter is depicted in Fig. 2

and the relation of 1D-spectral and 1D-temporal Gabor fil-

ters to the inseparable up- and downward 2D-spectro-tem-

poral Gabor filters is illustrated in Fig. 3. In Fig. 3, it can

be observed that the addition (A)/subtraction (S) of an

inseparable 2D spectro-temporal downward (D) filter to/

from its corresponding upward (U) filter is identical to the

separable filter RR/II, which in turn can be described by a

separate spectral and temporal filtering process with the

real (R) or imaginary (I) part of 1D Gabor functions. The

relation between a pair of a spectral and a temporal 1D fil-

ter, and the corresponding 2D filter is the outer product and

is explained later in more detail. The combination of spec-

tral and temporal filters with different phases, which were

determined by the use of the real (R) or imaginary (I) part,

but identical center modulation frequencies resulted in

FIG. 1. Taken from Sch€adler et al. (2012). Filter shapes of the 2D Gabor fil-

ter bank (GBFB) filters. Each tile represents the filter function of a spectro-

temporal 2D Gabor filter, where the horizontal axis within each tile is the

temporal one and the vertical axis is the spectral one. The 2D filter functions

are sorted by their spectral and temporal center modulation frequencies. To

extract GBFB features, a LMSpec of speech is filtered by means of a 2D

convolution with these filters. While the filters on the axis (0 Hz or 0 cycles/

channel) are purely spectral or purely temporal filters and can be separated

into a real-valued spectral 1D filter and a real-valued temporal 1D filter, the

off-axis filters are inseparable spectro-temporal filters.

FIG. 2. Absolute (E), real (R), and imaginary (I) part of a complex-valued

filter function of a 1D Gabor filter with 3.5 half-waves under the envelope.

Each part is a real-valued function and can be used to filter a signal where R

and I are band-pass filters with the same transfer function and only differ in

the phase, while E describes a low-pass filter.
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different effective spectro-temporal filter patterns (cf. RR,

RI, IR, and II in Fig. 3). Hence each inseparable 2D filter

in Fig. 1 could have been replaced with different separable

2D filters that have the same absolute spectral and temporal

center modulation frequencies as the inseparable 2D filter.

Instead of only replacing the inseparable 2D filters, the

whole 2D GBFB was replaced by two separate 1D GBFB: A

spectral one and a temporal one. For these, the positive spec-

tral and temporal center modulation frequencies were taken

from the 2D GBFB. The phase of the employed filters was

determined by taking the real (R) or the imaginary (I) part of

the 1D Gabor filters. All spectral filters were assumed to have

the same phase, and also all temporal filters were assumed to

have the same phase, while spectral and temporal filters were

allowed to have different phases. This structure allowed four

SGBFB feature vectors with different combinations of spectral

and temporal phases: Real-real (RR), real-imaginary (RI),

imaginary-real (IR), and imaginary-imaginary (II) (cf. RR, RI,

IR, and II in Fig. 3). To evaluate which of the phase combina-

tions performs best in a robust ASR task, the four different

SGBFB feature vectors were compared to GBFB and MFCC

features on the CHiME (Computational Hearing in

Multisource Environments) keyword recognition task. Barker

et al. (2013) created the CHiME keyword recognition task to

compare the robustness of ASR systems under controlled, real-

istic low-SNR conditions and to be able to compare the ASR

performance to performance data from human listeners.

Further, the role of the spectral and temporal modulation phase

was assessed in recognition experiments combining several

SGBFB feature vectors with different phase combinations.

II. METHODS

A. Spectro-temporal representation

The calculation of the LMSpec was based on an ampli-

tude spectrogram with frames of 25 ms length and a temporal

resolution of 100 frames/s. The linear frequency axis of the

spectrogram was transformed to a Mel-scale using 31

equally spaced triangular filters with center frequencies in

the range from 124 to 7284 Hz. The values of the amplitude

Mel-spectrogram were subsequently converted to a decibel

scale. All feature extraction schemes that are presented in

the following extracted features from a LMSpec. An exam-

ple of a LMSpec of a speech signal is depicted in the upper

panel of Fig. 4.

B. Gabor filter bank features

2D GBFB features were extracted from a LMSpec using

auditory-motivated spectro-temporal 2D Gabor filters, as

described by Sch€adler et al. (2012). There a LMSpec was

2D convolved (filtered) with a set of 2D Gabor filters to

model the response of a range of neurons in the auditory cor-

tex to the presented spectro-temporal patterns. The 2D filter

shapes that were used to extract GBFB features are depicted

in Fig. 1. These filters were tuned to specific spectro-

temporal modulation patterns that occur in speech signals

and motivated by the fact that some neurons in the primary

auditory cortex of mammals were found to be tuned to very

similar spectro-temporal modulation patterns (Qiu et al.,
2003). A 2D Gabor filter represents an idealized spectro-

temporal receptive field and requires a pairing of spectral

and temporal modulation frequencies. The pair of modula-

tion frequencies determines a filter’s shape and, hence,

which spectro-temporal pattern would yield the strongest

response in this particular filter. The main parameters of the

employed 2D Gabor filters were the spectro-temporal center

modulation frequencies and the spectral and temporal modu-

lation bandwidths. Sch€adler et al. (2012) structured the pa-

rameters of the 2D Gabor filters in a filter bank, which

limited the number of free parameters and the correlation

between the resulting feature dimensions. In this study, the

FIG. 3. Inseparable and separable 2D spectro-temporal Gabor filters and their

relation to separate 1D spectral and 1D temporal Gabor filters. Each tile repre-

sents the filter function of a 2D spectro-temporal filter with the horizontal axis

within each tile being the temporal and the vertical axis being the spectral

one. Left panel: The 2D upward (U) and downward (D) filters are not separa-

ble, while their sum A (U þ D) and difference S (U�D) are; right panel:

Effective 2D filter shapes when applying subsequent spectral and temporal

1D filters using different parts of 1D Gabor filters (E, envelope; R, real part; I,

imaginary part). The amplitude of the 2D filters is encoded in gray scale,

where white means high amplitude and black low amplitude.

FIG. 4. Filtering a log Mel-spectrogram (LMSpec) by means of a 2D convo-

lution: The LMSpec in the upper panel is 2D-convolved with a spectral 1D

filter s, a temporal 1D filter t and the corresponding spectro-temporal 2D fil-

ter st. The result of the filtering process is depicted to the left of the corre-

sponding filter. The amplitude of the 2D filters and (filtered) spectrograms is

encoded in gray scale where white encodes high amplitude and black enco-

des low amplitude.
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same set of GBFB parameters was used, which was opti-

mized for ASR and confirmed to extract robust ASR features

(Moritz et al., 2013): The considered spectral modulation

frequencies were xs¼ 0.000, 0.029, 0.060, 0.122, 0.250

cycles/channel. The considered temporal modulation fre-

quencies were xt¼ 0.0, 6.2, 9.9, 15.7, 25.0 Hz. The number

of half-waves under the envelope, which determines the

bandwidth, in the spectral dimension was �s¼ 3.5. The num-

ber of half-waves under the envelope in the temporal dimen-

sion was �t¼ 3.5. The maximum extension of the filters in

the spectral dimension was bmax
s ¼ 3 � 31, which is three

times the number of Mel-bands. And the maximum exten-

sion of the filters in the temporal dimension was bmax
t ¼ 40

frames (400 ms). The considered spectro-temporal center

modulation frequencies were combinations of the spectral

and temporal modulation frequencies and hence arranged on

a grid (cf. Fig. 1). Spectral and temporal cross-sections

through the maximum of the 2D frequency response of the

GBFB filters with these parameters are shown in Fig. 5. To

extract GBFB features from a LMSpec, it was convolved

with each of the 41 2D Gabor filters, which resulted in 41 fil-

tered LMSpecs. Subsequently, the filtered LMSpecs were

spectrally sub-sampled at a rate of a quarter of the extent of

the spectral width of the corresponding filter. This reduced

redundancy from the filtered LMSpec, and was shown to be

superior to using a Principle Component Analysis (Sch€adler

et al., 2012). The filtered and sub-sampled LMSpecs were

concatenated and formed a 455-dimensional feature vector,

which is referred to as GBFB features. The difference in

dimensionality to the original GBFB features, which are

311-dimensional, was due to the larger bandwidth (8 vs

4 kHz) that was considered in this study.

C. Separate Gabor filter bank features

Separate Gabor filter bank features (SGBFB) were

extracted with two 1D Gabor filter banks, one spectral and

one temporal, instead of with a filter bank of 2D Gabor

filters.

1. 1D Gabor filters

Equation (1) describes a 1D Gabor filter, where hb is a

Hann envelope function of width b, sx a sinusoid function

with radian frequency x, and g the product of both

hb xð Þ ¼ 0:5� 0:5 cos
2px

b

� �
; � b

2
< x <

b

2
0 else

;

8<
: (1a)

sxðxÞ ¼ expðixxÞ; (1b)

gx;�ðxÞ ¼ sx xð Þ�|fflffl{zfflffl}
carrier

h�=2x xð Þ|fflfflfflffl{zfflfflfflffl}
envelope

: (1c)

The width b is inversely proportional to the radian frequency

x and proportional to the number of half-waves under the

envelope �. Consequently, all 1D Gabor filters gx,� with the

same value for � are constant-Q complex-valued band-pass

filters, where x is the (radian) center frequency and deter-

mines the scale of the filter. The complex-valued filter func-

tion of a 1D Gabor filter with �¼ 3.5 half-waves under the

envelope is depicted in Fig. 2, where E marks the absolute

values (or envelope), R the real part, and I the imaginary

part of the filter. Each of the different parts (E, R, and I) can

be used to filter a signal. While E describes a low-pass filter,

R and I are band-pass filters that only differ in phase and

share the same frequency response. The width b of the

Gabor filters is limited by bmax. Filters with x¼ 0 would

have an infinitely large support, which is why in this case the

width of the envelope is set to bmax, effectively resulting in a

low pass filter (E). These filters (E, R, and I) can be applied

in the spectral or in the temporal dimension to a LMSpec,

resulting in a spectral or temporal modulation filtering,

respectively. In the following, a spectral filter bank and a

temporal filter bank of 1D Gabor filters are presented.

2. 1D Gabor filter banks

The center modulation frequencies (x), the maximum

filter width bmax, and the number of half-waves under the en-

velope �, which determines the filters’ Q-factor were taken

from the GBFB [cf. parameters from Sch€adler et al. (2012)].

Hence the spectral modulation filter bank consisted of five

1D Gabor filters with �¼ 3.5, bmax¼ 93 bands (three times

the number of Mel-bands), and the following spectral modu-

lation frequencies: x¼ 0.000, 0.029, 0.060, 0.122, and 0.250

cycles/band. The temporal modulation filter bank consisted

of five 1D Gabor filters with �¼ 3.5, bmax¼ 40 frames, and

the following spectral modulation frequencies: x¼ 0.0, 6.2,

9.9, 15.7, and 25.0 Hz. As with GBFB filters, the envelope

(E) function of width bmax was used as the filter function if

the width of a filter function would exceed the maximum

width bmax, which here was the case for filters with x¼ 0.

For all other filters (x> 0), only the real (R) or the imagi-

nary (I) part of the filter was used as the filter function. As a

result, in total, nine different spectral filters: 0.000 (E), 0.029

(R and I), 0.060 (R and I), 0.122 (R and I), and 0.250 (R and I)

cycles/band, and nine different temporal filters: 0.0 (E),

6.2 (R and I), 9.9 (R and I), 15.7 (R and I), and 25.0 (R and I)

FIG. 5. Modified from Sch€adler et al. (2012). Upper panel: Spectral cross-

sections through the maximum of the 2D frequency response of GBFB fil-

ters; Lower panel: Temporal cross-sections through the maximum of the 2D

frequency response of GBFB filters. The overlap of adjacent band-pass mod-

ulation filters is constant and governed by the distance between them and by

their bandwidth.
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Hz were considered. The real (R) part and the corresponding

imaginary (I) part only differed in phase and hence shared the

same frequency response. As a consequence, the frequency

responses of the 1D spectral and 1D temporal Gabor filters

were exactly the same as the cross-sections through the maxi-

mum of the 2D frequency responses of the 2D GBFB filters

depicted in Fig. 5. Hence the two 1D Gabor filter banks cov-

ered the same range of spectral and temporal modulation fre-

quencies as the 2D Gabor filters of the GBFB.

3. 1D and 2D filtering of LMSpecs

The 1D filtering was performed by convolution with the

corresponding filter functions. Temporal modulation filters

were represented as row vectors and were convolved with

each channel of the LMSpec independently. Likewise, spec-

tral modulation filters were represented as column vectors

and were convolved with each frame of the LMSpec inde-

pendently. The temporal and spectral 1D filtering was per-

formed by means of a 2D convolution with row and column

vectors, respectively. Therefore the LMSpec was convolved

with a 1D row or column vector, as defined in Eq. (2), where

k and n are the spectral and temporal indices of the LMSpec,

respectively, and i and j the spectral and temporal offset of

the filter from its center, respectively,

filtered-LMSpecðk; nÞ
:¼
X

i;j

LMSpecðk � i; n� jÞ � filterfunctionði; jÞ;

(2)

filtered-LMSpec(k, n) was only calculated if LMSpec(k, n)

existed, so that both the LMSpec and the filtered LMSpec,

had the same size. In the following, a 2D convolution with a

1D filter, i.e., a filter the extent of which in the spectral

dimension is one Mel-band or in the temporal dimension is

one frame, is referred to as a 1D convolution or 1D filtering.

Of course, a LMSpec can first be filtered spectrally, and the

output can than be filtered temporally or vice versa. The

order, i.e., if the spectral or temporal filtering is performed

first, of this special form of spectro-temporal filtering does

not affect the outcome. The outcome of a spectrally and tem-

porally filtered LMSpec, is a spectro-temporally filtered

LMSpec, and the corresponding spectro-temporal filter can

be identified. In Eq. (3), a spectral filter s (column vector)

and a temporal filter t (row vector) were applied in arbitrary

order to a LMSpec

filtered-LMSpec ¼½LMSpec � s� � t (3a)

¼ ½LMSpec � t� � s (3b)

¼ LMSpec � ½s � t�|ffl{zffl}
outer product: st

(3c)

¼ LMSpec � st: (3d)

In Eq. (3c), the 1D convolution with s and t was identified as

the 2D convolution with the outer product of s and t. Hence

the outer product of a spectral 1D and a temporal 1D filter is

a separable filter because it can be described by independent

spectral and temporal filter operations. The same is true for

any 2D filter that can be described by a separate spectral and

temporal 1D filter. Figure 4 shows an example of a LMSpec

of clean speech after filtering using temporal, spectral, and

spectro-temporal filters. The corresponding filter functions

are depicted to the right of the filtered LMSpecs.

4. Feature extraction

SGBFB features were extracted by first filtering the

LMSpec spectrally, where either the R or the I phased filters

were used, except for the DC filter (x¼ 0) for which always

the E type was used. Due to the limited bandwidth in the out-

put of spectral filtering processes with low center modulation

frequencies, high correlations could be observed between

some adjacent channels of the output. To the reduce these

correlations, each spectrally filtered LMSpec was reduced in

dimensionality by keeping only representative Mel-bands.

This was achieved by critically sub-sampling the filtered

LMSpec in spectral dimension at a rate of a quarter of the

corresponding filters width b, where at least the center chan-

nel (Mel-band number 16), and at most all channels were

kept. The same procedure for dimensionality reduction was

used to extract GBFB features. The spectrally filtered and

spectrally down-sampled LMSpecs were then filtered tempo-

rally, where either the R or the I phased filters were used,

except for the DC filter (x¼ 0) for which always the E type

was used. By the subsequent spectral and temporal filtering

of the LMSpec, all considered spectral modulation frequen-

cies were combined with all considered temporal modulation

frequencies. The spectro-temporally filtered LMSpecs were

concatenated and formed a 255-dimensional feature vector.

These features are referred to as separate Gabor filter bank

features or just SGBFB features.

With both the spectral and the temporal filter bank, the

real (R) or the imaginary (I) part of the filters can be used.

The filters that were actually employed are indicated by a

suffix, where the first letter indicates the spectral and the sec-

ond letter the temporal filter phase, e.g., SGBFB-RI. The

effective spectro-temporal filter shapes for all possible com-

binations of all considered spectral and temporal E, R, and I

filters are depicted in Fig. 6.

5. Spectro-temporal modulation phase

Because all four possible SGBFB feature vectors

(SGBFB-RR, SGBFB-RI, SGBFB-IR, and SGBFB-II) cov-

ered the same range and combinations of spectral and tempo-

ral modulation frequencies and only differed in the phase of

the modulation filters, it was investigated which phase com-

bination offered the most robust representation in a speech-

in-noise recognition experiment. Only two phase values

were considered: The first one corresponded to the real (R)

part of a Gabor filter (no phase shift), and the second one

corresponded to the imaginary (I) part, where the carrier

phase was shifted by p=2 rad relative to the real part. The

real-real (RR) and imaginary-imaginary (II) spectro-

temporal filters can be derived from the corresponding

upward (U) and downward (D) filters by addition (A) and
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subtraction (S) as depicted in Fig. 3, while the real-

imaginary (RI) and imaginary-real (IR) phase combinations

cannot be represented by linear combination of any two fil-

ters of the 2D GBFB. To take multiple phase combinations

into account, different single SGBFB feature vectors were

concatenated and the robustness of the combined—or

dual—SGBFB feature vectors was determined in a speech-

in-noise recognition experiment. The concatenation of two

255-dimensional, single feature vectors resulted in a 510-

dimensional dual feature vector and is referred to as

SGBFB-X-Y, where X determined the phases of the first and

Y the phases of the second vector, e.g., SGBFB-RR-II. A

dual SGBFB feature vector represented all spectro-temporal

modulation frequencies twice, in contrast to the 455-

dimensional GBFB feature vector, where only the modula-

tion frequencies of the truly spectro-temporal filters were

represented twice [cf. upward (U) and downward (D) filters

in Fig. 1]. This explains the difference in dimensionality

between dual SGBFB feature vectors and the GBFB feature

vector. The concatenation of feature vectors with all possible

phase combinations combined all considered spectral and

temporal 1D filters and hence extracted 1020-dimensional

feature vectors effectively using all 81 2D patterns depicted

in Fig. 1. These feature vectors are referred to as complete
SGBFB features or SGBFB-RR-RI-IR-II.

D. Feature normalization

Blind feature statistics adaptation, such as mean and

variance normalization (MVN) (Viikki and Laurila, 1998) or

histogram equalization (HEQ) (De la Torre et al., 2005) can

improve the robustness of an ASR system. All features were

normalized using histogram equalization (HEQ). As each

feature dimension was processed independently, the process

is only described for one feature dimension, which is consid-

ered to be a time series. While mean and variance normaliza-

tion normalizes the first two statistical moments of the

distribution of the values of the time series, HEQ can nor-

malize even higher statistical moments, such as skewness

and kurtosis. For this, the values of the time series were pro-

jected by a function that mapped the source distribution to a

desired target distribution. The mapping function was esti-

mated by calculating 100 percentiles (e.g., 0.5%, 1.5%, …,

99.5%) of the source distribution and mapping these to the

same percentiles of the desired target distribution, where val-

ues between the percentiles were interpolated linearly. Care

needed to be taken when estimating the percentiles of the

source distribution, as the 0% and 100% percentiles could

not be reached with finite time series. The maximum

expected percentile pmax
N and minimum expected percentile

pmin
N when drawing N samples from a distribution were esti-

mated using Eq. (4),

pmax
N ¼ 100 � N

N þ 1
; (4a)

pmin
N ¼ 100 � 1

N þ 1
: (4b)

Therefore, 100 equally spaced percentiles between pmin
N and

pmax
N were mapped to the corresponding percentiles of the

standard normal distribution, where N was the number of

feature vectors. The resulting time series had—within the

limits due to mapping only 100 percentiles—the same

moments as the standard normal distribution. All features

were processed with HEQ on a per-utterance basis, where

the average utterances length of the employed corpus was

1.8 6 0.25 s.

E. Recognition experiment

The task that was employed to evaluate the robustness

of ASR systems is the recognition of English commands

being spoken in noisy living room environments that were

recorded using an binaural manikin. Therefore the training,

development, and test data sets from the first track of the sec-

ond CHiME challenge (Vincent et al., 2013) were used. The

sentences of this corpus were recorded from 34 different

(male and female) speakers. They have a fixed syntax of the

form “command color preposition letter number adverb”

(e.g., “put red at G9 now”), where the words were drawn

from a closed vocabulary. The utterances of the development

and test data set were filtered with the binaural combined

head and room impulse responses of two rooms (a lounge

and a kitchen) corresponding to a frontal position at a dis-

tance of 2 m. Subsequently, they were mixed with noise

FIG. 6. All possible combinations of spectral and temporal 1D GBFB filters

and their equivalent, separable spectro-temporal 2D filter functions. Each

tile represents the outer product of the corresponding spectral and temporal

filter functions with the horizontal axis within each tile being the temporal

and the vertical axis being the spectral one. The 1D filters, depicted above

and to the left of the 2D filters, are sorted by spectral and temporal center

modulation frequencies, and are grouped according to the part of the com-

plex 1D Gabor filter that is used: Envelope (E), real (R), imaginary (I). For a

specific separate Gabor filter bank (SGBFB) feature vector, only a subset of

these filters is used, which is indicated by a two-letter suffix. For example,

for the SGBFB-RI feature set, the spectral E and R filters are combined with

the temporal E and I filters. Note that each SGBFB feature vector covers the

whole range of considered modulation frequencies, and that none of the 81

2D filter shapes is repeated.
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samples recorded using the binaural manikin in the same

environments at SNRs from �6 to 9 dB. In this study, the

binaural signals were mixed down to one channel prior to

the feature extraction by adding the left and the right chan-

nel. The whole sentences had to be recognized but only the

percent correct value of the letter (in the example: G) and

the digit (in the example: 9) was evaluated as in the first

track of the second CHiME challenge.

Three different training data sets were available and

used to evaluate the performance of ASR systems depending

on the training condition: Clean, reverberated, and isolated

(which is noisy and reverberated). While the clean data set

contained unprocessed speech samples, the utterances of the

reverberated and isolated data sets were filtered with the bin-

aural impulse responses. The utterances of the isolated (or

noisy) data set were additionally mixed with noise samples

that were recorded with the binaural manikin in the corre-

sponding room at SNRs from �6 to 9 dB. Even though some

of the considered front-ends might have performed better

with additional training data, the unmodified training data

sets from the CHiME challenge were used for the sake of

comparability. For evaluation, each ASR system was trained

with the three different training data sets. While all pilot

experiments had been conducted with the development data

set, the results were obtained on the test data set.

The training and testing scripts provided in the CHiME

challenge are based on HTK (Young et al., 2009). The dif-

ferences between the provided scripts and the scripts that

were actually used for conducting the experiments are high-

lighted in Sec. II G. For each training data set, the recogni-

tion performance in percent-of-digits-and-letters correct was

measured at SNRs from �6 to 9 dB in 3 dB steps. The uncer-

tainty of the performance measure due to the limited amount

of test sentences (600) was estimated in advance, because it

consisted of 1200 independent binary decisions; 600 for dig-

its and 600 for letters. At 50% correct it happened to be

about 1.45 percentage points, at 70% correct about 1.32 per-

centage points, and at 90% correct it was estimated to be

about 0.85 percentage points. The recognition results, which

depend on the SNR, were compared between different sys-

tems by calculating the relative change in SNR that would

be required to get the same performance with two different

systems, as described in Sec. II F. Additionally, human rec-

ognition performance data from the first CHiME challenge

was available and used to present selected results in terms of

the remaining man-machine gap, as described in Sec. II H.

F. Robustness measure

To report the relative improvement of a system over a

reference system in a single value with physical meaning,

the equal-performance increase in dB SNR (EPSI) is

reported. This type of reporting is related to the speech

reception threshold, which is widely used to measure the per-

formance of human listeners to recognize speech in noise.

The speech reception threshold is the SNR that is required to

understand a specific portion, e.g., 50%, of the presented

speech material. To use all available data points, the compar-

ison was carried out at different performance levels. Hence

the difference in SNR between the performances of two rec-

ognition system was integrated over the performance range

where two systems could be compared. Let P(r) be the per-

formance graph of an ASR system, with r being the SNR in

dB and P being the recognition performance at that SNR.

Applying Eq. (5) guarantees the monotonicity of the per-

formance graphs Pmon(r),

Pmon SNRð Þ ¼ min
r�SNR

P rð Þ: (5)

The performance levels at which the systems were compared

were interpolated in 0.5 dB steps in the region that data for

both systems was available, as illustrated in Fig. 7. The aver-

age over the differences in SNR is invariant under any mon-

otonic transformation of the performance axis. It is

intuitively interpreted as the increase (or decrease) in SNR

that is needed to get the same performance with the com-

pared system as with the reference system. When comparing

two ASR systems A and B, a symmetric EPSI was achieved

by averaging the differences with A as the reference for B

and with B as the reference for A. Ideally, the recognition

performance of human normal-hearing listeners would have

been used as a reference for all experiments. Although

human performance data existed for the employed task, the

human speech recognition (HSR) performance at the lowest

SNR (�6 dB) was about 90% word recognition rate; so good

that only few ASR systems could have been compared to it.

Hence a reference ASR system was used instead, and only

the best performing systems were compared to HSR

performance.

G. Reference systems

Standard MFCCs and GBFB features with HEQ served

as standard reference features. MFCCs were extracted from

a LMSpec by spectrally processing it with a discrete cosine

transform, where only the first 18 coefficients, which account

FIG. 7. Illustration of comparing the robustness of two ASR systems in

terms of changes in signal-to-noise ratio (SNR). The average relative

increase/shift of the SNR for a test ASR system that is required to achieve

equal performance with a reference system can be calculated independently

from the scaling of the performance axis. Therefore the integration points

are selected on the SNR axis in 0.5 dB steps in the range where the perform-

ance graphs overlap on the performance axis.
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for spectral modulation frequencies from 0 to 0.29 cycles/

channel, were used. The 18 MFCCs were concatenated with

their first and second discrete temporal derivatives, which

were calculated by applying a temporal slope filter of five

frames length once or twice, respectively. The resulting

MFCC feature vector, which included both derivatives, was

54-dimensional. The extraction of the 455-dimensional

GBFB feature vectors is described in detail in Sec. II B. All

features that were evaluated in this study were normalized

using HEQ as described in Sec. II D.

On the back-end side, GMM and HMM were used to

model speech. The training and testing scripts provided in

the first CHiME challenge (Barker et al., 2013) are based on

the Hidden Markov Toolkit (HTK) (Young et al., 2009).

Deviating from the default configuration, the reference sys-

tem used tri-phone models instead of whole-word models.

The required changes to the training procedure were based

on the HTK Wall Street Journal Training Recipe from

Vertanen (2006). Three-state left-to-right tri-phone speaker-

depended acoustic models, a three-state background model

with skip and back transitions, and a one-state short pause

model tied to the center state of the background model were

employed. The CMU Pronouncing Dictionary (Weide and

Rudnicky, 2008), version 7a, was employed to generate ini-

tial monophone labels, where an optional short pause was

allowed between two words. After the initial training of

speaker-independent monophone models, tri-phone models

of all possible monophone combinations were generated and

initialized with the model of the center monophone. The pa-

rameters of the tri-phones were re-estimated in four itera-

tions and subsequently tied with tri-phones that share the

same center monophone using HTK’s tree-based state tying

method. The decision tree phonetic questions that are needed

for the tree-based state tying were taken from Vertanen

(2006). The threshold that governs the number of tied states

was chosen so that the number of tied states was 700 6 2.

The number of Gaussian mixture components per state was

increased stepwise to 2, 3, 5, and 7 in the course of the train-

ing procedure, with four iterations of parameter re-

estimation in-between. The models were then adapted to the

speaker using HTK’s maximum a posteriori (MAP) method

to update the mean values and the mixture weights, instead

of using HTK’s parameter re-estimation. The recognition of

utterances was performed with the corresponding speaker-

dependent model, where a language model enforced the

syntax of recognized sentences (command color preposition

letter number adverb).

H. Man-machine gap

To put the results of this study into the perspective of

building an ASR system that is as robust as a normal-hearing

human listener, selected results were compared to literature

data of HSR performance, which is available from the first

CHiME challenge (Barker et al., 2013). The difference

between the first CHiME challenge and the first track of the

second CHiME challenge is that in the latter head move-

ments of the speaker are simulated, which we consider to

have a negligible effect on the HSR data for our purposes.

The equal-performance increase in dB SNR (EPSI) of the

ASR over the HSR results was used to quantify the remain-

ing man-machine gap. In addition, the results for a GBFB-

based system from the literature, which was presented by

Moritz et al. (2013) during the second CHiME keyword rec-

ognition challenge and placed second, were also compared.

This system, referred to as GBFB-CC, exploited binaural in-

formation using source separation based on non-negative

matrix factorization, and featured a more sophisticated

speaker adaptation, which includes in addition a maximum

likelihood linear regression (MLLR) parameter adaptation

step.

I. Reference implementations

MATLAB reference implementations of several methods,

including the calculation of the LMSpec, MFCC features,

GBFB features, SGBFB features, the HEQ, and the EPSI,

are available online (Sch€adler, 2014).

III. RESULTS

All evaluated features sets were normalized using HEQ,

as described in Sec. II D, and evaluated on the CHiME key-

word-in-noise recognition task, as described in Sec. II E,

using the ASR system described in Sec. II G, where the ref-

erence features were replaced with the features in question.

The relative improvements are reported in EPSI, which is

defined in Sec. II F. The uncertainty of all results was propa-

gated from the estimated uncertainty due to the limited num-

ber of test sentences, as explained in Sec. II E.

FIG. 8. (Color online) Recognition

performance on the test data set of the

MFCC and GBFB-based reference

ASR systems depending on the SNR

and the training data set, along with

the approximate human speech recog-

nition (HSR) performance. The word

recognition rate in percent correct is

plotted over the test SNR for systems

trained with clean, reverberated, and

noisy speech data. The y axis is a loga-

rithmically scaled word error rate axis,

which is labeled with the correspond-

ing word correct rates in percent.
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A. Performance of reference system and data
representation

The absolute recognition scores of the reference systems

along with the approximate HSR performance depending on

the SNR in decibels are depicted in Fig. 8, and reported in

numerical form in Table I. As expected, the human perform-

ance was found to be superior to the performance of the

ASR systems. Independent of the used features, the ASR

systems that were trained on the noisy data set performed

better at lower SNRs (less than 3 dB), while for high SNRs,

particularly at 9 dB SNR, the systems trained on only rever-

berated data performed better. The ASR systems that were

trained on the clean data set performed much worse, which

is why these results were not considered to be a good indica-

tor for robustness. Because we were interested in noise

robustness, not the ability of generalizing from quiet to noisy

conditions, the results for ASR systems trained with noisy

data were taken as the indicator of robustness. To compare

the ASR system with different features regarding their

robustness on the CHiME task, the EPSI measure presented

in Sec. II F was used to report the difference in performance

in a single, physically interpretable value; the equal-

performance increase of the SNR in decibels. The EPSIs of

the reference ASR systems over the HSR performance in dB

are reported in Table II. The MFCC-based reference system

required the SNR to be þ13.2 6 0.95 dB higher to perform

as well as an average native human listener, while the

GBFB-based reference system required the SNR only to be

þ10.6 6 1.12 dB higher. Hence the GBFB-based system was

found to be more robust than the MFCC based system on

this task. For ASR systems that do not reach HSR perform-

ance, such as the systems trained with clean data, the EPSI

over HSR performance cannot be calculated. This is the rea-

son why in the following the GBFB-based reference system

was used as the baseline for the comparison.

B. Single SGBFB features

Table III reports the EPSIs of the differently phased

255-dimensonal SGBFB features over the GBFB reference

system. We considered the results for the noisy training con-

dition to carry the most information about the features’ abil-

ity to facilitate the back-end of the recognition of speech in

noise. The relative increase in SNR to achieve equal per-

formance for the clean and reverberated training condition

are reported for completeness. The SGBFB-IR system,

which uses the imaginary part of the 1D Gabor filter for

spectral filtering and the real part for temporal filtering, is

the one that came closest to the GBFB reference with a EPSI

of þ1.1 6 0.44 dB. This means that the ASR system with

SGBFB-IR features required the SNR to be þ1.1 6 0.44 dB

higher than with GBFB features to get the same perform-

ance. With the other SGBFB features, the EPSI increased to

more than 2 dB. The ASR system with GBFB features out-

performed all ASR systems using only single SGBFB feature

vectors or MFCCs.

C. Dual SGBFB features

The required increase in dB SNR for all ASR systems

using dual SGBFB feature vectors, which are combinations

of two differently phased single SGBFB feature vectors, to

achieve equal performance with the GBFB reference system

are reported Table IV. The best dual SGBFB feature set was

the one that concatenates SGBFB-RI and SGBFB-IR feature

vectors to 510-dimensional SGBFB-RI-IR feature vectors. It

yielded an improvement over the GBFB reference of

�0.9 6 0.45 dB, i.e., a decrease in SNR to achieve the same

TABLE I. Recognition performance of the MFCC and GBFB-based refer-

ence ASR systems on the second CHiME keyword-in-noise recognition task

in percent correct along with the human speech recognition (HSR) perform-

ance, which was measured during the first CHiME challenge. The systems

were trained with clean, reverberated, or noisy data, and evaluated on the

noisy test data set.

Features Train condition �6 dB �3 dB 0 dB 3 dB 6 dB 9 dB

HSR — 90.3 93.0 93.8 95.3 96.8 98.8

MFCC Clean 40.3 42.8 52.1 64.2 72.5 79.2

MFCC Reverberated 57.4 63.5 74.7 83.0 88.9 92.8

MFCC Noisy 68.7 74.6 82.2 87.5 89.1 92.0

GBFB Clean 36.9 35.1 43.2 55.3 66.8 73.4

GBFB Reverberated 60.0 66.5 75.0 84.1 91.4 94.0

GBFB Noisy 71.4 77.8 84.2 88.9 92.2 92.7

TABLE II. Equal-performance increase in dB SNR (EPSI) of the reference

ASR systems over HSR data for different training conditions, where a value

of X means the SNR needs to be increased by X on average for the corre-

sponding system to perform as well as a human listener. Using GBFB fea-

tures reduced the distance to human performance compared to when using

MFCCs from 13.2 dB to 10.6 dB SNR.

Features Noisy Reverberated Clean

MFCC þ13.2 6 0.95 þ12.6 6 1.00 —

GBFB þ10.6 6 1.12 þ10.3 6 1.06 —

TABLE III. Average equal-performance increase in dB SNR over the

GBFB reference system to achieve the same performance with single

SGBFB features when training on clean, reverberated, or noisy data. A posi-

tive value indicates that the system under consideration performs worse than

the GBFB reference system.

Features Noisy Reverberated Clean

SGBFB-RR þ2.2 6 0.45 þ0.7 6 0.30 �0.7 6 0.36

SGBFB-RI þ2.7 6 0.45 þ0.8 6 0.27 �1.1 6 0.31

SGBFB-IR þ1.1 6 0.44 þ1.5 6 0.26 �0.0 6 0.30

SGBFB-II þ2.5 6 0.42 þ1.7 6 0.28 �0.9 6 0.35

TABLE IV. Average equal-performance increase in dB SNR over the

GBFB reference system for ASR systems with MFCC or dual SGBFB fea-

tures when being trained on clean, reverberated or noisy data.

System Noisy Reverb Clean

SGBFB-RR-RI �0.3 6 0.46 þ0.4 6 0.28 þ0.7 6 0.30

SGBFB-RR-IR þ1.2 6 0.42 þ0.7 6 0.28 �0.1 6 0.34

SGBFB-RR-II �0.7 6 0.47 �0.0 6 0.29 �0.5 6 0.31

SGBFB-RI-IR �0.9 6 0.45 þ0.1 6 0.29 �1.0 6 0.35

SGBFB-RI-II þ1.8 6 0.43 þ0.7 6 0.28 �1.7 6 0.31

SGBFB-IR-II �0.4 6 0.43 þ0.6 6 0.28 �1.0 6 0.36
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performance. In terms of word error rates, this translates to

an average relative improvement of 8.3% over the GBFB

reference system, and 20.6% over the MFCC reference sys-

tem, where an improvement of 50% would correspond to

halving the word error rate. The dual SGBFB feature vectors

with the same temporal phase and different spectral phases

(RR-IR, RI-II) performed worse than the GBFB reference.

Those with the same spectral phase and different temporal
phases (IR-II, RR-RI) performed as well as GBFB features

within the uncertainty imposed by the setup. Those with dif-
ferent spectral and temporal phases (RI-IR, RR-II)

improved the robustness of the GBFB-based reference

system.

Using the MATLAB reference implementation, the 2D

GBFB spectro-temporal filtering achieved a real-time factor

of 0.4887 (median of 100 runs), while the 1D SGBFB-RI-IR

spectro-temporal filtering achieved a real time factor of

0.0078 (median of 100 runs) on the same PC system,1 i.e.,

the separate processing was found to be about 60 times

faster. Hence by using dual SGBFB features instead of

GBFB features, the computational time required for the

spectro-temporal filtering was reduced by more than an order

of magnitude, while at the same time the robustness was

increased.

D. Complete SGBFB features

When concatenating all differently phased SGBFB fea-

tures to 1020-dimensional SGBFB-RR-RI-IR-II feature vec-

tors, the EPSI over the GBFB reference was �1.2 6 0.42 dB

when training on noisy data. In terms of word error rates,

this translates to an average relative improvement of 12.8%

over the GBFB reference system, and 24.8% over the MFCC

reference system, where 50% would mean halving the word

error rate. The most robust front-end evaluated in this study

was the complete SGBFB feature set.

E. Quantity of training data

A reasonable question when using ASR systems with

high-dimensional features is whether sufficient training data

are available because the number of GMM parameters

increases proportionally with the number of feature dimen-

sions. On the one hand, using scarce training data could

favor systems that require less parameters to be determined

during the training phase and prevent systems with more pa-

rameters from showing their full potential. On the other

hand, using large amounts of training data could conceal the

possibility that systems using high-dimensional features

might require these amounts of data, while systems with

low-dimensional features would not perform worse when

using less training data.

To test if one or the other was the case, systems with the

low-dimensional MFCC features and the high-dimensional

SGBFB-RI-IR features were trained with a reduced training

data set, which contained only half of the training sentences

that were available per speaker, i.e., 250 instead of 500.

With this reduced training data set, the system that uses the

54-dimensional MFCC features performed 2.2 6 0.44 dB

(EPSI) worse and the system that uses the 510-dimensional

SGBFB-RI-IR features performed 2.0 6 0.46 dB worse com-

pared to when using the full training data set. This result

shows that the systems with high- and low-dimensional fea-

tures were equally affected when the amount of training data

was halved, and hence that no system was favored due to the

amount of training data that were used in the recognition

experiments. Compared to the system with MFCC features

that was trained on the full training data set, the system with

SGBFB-RI-IR features that was trained with the reduced

training data set performed about (60.5 dB) the same. Hence

we are confident that the training data set from the CHiME

challenge provided a fair comparison of the differently-

dimensional feature sets.

F. Remaining man-machine gap

Figure 9 depicts the absolute word recognition rates of

the reference systems, the best SGBFB system, the GBFB-

CC system, and from HSR experiments. Table V reports the

EPSIs over human speech recognition performance that

quantify the remaining man-machine gap. While the MFCC-

based reference ASR system required the SNR to be about

13 dB higher to perform as well as a human listener, the

GBFB-based reference system still had an EPSI of about

11 dB, and the best SGBFB-based system one of about 9 dB.

Hence the gap in speech recognition robustness between

man and machine remains but was reduced by 2 dB by using

SGBFB features instead of GBFB features.

IV. DISCUSSION

A. Modulation phases

The main results reported in Tables III and IV indicate

that an ASR system with a combination of SGBFB features

may exhibit a greater robustness than the GBFB reference

system if the phase of the spectral and temporal modulation

filters is chosen in an appropriate way. The ASR systems

with single SGBFB features vectors (RR, RI, IR, and II),

which consider only one spectral and one temporal phase

constellation, were found to be less robust than the GBFB

reference system, where the systems with real-phase tempo-

ral filters (IR and RR) performed better than those with

imaginary-phase temporal filters (II and RI). To build a sys-

tem with SGBFB features that was at least as robust as the

reference system with GBFB features, a dual SGBFB feature

vector with both temporal phase constellations was required

(RR-RI, RR-II, RI-IR, and IR-II). If the temporal phase was

the same (RR-IR or RI-II), the corresponding system per-

formed worse than the GBFB reference system. To improve

the robustness of the GBFB reference system, both temporal

and both spectral phase constellations were required (RR-II

and RI-IR). Finally, the ASR system using complete

SGBFB features, which include all possible phase combina-

tions (RR-RI-IR-II), was found to be the most robust one.

These findings suggest that the temporal phase is more im-

portant than the spectral phase and that diverse phase infor-

mation of modulation filters is beneficial to the robustness of

ASR systems.
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The phase of the modulation filters was found to be an

important factor. However, it does not affect the frequency

response of the filters, which indicates that modulation filters

in the context of robust ASR are insufficiently described by

only specifying their frequency response. A reason that con-

sidering temporal and spectral modulation filters with or-

thogonal, shifted carrier functions (i.e., the real and the

imaginary part) benefits the robustness of ASR systems

could be that their output is not systematically correlated,

which is a property that GMMs with diagonal covariance

matrices are well-disposed to. For example, for the temporal

domain, the shape of the imaginary filter (I) is very similar

to the shape of the slope (or delta) filter, which is tradition-

ally used to calculate the first discrete temporal derivative

with MFCCs, and the shape of the real filter (R) is very simi-

lar to the shape of the double-delta filter, which is tradition-

ally used to calculate the second temporal derivative. Both

describe different properties and seem to encode comple-

mentary information, which is why the combination of

differently-phased feature vectors could improve the robust-

ness. But while with the delta filters only one temporal cen-

ter frequency was extracted, with the SGBFB filters

considered here, five different modulation frequencies

between 0 and 25 Hz were extracted.

While the whole spectral context was always available

to the back-end in the same feature vector, the temporal con-

text was distributed over several feature vectors. A reason

why the temporal phase was found to be more important

than the spectral phase in this regard could be that the HMM

back-end is inherently probabilistic about timing and could

have benefited from the presence of additional hard-coded

temporal information in the feature vectors. The effect of

changing the temporal phase is that the carrier is shifted in

time, while the window function (the envelope) remains

invariant. The output of the temporal filters with shifted car-

riers could have conveyed information that otherwise was

not accessible to the back-end.

B. 1D vs 2D Gabor filter complexity

Separating the spectro-temporal 2D GBFB into two

SGBFB was not only found to improve the robustness of an

ASR system in difficult acoustic conditions but also to

achieve this with less complex filters. While with the 2D

GBFB filters the spectral filtering and the temporal filtering

are dependent and happen simultaneously, with the 1D

SGBFB filters, the spectral and the temporal filtering are in-

dependent and can be carried out in arbitrary order. This

reduces the complexity of the features and also of the feature

calculation because no spectro-temporal interactions need to

be considered. The corresponding reduction in computa-

tional time, that was required for the spectro-temporal proc-

essing, was found to be more than an order of magnitude. It

is yet to be investigated if the 1D Gabor filters and the cho-

sen parameter values for the filter width and center modula-

tion frequencies are the optimal choice for robust ASR. But,

at least in the studied context, it seems that truly spectro-

temporal filters did not give an advantage over separate

spectro-temporal filters. This suggests that future research on

robust speech features might reasonably assume spectro-

temporal interactions (such as, e.g., temporal changes of

spectral information as in glides or formant transitions) to

FIG. 9. (Color online) Recognition performance on the test data set of different ASR systems and human speech recognition (HSR) experiments depending on

the SNR and training data set. Besides the performance of ASR systems using MFCC features, GBFB features, or the complete SGBFB feature set (SGBFB-

all), the performance of a GBFB-based system with binaural processing (GBFB-CC) from Moritz et al. (2013) from the second CHiME challenge is depicted.

The word recognition rate in percent is plotted over the test SNR. The y axis is a logarithmically scaled word error axis, which is labeled with the correspond-

ing word correct rates in percent correct.

TABLE V. Equal-performance increase in SNR over HSR performance in

dB for different training conditions, where a value of X means the SNR

needs to be increased by X on average for the corresponding system to per-

form as well as a human listener. Using GBFB features reduces the distance

to human performance compared to when using MFCCs from 13.2 to

10.6 dB SNR. The use of dual SGBFB features can reduce the distance to

9.5 dB, and the use of all SGBFB feature vectors combined can reduce the

distance further to 8.6 dB. The GBFB-based system from Moritz et al.

(2013) which, like humans and opposed to the other systems, exploits binau-

ral information (GBFB-CC), even gets as near as 6.2 dB to human

performance.

System Isolated Reverb Clean

MFCC þ13.2 6 0.95 þ12.6 6 1.00 —

GBFB þ10.6 6 1.12 þ10.3 6 1.06 —

GBFB-CC þ6.2 6 1.19 þ9.4 6 1.04 —

SGBFB-RI-IR þ9.5 6 1.19 þ10.1 6 1.04 —

SGBFB-RR-RI-IR-II þ8.6 6 1.01 þ10.2 6 1.09 —
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play a minor role in comparison to having both temporal and

spectral information available simultaneously.

C. Remaining man-machine gap

A part of the remaining gap between the complete

SGBFB feature based system (SGBFB-RR-RI-IR-II) and the

HSR performance in Table V could be due to the very basic

binaural processing (down-mixing) that was employed in

this study, which did not exploit binaural cues for noise

reduction as opposed to the human auditory system and the

GBFB based system from the chime challenge (GBFB-CC).

A SGBFB based system that exploits binaural information

could provide further improvements in robustness.

Another—maybe even related—reason could be the negli-

gence of any phase—not modulation phase—information of

the spectral channels. The temporal fine structure, which

encodes binaural information as well as information about

voicing or the harmonic structure of a signal, is not consid-

ered at all when using a LMSpec as a basis for feature

extraction. This information could help to group signal parts

and better separate them from the rest. The current research

on this topic in the field of computational acoustic scene

analysis (CASA) might some day converge with the investi-

gation on robust speech recognition. For now, the SGBFB

feature extraction algorithm permits the investigation of

spectral and temporal modulation processing independently

and to assess the interdependence of both types of processing

in the context of speech recognition.

Even though the omission of certain modulation fre-

quencies or spectro-temporal modulation pairs might be a

good tool to systematically evaluate the relative importance

of these features, this endeavor was beyond the scope of this

paper and might be considered in future work.

V. CONCLUSIONS

The most important findings of this work can be sum-

marized as follows:

(1) A combination of separate spectral and temporal 1D

Gabor modulation filter banks (SGBFB) was success-

fully employed instead of the spectro-temporal 2D

GBFB to extract robust ASR features. SGBFB features

improved the robustness over GBFB features by up to

1.2 dB SNR, which corresponds to an average relative

improvement of the word error rate of 12.8% over a

GBFB based reference system, and 24.8% over a MFCC

based reference system.

(2) While a close interaction between temporal and spectral

processing was found to be comparatively irrelevant for

robust ASR, the phase of the spectral and especially the

temporal modulation filters was found to be an important

factor, which can be used to provide complementary and

additional temporal information to the back-end.

(3) Compared to human listeners, the SNR needed to be

13 dB higher for a MFCC-based system, 11 dB higher

for a GBFB-based, and 9 dB higher for a SGBFB-based

system, to achieve the same recognition performance.
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