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STFT Phase Reconstruction in Voiced Speech for

an Improved Single-Channel Speech Enhancement
Martin Krawczyk and Timo Gerkmann, Member, IEEE

Abstract—The enhancement of speech which is corrupted by
noise is commonly performed in the short-time discrete Fourier
transform domain. In case only a single microphone signal
is available, typically only the spectral amplitude is modified.
However, it has recently been shown that an improved spectral
phase can as well be utilized for speech enhancement, e.g. for
phase-sensitive amplitude estimation. In this paper we therefore
present a method to reconstruct the spectral phase of voiced
speech from only the fundamental frequency and the noisy
observation. The importance of the spectral phase is highlighted
and we elaborate on the reason why noise reduction can be
achieved by modifications of the spectral phase. We show that,
when the noisy phase is enhanced using the proposed phase
reconstruction, instrumental measures predict an increase of
speech quality over a range of signal to noise ratios, even without
explicit amplitude enhancement.

Index Terms—phase estimation, noise reduction, speech en-
hancement, signal reconstruction.

I. INTRODUCTION

In this paper, we focus on the enhancement of single-

channel speech corrupted by additive noise. Besides applica-

tions where only a single microphone is available, e.g. due

to limited battery capacity, computational power, or space,

single-channel speech enhancement is relevant also as a post-

processing step to multi-channel spatial processing. The re-

duction of detrimental noise components is indispensable, e.g.

in hearing devices and smartphones, which are expected to

work reliably also in adverse acoustical situations.

Many well-known and frequently employed noise reduction

algorithms are formulated in the short-time discrete Fourier

transform (STFT) domain, since it allows for spectro-temporal

selective processing of sounds, while being intuitive to in-

terpret and fast to compute. The complex valued spectral

coefficients can be represented in terms of their amplitudes and

phases. Frequently, it is assumed that the enhancement of the

noisy spectral amplitude is perceptively more important than

the enhancement of the spectral phase [1]. Thus, research has

mainly focused on the estimation of the clean speech spectral

amplitudes from the noisy observation, while the enhancement

of the noisy spectral phase attracted far less interest. The

short-time spectral amplitude estimator (STSA) and the log-

spectral amplitude estimator (LSA) proposed by Ephraim and
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Malah [2], [3] are probably the most popular examples of such

amplitude enhancement schemes. The authors also showed that

for Gaussian distributed real and imaginary parts of the clean

and noise spectral coefficients, the minimum mean square error

(MMSE) optimal estimate of the clean spectral phase is the

noisy phase itself, justifying its use for signal reconstruction

[2].

Nevertheless, in the recent past, research on the role of

the spectral phase picked up pace, e.g. [4]–[14]. Paliwal et

al. [4] investigated the importance of the spectral phase in

speech enhancement and came to the conclusion ”that research

into better phase spectrum estimation algorithms, while a

challenging task, could be worthwhile”. They showed that an

enhanced spectral phase can indeed lead to an increased speech

quality. Motivated by these findings, in this paper we present

a novel approach towards the enhancement of noise corrupted

speech based on improved spectral phases.

Because of signal correlations and since neighboring STFT

segments are typically overlapping by 50% or more, the

spectral coefficients of successive segments are correlated. Fur-

thermore, spectral coefficients of neighboring frequency bands

show dependencies due to the limited length of the signal

segments and the form of the spectral analysis window. This

effect is known as spectral leakage and affects both, spectral

amplitudes as well as phases. These relations are exploited

by the approach of Griffin and Lim [1], which iteratively

estimates spectral phases given the spectral amplitudes of a

speech signal. For this, the STFT and its inverse are repeatedly

computed, where the spectral amplitude is constrained to stay

unchanged and only the phase is updated. Over the years,

various modifications of this approach have been proposed. For

a compact overview see [7]. It has been reported that with the

iterative approach of Griffin and Lim perceptually good results

can be achieved in case the clean spectral amplitudes are

perfectly known [7]. However, if the amplitudes are estimated,

as it is the case in noise reduction, the benefit is limited

[15]. A related approach on combined amplitude and phase

estimation in noise reduction and source separation is known

as consistent Wiener filtering [8], where the classical Wiener

filter is constrained to yield a consistent estimate of the clean

spectral coefficients, obeying the correct relations between

adjacent time-frequency points. Besides approaches aiming at

estimating the clean speech spectral phase, Sugiyama et. al

[6] also pointed out the importance of the spectral phase of

the noise components and proposed a noise reduction scheme

based on the randomization of the spectral phase of the noise.

Also for single-channel speech separation, estimates of

the clean spectral phase have been shown to yield valuable

information that can effectively be employed to improve the
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separation performance, e.g. [9], [10]. While [9] again relies

on an iterative procedure for estimating the spectral phases,

in [10] a non-iterative approach for two concurring sources

incorporating the group-delay function is proposed. For these

approaches, the spectral amplitudes of all sources need to be

known.

In this contribution, evolving from our preliminary work

in [16], we first discuss visualizations of the speech spectral

phase to reveal structures in the phase and show that these

phase structures are disturbed by additive noise. Then, a

method to recover the clean spectral phase of voiced speech

along time and frequency is presented. We again exploit the

relations of neighboring time-frequency points due to the

structure of the STFT, but also incorporate signal information

using a harmonic model for voiced speech. Independently

of our work, employment of harmonic-model-based spectral

phase estimates has also been proposed in [17]. There, the

phase estimation is performed only along time and only in the

direct neighborhood of the harmonic components. In contrast

to that, our approach also reconstructs the phase between the

harmonic components across frequency bands. We will show

that this phase reconstruction between the harmonics allows

for an increased noise reduction during voiced speech when

the phase estimates are employed for speech enhancement.

Note that for the proposed phase reconstruction algorithm

only the fundamental frequency of the speech signal needs

to be estimated. We explain why by only combining the

reconstructed phase with noisy amplitudes, noise between

spectral harmonics can be reduced, and show that this im-

proves the speech quality predicted by instrumental measures.

Informal listening confirms the noise reduction during voiced

speech at the expense of a slightly synthetic sounding residual

signal. These artifacts are however effectively alleviated by

incorporating uncertainty about the phase estimate and by

combination with amplitude enhancement [12]–[14].

This paper is organized as follows: In Sec. II, we introduce

the signal model and derive a novel, visually more informative

representation of the spectral phase. An approach for phase

reconstruction along time is presented in Sec. III, followed by

phase reconstruction across frequency and a combination of

both in Sec. IV. In Sec. V, the proposed phase reconstruction

methods are analyzed in detail and utilized for the reduction

of noise. Then, our algorithms are evaluated on a database of

noise-corrupted speech in Sec. VI.

II. SIGNAL MODEL AND NOTATION

We assume that at each time instance n the clean speech

signal s (n) is degraded by additive noise v (n) and that only

the noisy mixture y (n) = s (n)+v (n) is observed. The noisy

observation is separated into segments of M samples, using a

hop size of L samples. Each segment is first multiplied with an

analysis window w (n) and then transformed using the discrete

Fourier transform (DFT). The resulting STFT representation

is denoted as

Yk,ℓ = Sk,ℓ + Vk,ℓ

=

N−1∑

n=0

y (ℓL+ n)w (n) e−jΩkn, (1)
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Fig. 1: Amplitude and phase spectrogram (top), instantaneous frequency and
baseband phase difference (BPD) (bottom) for a clean speech signal. The
BPD reveals structures in the phase that are related to those of the amplitude
spectrogram, especially for voiced sounds.

with segment index ℓ, frequency index k, and the normalized

angular frequencies Ωk = 2πk/N , corresponding to the center

frequencies of the STFT bands. Note that with w (n) = 0 ∀n /∈
[0, . . . ,M − 1], the DFT length N can also be chosen larger

than the segment length M resulting in so called zero-padding.

We denote the complex spectral coefficients of y, s, and v by

the corresponding capital letters which can be described in

terms of their amplitudes Rk,ℓ, Ak,ℓ, Dk,ℓ, and phases φY
k,ℓ,

φS
k,ℓ, φ

V
k,ℓ:

Yk,ℓ = Rk,ℓe
jφY

k,ℓ ; Sk,ℓ = Ak,ℓe
jφS

k,ℓ ; Vk,ℓ = Dk,ℓe
jφV

k,ℓ . (2)

Further, estimates are denoted by a hat symbol, e.g. Ŝ is an

estimate of S.

A. Representations of the phase in the STFT domain

In Fig. 1 we present the amplitude spectrogram (top left)

together with the spectrogram of the spectral phase (top right)

for a clean speech signal s (n). In contrast to the amplitude

spectrum, the phase spectrum of clean speech shows only very

little temporal or spectral structure. This is, at least in parts,

due to the wrapping of the phase to its principal value between

[−π, π]. However, there exist various proposals aiming at a

more accessible representation of the spectral phase. Examples

are the instantaneous-frequency-deviation [18] and the group-

delay-deviation [19].

Let us now interpret the STFT as a band-pass filter bank

with N bands, where w (n) defines the prototype low-pass

[20]. The output of each band-pass corresponds to a complex-

valued, narrow-band signal, which is subsampled by a factor

L. If we now compute the temporal derivative of the phase,

we obtain the instantaneous frequency (IF) of each band. In

the discrete case, the temporal derivative can be approximated

by the phase difference between two successive segments:

∆φS
k,ℓ = princ

{
φS
k,ℓ − φS

k,(ℓ−1)

}

= ∠

{
exp

[
j
(
φS
k,ℓ − φS

k,(ℓ−1)

)]}
, (3)

where princ {·} denotes the principal value operator, mapping

the phase difference onto −π ≤ ∆φS
k,ℓ < π, and ∠ {·} gives

the phase of the argument. The IF for our example sentence
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Fig. 2: From left to right, amplitude spectra of clean, noisy, and enhanced speech using either the proposed phase reconstruction or the true clean speech
phase in (17) are presented in the upper line, together with the corresponding BPD in the lower line. The speech signal is degraded by traffic noise at a global
SNR of 0 dB. Note that the noise reduction between the harmonics – visible at the top of the third column – is achieved by phase reconstruction alone, no
amplitude enhancement is applied.

is presented at the bottom left of Fig. 1, where some structure

becomes visible.

The IF can be used for example for fundamental frequency

detection [21]. However, for segment shifts of L ≥ 1, the

bandpass signals are sub-sampled, which leads to IF values

outside of [−π, π] in higher frequency bands. Since the IF is

limited to its principle value, wrapping effects along frequency

occur, limiting its use for visualization. In order to improve

the accessibility of the phase information, in [16] we propose

to modulate each STFT band into the baseband:

SB
k,ℓ = Sk,ℓe

−jΩkℓL. (4)

Following the filter bank interpretation, each band of SB
k,ℓ is

in the baseband, avoiding the increase of the temporal phase

difference towards higher bands and thus also the wrapping

that is observed for the IF in Fig. 1. The phase difference of

the baseband representation SB
k,ℓ from one segment to the next

gives the baseband phase difference (BPD),

∆Bφ
S
k,ℓ = princ

{
φS
k,ℓ − ΩkℓL− φS

k,(ℓ−1) +Ωk (ℓ− 1)L
}

= princ
{
∆φS

k,ℓ − ΩkL
}
. (5)

The BPD is shown at the bottom right of Fig. 1. It can be

seen that temporal as well as spectral structures inherent in

the phase are revealed by the use of the BPD, effectively

avoiding wrapping along frequency. The observed structures

show strong similarities to the ones of the amplitude spectrum.

This is especially prominent during voiced speech segments,

where the harmonic structure is well represented. Envelope and

formant structures however are less pronounced as compared

to the amplitude spectrum. Note that the BPD transformation

is invertible. No information is added or lost with respect to

the phase itself.

B. Harmonic model in the STFT domain

In Fig. 2, we show that the structure within the BPD during

voiced speech can get lost due to additive noise. For that,

we present the clean (1st column) and the noisy signal (2nd

column) in terms of their amplitude and BPD spectra. Here,

for traffic noise at 0 dB SNR, not only the amplitude but also

the spectral phase is deteriorated. The goal of this paper is

to recover the structures of the clean phase φS
k,ℓ of voiced

speech from only the noisy signal y (n). The 3rd and 4th

column of Fig. 2 already show the results obtained after the

reconstruction of the spectral phase, and will be discussed in

detail in Sec. V.

We model voiced speech as a weighted superposition of

several sinusoids at the fundamental frequency f0 and integer

multiples of it, the harmonic frequencies fh = (h + 1)f0.

This harmonic signal model is frequently employed in speech

processing, e.g. [22]–[25], and we can denote it in the time

domain as

s (n) =

H−1∑

h=0

2Ah(n) cos (Ωh(n) · n+ ϕh) , (6)

with the number of harmonics H , real-valued amplitude 2Ah,

normalized angular frequency Ωh = 2π fh
fs

∈ [0, 2π), and the

initial time domain phase ϕh of harmonic component h.

The transformation of (6) into the STFT domain yields

Sk,ℓ =
N−1∑

n=0

w (n)
H−1∑

h=0

Ah,ℓ

(
ej(Ωh,ℓ(ℓL+n)+ϕh)

+ e−j(Ωh,ℓ(ℓL+n)+ϕh)
)
e−jΩkn, (7)

where we assume the harmonic frequencies and amplitudes

to be constant over the length of one signal segment ℓ. Note

that we formulate the harmonic model in the STFT domain to

allow for combinations of the proposed phase reconstruction

with spectral amplitude estimators, e.g. [11], [12], [14].

III. PHASE RECONSTRUCTION ALONG TIME

In the STFT formulation of the harmonic model in (7), each

frequency band k depends on all harmonic components. This

is due to the finite length M of the STFT signal segments

and the limited sideband attenuation of the prototype low-

pass filter defined by the analysis window w (n). Thus, to

analytically solve (7) for the spectral phase φS
k,ℓ, the funda-

mental frequency, all amplitudes Ah,ℓ, and all initial time-

domain phases ϕh need to be known. However, the amplitudes
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|S|

Fig. 3: Symbolic spectrum of a signal with 3 harmonic components. The
shifted prototype lowpass W (Ω) of band k is effectively suppressing all
harmonics but h = 1. Hence, band k is dominated only by the harmonic
h = 1, while all other signal components can be neglected, justifying the
simplification made in (9).

Ah,ℓ are unknown in practice and hard to estimate in the

presence of noise. We therefore propose to simplify the STFT

representation of the harmonic model to avoid the need of

knowing the amplitudes Ah,ℓ.

For this, we assume that each harmonic dominates the

frequency bands in its direct neighborhood and that the

influence of all other harmonics to this neighborhood can

be neglected. This assumption is well satisfied in case the

frequency resolution of the STFT is high enough and the

sideband attenuation of the band-pass filters is large enough

to separate the spectral harmonics. This concept is depicted in

Fig. 3, were we can see the symbolic spectrum of a harmonic

signal with H = 3 harmonics. For the case shown in Fig. 3,

the band-pass filters W defined by the analysis window w (n)
are steep enough to avoid relevant overlap of neighboring

harmonic components. However, the spectral resolution of the

STFT and the choice of w (n) imposes a lower limit on the

fundamental frequency f0 for which this assumption holds.

For example, the distance between the center frequencies of

two adjacent STFT bands is 31.25 Hz for a segment length of

32 ms, which is sufficient to resolve the harmonics for typical

speech sounds and analysis windows.

To allow for a compact notation of the simplified signal

model, we introduce

Ωk
h,ℓ = argmin

Ωh,ℓ

{|Ωk − Ωh,ℓ|} , (8)

which is the harmonic component Ωh,ℓ that is closest to the

center frequency Ωk of band k. Accordingly, the harmonic

component Ωk
h,ℓ dominates band k. The amplitude and phase

of this harmonic are denoted as Ak
h,ℓ and ϕk

h. Following this

concept, the STFT of the harmonic model (7) reduces to

Sk,ℓ ≈ Ak
h,ℓ

N−1∑

n=0

ej(Ω
k
h,ℓ(ℓL+n)+ϕk

h)w (n) e−jΩkn

= Ak
h,ℓe

jϕk
hejΩ

k
h,ℓℓL

N−1∑

n=0

w (n) e−j(Ωk−Ωk
h,ℓ)n

= Ak
h,ℓe

jϕk
hejΩ

k
h,ℓℓLWk−κk

h,ℓ

= Ak
h,ℓ|Wk−κk

h,ℓ
|

︸ ︷︷ ︸
|Sk,ℓ|

exp
(
j
(
ϕk
h +Ωk

h,ℓℓL+ φW
k−κk

h,ℓ︸ ︷︷ ︸
φS
k,ℓ

))
, (9)

with non-integer κk
h,ℓ = N

2πΩ
k
h,ℓ ∈ [0, N), mapping the

harmonic frequencies Ωk
h,ℓ to the index notation. Further,

in (9) the DFT of the analysis window modulated by the

dominant harmonic frequency, w (n) ejΩ
k
h,ℓn, is denoted as

Wk−κk
h,ℓ

= |Wk−κk
h,ℓ

|exp
(
jφW

k−κk
h,ℓ

)
. Note that κk

h,ℓ is only

an integer if Ωk
h,ℓ equals exactly one of the center frequencies

of the STFT filter bank Ωk = 2πk/N .

From (9) it can be seen that although the underlying

signal consists of H harmonics, each band itself now depends

only on one single harmonic. Assuming that the fundamental

frequency changes only slowly over time, i.e. Ωk
h,ℓ ≈ Ωk

h,(ℓ−1),

the phase difference between two successive segments is given

by

∆φS
k,ℓ = princ

{
φS
k,ℓ − φS

k,(ℓ−1)

}
≈ princ

{
Ωk

h,ℓL
}
. (10)

Note that the wrapped phase difference ∆φS
k,ℓ becomes zero

if the segment shift L is an integer multiple of the dominant

harmonics period length, i.e. Ωk
h,ℓ = 2πm/L, with m ∈ N.

For all other harmonic frequencies, the phase difference will

differ from zero. We can reformulate (10) to get

φS
k,ℓ = princ

{
φS
k,(ℓ−1) +Ωk

h,ℓL
}
. (11)

With (11) we can reconstruct the spectral phase of a harmonic

signal based on the fundamental frequency f0 and the segment

shift L, given that we have a phase estimate at a single

signal segment ℓ0, i.e. φS
k,ℓ0

. In an on-line speech enhancement

setup, this segment ℓ0 could be the onset of a voiced sound.

Obtaining the initial estimate at the onset of a harmonic signal

in the presence of noise, Yk,ℓ = Sk,ℓ + Vk,ℓ, however is a

challenging task.

For a harmonic signal, the spectral energy is concentrated on

the spectral harmonics. Thus, in frequency bands that directly

contain a spectral harmonic, k′ℓ = argmin
k

{
|k − κk

h,ℓ|
}

, the

signal energy depicts a local maximum, and thus these bands

are most likely to exhibit high local SNRs. In these bands

we propose to use the noisy phase as an initial estimate

of the clean spectral phase at the onset of a voiced sound,

φ̂S
k,ℓ0

= φY
k,ℓ0

. From this initial value the spectral phase of

consecutive segments is then reconstructed using (11). It is

worth noting that the alignment of phases of harmonic com-

ponents over consecutive segments has also been discussed

in the context of sinusoidal signal analysis and synthesis,

e.g. [26], and has for instance been employed for low bit

rate audio coding [27]. In between these bands, however, the

signal energy is typically low, and thus the local SNR is

likely to be low as well. Accordingly, the noisy phase can

be strongly deteriorated by the noise and does not yield a

good initialization of the clean phase. This limits the applica-

bility of the temporal phase reconstruction (11). We therefore

introduce an alternative method that overcomes this problem

by reconstructing the spectral phases between the harmonic

components in the following section.

IV. PHASE RECONSTRUCTION ALONG FREQUENCY

Due to the finite length of the STFT segments and the form

of the analysis window w (n), some energy of the harmonic

components also leaks into neighboring frequency bands. In

this section, we want to utilize this effect to reconstruct
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the spectral phase across frequency. Since the reconstruction

across frequencies can be performed independently for every

signal segment, we drop the index ℓ to allow for a compact

notation. Again, we assume that the frequency resolution of the

STFT and the analysis window w (n) are chosen such that the

spectral harmonics can still be separated. Accordingly, each

band is dominated only by the closest harmonic component,

and we can thus again employ our simplified signal model (9).

From (9) it can be seen that the spectral phases,

φS
k,ℓ = princ

{
ϕk
h +Ωk

hℓL+ φW
k−κk

h

}
, (12)

of bands that are dominated by the same harmonic Ωk
h are

directly related via the spectral phase of the shifted analysis

window φW
k−κk

h

. Accordingly, we can infer the spectral phase

of a band from its neighbors by accounting for the phase

shift introduced by the spectral representation of the analysis

window W . Starting from bands k′ that contain harmonic

components, we obtain the spectral phases in the surrounding

bands k′ + i, with integer i ∈ [−∆k, . . . ,∆k], via

φS
k′+i = princ

{
φS
k′ − φW

k′−κk
h

+ φW
k′−κk

h
+i

}
. (13)

In order for k′ + i to cover all frequency bands associated to

the same spectral harmonic, here we choose ∆k = ⌈κ0/2⌉,

with ⌈·⌉ denoting the ceiling function. For instance, for the

example in Fig. 4 ∆k is one.

For a noisy speech signal, (13) is initialized with the noisy

spectral phase in bands k′ containing harmonic components,

φ̂S
k′ = φY

k′ , again assuming that the local SNR is relatively

high as compared to the neighboring bands. In this way, we

utilize phase information in high SNR bands k′ to infer the

spectral phase in the surrounding, low SNR bands k′+i. Next,

we discuss how the spectral phase of the analysis window,

φW
k−κk

h

and φW
k−κk

h
+i

, can be obtained for integer as well as

non-integer κk
h.

A. Obtaining the Spectral Phase of the Analysis Window

For harmonic frequencies that directly fall onto a center

frequency of an STFT band, κk
h is an integer value. Thus, we

can simply apply the DFT to the analysis window and directly

take φW
k−κk

h

and φW
k−κk

h
+i

from Wk for each k and h.

For the general case of arbitrary harmonic frequencies, κk
h is

usually not an integer and k−κk
h does not fall onto the STFT

frequency grid. Thus, φW
k−κk

h

cannot be taken directly from the

DFT of w (n) anymore. We will first discuss the relevance of

a simple linear phase assumption. Then, an analytic solution

for a frequently used class of symmetric analysis windows

is presented, followed by a general approach for arbitrary

window functions.

1) Linear Phase Assumption: In spectral analysis and en-

hancement of speech signals, symmetric windows are em-

ployed most frequently. First, let us consider a non-causal,

real-valued window function with a length of M samples

which is symmetric around n = 0. Such a window function

depicts a real-valued discrete-time Fourier transform (DTFT)

representation WNC (Ω). To make the window function causal

it is shifted in time by M−1
2 samples, leading to W (Ω) =

WNC (Ω) exp
(
−jΩM−1

2

)
. From this formulation and knowing

that WNC (Ω) is real-valued, it might seem reasonable to

draw the desired window phases φW
k−κk

h

directly from the

linear phase term −ΩM−1
2 , independent of the actual form

of the symmetric window function. For a DFT length of N
samples we would expect a phase shift between two bands

of φW
k−κk

h
+i

− φW
k−κk

h

= −Ωk+i
M−1

2 + Ωk
M−1

2 = −iπM−1
N

,

which is independent of band index k. This phase difference

could then be employed for phase reconstruction along fre-

quency in (13).

However, although WNC is real-valued, still its sign might

change along frequency, introducing phase jumps of π. Thus,

we reformulate the DTFT of the causal window as

W (Ω) = |WNC (Ω) |exp

[
− j

(
Ω
M − 1

2

+ 0.5π (1− sign {WNC (Ω)})

)]
, (14)

where sign {x} is 1 for x ≥ 0 and −1 for x < 0. From (14)

it can be seen that even for symmetric window functions the

spectral phase of the window is not only given by −ΩM−1
2 ,

but also depends on the form of the window. In order to

analytically obtain φW
k−κk

h

and φW
k−κk

h
+i

we therefore need

to know the exact DTFT of the window function W (Ω).
Still, the linear phase assumption might serve as a sufficient

approximation when aiming at a fast and simple solution.

2) Symmetric Half-Cosine-Based Window Functions: Here

we present an analytic solution for the computation of spectral

phases for some frequently employed symmetric analysis

windows, including the rectangular, Hann, and Hamming win-

dows. All three belong to the same class of window functions

that can be expressed as, see e.g. [28, Sec. III]:

w (n) =

[
a− (1− a) cos

(
n
2π

M

)]
rect

(
n− M−1

2

M

)
,

(15)

with a = 1 giving a rectangular window, a = 0.5 a Hann win-

dow, and a = 0.54 a Hamming window. Here, rect
(

n−M−1

2

M

)

denotes a causal rectangular function that is 1 for 0 ≤ n < M .

Note that in contrast to [28, Sec. III] the definition in (15) is

chosen such that the period length of the cosine is exactly

two times the window length. This allows for a periodic

extension of the window, which is desired in segment-based

signal processing which aims at perfect reconstruction.

Using basic properties of Fourier analysis and simple al-

gebraic computations, the DTFT of (15) can be formulated

as

W (Ω) = sin

(
M

2
Ω

)
e−jM−1

2
Ω

[
a

1

sin
(
1
2Ω
)

−
1− a

2

(
exp

(
−j π

M

)

sin
(
1
2

(
Ω− 2π

M

)) + exp
(
j π
M

)

sin
(
1
2

(
Ω+ 2π

M

))
)]

, (16)

with the special cases W (0) = Ma and W
(
2π
M

)
=

−W
(
− 2π

M

)
= − 1−a

2 M . From (16) we can see that we have

a linear phase term e−jM−1

2
Ω and a nonlinear part inside the

bracket with phase jumps at the poles of the fractions. Using

(16), the spectral phases of the analysis window φW
k−κk

h

and



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014 6

k

l0 l

voiced

k′

k′

k′

Fig. 4: Symbolic spectrogram visualizing the combined phase estimation
approach. In bands k′

ℓ
containing harmonic components (red) the phase is

estimated along segments (11). Based on this estimate, the spectral phase of
bands in between (blue) is then inferred across frequency (13).

φW
k−κk

h
+i

, which are needed for the phase reconstruction across

frequencies (13), can now be computed analytically.

3) General window functions: For the general case of

arbitrary, possibly non-symmetric and thus non-linear phase

windows for which no closed-form transfer function is avail-

able, the analytic approach can not be applied to estimate

the window’s spectral phase. To still allow for the usage of

such analysis windows, like e.g. the frequently used square-

root Hann window, we compute the DFT of w (n) with a

large amount of zero padding, achieving a high density, quasi-

continuous, sampling of W (Ω).

B. Combined Phase Reconstruction Along Time and Fre-

quency

So far, we reconstruct the spectral phase across frequency

in each segment separately. However, we can also combine

the phase reconstruction across frequencies with the phase

reconstruction along time in Sec. III, in order to obtain a

comprehensive phase estimation framework. This is depicted

in Fig. 4. First, voiced sounds are detected and the fundamental

frequency f0 is estimated. At the onset of a voiced sound

in segment ℓ0, the phase is reconstructed across frequency

bands (13) based on the noisy phase of bands k′ℓ0 . The

phase of the consecutive segment is reconstructed along time

(11) only for bands that contain harmonic components. The

reconstructed phase is then employed to infer also the spectral

phase of frequency bands between the harmonics via (13).

This procedure is repeated until the end of the voiced sound

is reached.

V. ANALYSIS AND APPLICATION TO SPEECH

ENHANCEMENT

In this section, we focus on the principles underlying the

proposed phase reconstruction as well as on how and why

noise reduction can be achieved with the help of phase process-

ing. In contrast to most common speech enhancement schemes

which modify the spectral amplitude but leave the spectral

phase untouched, here we achieve noise reduction by only

modifying the spectral phase. Moreover, the proposed phase

reconstruction algorithm is defined in the STFT domain, such

that it can easily be combined with STFT-based amplitude

estimators, leading to an improved overall speech enhancement

performance, e.g. [11]–[14].

With the proposed algorithm we can reconstruct the clean

speech spectral phase φS
k,ℓ of voiced sounds from the noisy

observation Yk,ℓ. To demonstrate its validity, the reconstructed

phase φ̂S
k,ℓ is combined with the noisy amplitude Rk,ℓ, giving

Ŝk,ℓ = Rk,ℓe
ĵφS

k,ℓ . (17)

Then, Ŝk,ℓ is transformed into the time domain and each

segment is multiplied with a synthesis window. The enhanced

signal ŝ (n) is finally obtained via overlapping and adding the

individual segments.

The effect of using the improved phase is presented in

Fig. 2, where the clean, the noisy, and the enhanced signal

are shown in terms of their amplitude and BPD spectra (from

left to right). After reanalyzing the enhanced time domain

signal, we can see that improving the spectral phase reduces

the noise between spectral harmonics (upper panel of the third

column of Fig. 2). Further, the structures in the spectral phase

are effectively recovered (lower panel of the third column

of Fig. 2). Again, let us emphasize that the observed noise

reduction is obtained only by modifying the spectral phase –

no amplitude estimation is applied. For comparison, we also

present the result when the true clean speech phase φS
k,ℓ is

employed in (17) (right column of Fig. 2).

A. Why do we Achieve Noise Reduction by Phase Reconstruc-

tion?

In spectro-temporal speech enhancement, successive signal

segments commonly overlap by 50% or more. Consequently,

at least one half of the current signal segment ℓ is a shifted

version of the previous segment ℓ − 1. Accordingly, overlap-

ping segments — and also their spectral representations — are

not independent of each other. When synthesizing the desired

signal using the overlap-add framework, the overlapping parts

need to be correctly aligned to achieve perfect superposition.

Since the temporal structure as well as the alignment are

encoded in the spectral phase, distorted phases in consecutive

segments lead to a suboptimal superposition of the desired

signal, resulting in a distorted time-domain signal.

In Sec. III, we propose to estimate the clean spectral phase

of voiced sounds from segment to segment in bands k′ℓ con-

taining harmonic components using (11). Applying equation

(11) corresponds to shifting each harmonic component in the

current segment such that it is correctly aligned to the same

component of the preceding segment. On the one hand we

ensure that the harmonic components of adjacent segments

add up constructively. On the other hand noise components in

these bands do not add up constructively, since relations of the

phases of the noise between segments are not preserved. This

effect is most prominent between the spectral harmonics, i.e.

for frequency bands k 6= k′ℓ. In these bands the speech signal

has only little energy and the noise is dominant. Accordingly,

the noisy phase is close to the noise phase φY
k,ℓ ≈ φV

k,ℓ.

Hence, when using the noisy phase for signal reconstruction,

the noise components of consecutive segments are almost

perfectly aligned, which leads to a constructive superposition
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Fig. 5: Differences of a noisy and an enhanced segment to the clean harmonic
signal with f0 = 222 Hz (left column) together with the signals’ amplitude
spectra (right column). The white Gaussian noise at 0 dB SNR is already
reduced between the harmonics after application of a synthesis window
(middle). Further noise reduction is observed after overlapping and adding
neighboring segments (bottom).

during overlap-add. When we now employ the reconstructed

phase obtained via (13) in the noise-dominated bands between

harmonics, destructive interference of noise components is

achieved, explaining the noise reduction that is observed in

Fig. 2.

The degree of noise reduction that can be achieved by

phase reconstruction alone depends particularly on the amount

of overlap. The higher the overlap is, the more consecutive

signal segments are added up when reconstructing the time-

domain signal. Thus, the effect of destructive interference of

adjacent noise components increases with increasing overlap,

while the desired signal still adds up constructively. From our

experience, an overlap of 7/8th of the segment length results

in a good trade-off between noise reduction and additional

processing load.

Independently of the overlap, noise reduction is also

achieved when we apply a spectral synthesis window after

phase reconstruction. This is depicted in Fig. 5 for a harmonic

signal in white noise at 0 dB SNR with f0 = 222 Hz,

Ah = 0.5 ∀h, square root Hann windows for analysis and

synthesis, a segment length of 32 ms and an overlap of 28 ms.

The amplitude spectra for a single STFT segment of the clean,

the noisy, and the enhanced signal employing the reconstructed

phase (right) are presented together with the time-domain

deviations of the noisy and the enhanced signal from the clean

reference (left). It can be seen that phase reconstruction leads

to noise components at the segment boundaries (top left),

which are suppressed by the synthesis window, resulting in

noise reduction between harmonics (middle). After overlap-

add of neighboring segments, the noise is further reduced

(bottom). This effect is most visible in the frequency domain in

the right column. For the given example, the SNR is improved

by 4 dB after application of the synthesis window and by 8 dB

after overlap-add.

Besides these effects, also the length and the form of the

employed analysis window w (n) play an important role. The

choice of w (n) determines the spectral resolution, and thus

also how well harmonic components can be resolved. For long

windows with strong side-band attenuation, harmonics are well

resolved and the assumption of a single dominant component

per frequency band is well fulfilled. On the contrary, in [4]

a Chebychev window with a low dynamic range has been

shown to be a promising choice for phase based speech

enhancement. However, such windows depict only a low side-

band attenuation and are thus not suited for our application

since the spectral harmonics are not well separated.

B. Limits of the Proposed Approach

The harmonic model is frequently employed in speech

processing and holds well for many voiced speech sounds.

However, mixed excitation signals can not be perfectly de-

scribed in terms of the harmonic model (6), and the enhanced

signal might thus sound more harmonic than the actual speech

signal. Furthermore, for the proposed phase reconstruction to

work reliably even in adverse acoustic scenarios, a robust

fundamental frequency estimator is essential. Here, we employ

PEFAC [29], a fundamental frequency estimator which showed

to be robust even to high levels of noise. A common issue

in sinusoidal modeling is that the influence of fundamental

frequency estimation errors ef0 increases for higher harmonics

h, since f̂h = (h+1)f̂0 = (h+1)f0+(h+1)ef0 . Accordingly,

we also expect phase estimates based on a harmonic model

to be more precise in low frequencies as compared to high

frequencies. Thus, the proposed enhancement scheme is most

effective in lower frequency regions. Note that it is possible to

limit the number of harmonics H of the signal model in order

to avoid phase reconstruction where the estimated frequencies

f̂h are not sufficiently reliable anymore. H can be chosen

independently of the observed signal or estimated on-line, e.g.

in combination with the fundamental frequency [30]. In order

to keep the complexity of the algorithm as low as possible,

in this paper we do not estimate H , but choose it such that

the harmonic model covers the frequency range up to 4 kHz,

i.e. H = ⌊ 4000
f0

⌋. Here, ⌊·⌋ denotes the flooring operator. The

choice of the number of harmonics is a trade-off between noise

reduction and speech distortions in higher frequency compo-

nents. Note that reconstructing the spectral phase along time

(11) is potentially more sensitive to fundamental frequency

estimation errors than the reconstruction across frequencies

(13), since estimation errors may accumulate from segment to

segment.

Since a harmonic signal model is employed, the phase-

based speech enhancement considered here is applicable only

for voiced sounds. In unvoiced sounds, the phase cannot be

reconstructed and the noisy phase is not modified. Hence, the

noisy signal is enhanced only during voiced speech. At tran-

sitions from enhanced voiced sounds to unprocessed unvoiced

sounds we consequently observe sudden changes of the noise

power. This effect is most prominent in severe noise conditions

and can be observed in the upper panel of the 3rd column

of Fig. 2. This issue is alleviated when combining the phase

enhancement with amplitude enhancement as proposed in e.g.

[13], [14]. There, the complete signal is enhanced, dampening
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the differences between voiced and unvoiced speech parts and

possibly increasing the overall improvement.

VI. EVALUATION

To evaluate the potential of the proposed phase recon-

struction in speech enhancement, we consider 128 sentences

of the TIMIT [32] core set, one half uttered by female

speakers and the other half by male speakers. The speech

samples are deteriorated by babble noise and non-stationary

traffic noise recorded at a busy street crossing, respectively,

at various SNRs. As we reconstruct the phase only up to

4 kHz, the noisy speech is modified only in this frequency

region and we thus choose a sampling rate of fs = 8 kHz.

The noisy signals are split into segments of 32 ms with a

segment shift of 4 ms, corresponding to a relative overlap

of 7/8th and N = M = 256. For analysis and synthesis

we apply a square-root Hann window. The improvement of

speech quality is instrumentally evaluated using the Perceptual

Evaluation of Speech Quality (PESQ) [33] and the frequency-

weighted segmental SNR (fwSNRseg) [34] as implemented

in [35]. Although PESQ has originally been developed for the

evaluation of coded speech, it has been shown to correlate also

with the quality of enhanced speech [36]. The improvements

relative to the noisy input signal are reported for traffic noise

in Fig. 6 and for babble noise in Fig. 7.

For the enhancement of the noisy speech we combine the

reconstructed spectral phase with the noisy spectral ampli-

tude according to (17). The fundamental frequency is blindly

estimated on the noisy speech using the noise robust funda-

mental frequency estimator PEFAC [29]. The spectral phase

is reconstructed either along time (11) in each STFT band

separately, across frequency based on the noisy phase in bands

k′ℓ (13), or via the combined approach presented in Sec. IV-B,

denoted as ”time”, ”frequency”, and ”combi”, respectively.

The spectral phase of the analysis window φW that is needed

for the phase reconstruction across frequencies is obtained via

zero-padding as discussed in Sec. IV-A3. We also investigate

the influence of fundamental frequency estimation errors. For

this, we present both, the enhancement results obtained using

the blind fundamental frequency estimates as well as the

outcome when the ground truth annotation for the fundamental

frequency [29], [31], denoted as ”oracle f0”, is employed.

For both noise types, the purely temporal phase reconstruc-

tion is outperformed by the other two approaches, since for the

noise dominated bands between the harmonics the noisy phase

does not yield a decent initial estimate for (11), as discussed in

Sec. III. This may lead to audible artifacts in the output signal.

The reconstruction across frequencies (13) and the combined

approach achieve comparable results, showing improvements

for almost all situations considered here. Towards higher

SNRs the frequency-only reconstruction shows the tendency

to slightly outperform the combined approach. This can be

explained by the increasing SNR on the harmonic components

in bands k′ℓ, hence φY
k′

ℓ
,ℓ ≈ φS

k′

ℓ
,ℓ already yields a very good

initialization for (13).

In Fig. 6 it can further be seen that the proposed approach

is most effective for female speakers (left column), where for

voiced sounds an improvement of more than 0.4 PESQ points

and up to 5 dB fwSNRseg can be achieved when using blindly

estimated fundamental frequencies. This observation can be

explained by the typically higher fundamental frequency of

female voices as compared to male voices. In the spectral

domain, the harmonic components are further apart and thus

better resolved by the STFT, which is beneficial for the

applicability of the model-based phase reconstruction. Fur-

thermore, we achieve noise reduction mainly between spectral

harmonics. For higher fundamental frequencies there are more

noise dominated STFT bands between neighboring harmonics

and consequently more noise reduction can be achieved.

When including both genders in the evaluation, blind im-

provements of roughly 0.3 PESQ points and up to 3 dB

fwSNRseg are obtained (3rd column). Since the proposed

phase reconstruction is applicable only for voiced speech,

we can also reduce the noise only during voiced parts.

Accordingly, when we consider the complete signals for the

evaluation, the relative improvements reduce (4th column).

Still, around 0.2 PESQ improvement and 1 dB to 2 dB

fwSNRseg improvement are achieved for the phase recon-

struction across frequencies. The results for babble noise in

Fig. 7 are computed on the complete signals, not distinguishing

between female and male speakers. The general trends are

similar, however, the blind results tend to be slightly lower

than for traffic noise, especially for the fwSNRseg.

Informal listening shows that the improvement reflected in

the instrumental measures is indeed achieved by the reduction

of noise between the harmonics, gained at the expense of

some signal distortions. These artifacts mainly stem from

the mismatch between the unprocessed noisy amplitudes and

the reconstructed phase. Utilizing the estimated phase in a

complete enhancement setup that also estimates the spectral

amplitude [12] and incorporates uncertainty about the phase

estimate [14] therefore strongly mitigates the signal distor-

tions.

In general, both, the proposed phase reconstruction across

frequencies and the combined approach, work reliably with

blindly estimated fundamental frequencies. Nevertheless, the

algorithms can still benefit from more precise estimates,

especially at low SNRs, where oracle information about the

fundamental frequency results in considerable improvements

relative to the blind case, as can be seen in Fig. 6 and Fig. 7.

In addition to the results for the proposed algorithms, we

also present the improvement that is achieved when the clean

speech phase is perfectly known, which is denoted as ”clean

phase”. For that, we employ the true clean speech phase φS
k,ℓ

in (17). Interestingly, it can be stated that, specifically for

low SNRs, the usage of the true clean speech phase can be

outperformed by the model-based reconstruction during voiced

speech in case the true fundamental frequency is known, e.g

the first column of Fig. 6. This is a crucial finding, as it

suggests that the clean speech spectral phase is not always the

best solution for phase-only noise reduction via (17): when

the model-based phase is employed, more noise reduction is

achieved during harmonics than for the clean speech phase,

but potentially also more speech distortions are introduced (cf.

the last two columns of Fig. 2). At low SNRs, the increased

noise reduction outweighs possible speech distortions. For

increasing SNRs, however, the speech distortions become
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Fig. 6: Improvement of PESQ and fwSNRseg relative to the noisy input for non-stationary traffic noise at various SNRs. The noisy amplitude is combined
with an estimate of the clean speech phase reconstructed along time (”time”), along frequency (”frequency”), or via the combined approach outlined in Fig. 4
(”combi”), where the fundamental frequency is blindly estimated on the noisy signal. In contrast, for the results denoted by ”oracle f0” the fundamental
frequency is taken from the annotation in [31]. For comparison, we also include the case where the noisy amplitude is combined with the true clean speech
phase (”clean phase”) as well as a traditional amplitude enhancement scheme (”ampl. enh.”). In the first three columns, the evaluation is performed only on
voiced speech, first separately for female and male speakers and then combined for both genders. The results evaluated on the complete signals are presented
in the last column.
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Fig. 7: Improvement of PESQ and frequency weighted SNR relative to the
noisy input for babble noise at various SNRs. The presented results are based
on the complete signals for both genders. For the legend, please refer to Fig. 6

increasingly important. Thus, the gap between usage of the

clean phase and the reconstructed phase reduces, eventually

rendering the clean speech phase the better choice at high

SNRs.

In a final step, we compare the proposed phase enhancement

to traditional spectral amplitude enhancement, denoted as

”ampl. enh.” in Fig. 6. Here we employ the LSA with a lower

limit of −12 dB on the spectral gain function for the estimation

of the clean speech amplitudes [3]. For this, we estimate the

noise power according to [37] and the a priori SNR using the

decision directed approach [2]. While the frequency weighted

SNR improvement in Fig. 6 and Fig. 7 is lower than or equal to

that of the best performing blind phase enhancement scheme,

PESQ scores indicate that amplitude enhancement achieves a

higher perceptual quality, especially for increasing SNRs. The

latter is also confirmed by informal listening. In particular, the

fact that in phase processing noise reduction is only achieved

in voiced speech leads to unpleasant switching effects. For a

perceptual comparison the reader is referred to [38], where

listening examples together with code for the proposed phase

reconstruction can be found.

VII. CONCLUSIONS

In this contribution we presented a method for the recon-

struction of the spectral phase of voiced speech utilizing a

harmonic model. Structures inherent in the clean speech spec-

tral phase are revealed by the baseband phase difference and

reconstructed using the proposed algorithm. The underlying

principles as well as the importance of the enhancement of the

spectral phase have been pointed out. We showed that by only

reconstructing the spectral phase, noise between harmonics of

voiced speech can effectively be suppressed.

Besides the sole enhancement of spectral phases presented

here, in [11] we showed that the proposed phase reconstruction

may also be combined with spectral amplitude estimators to

further increase the speech enhancement performance. Fur-

thermore, the reconstructed phase yields valuable information

which can be utilized for improved, phase-sensitive amplitude

estimators [12] or even estimators of the complex spectral co-

efficients [14]. Such combinations can potentially outperform

conventional amplitude-based enhancement schemes and also

the phase-only noise reduction presented here. The limitation

to phase-based noise reduction, however, allows for a deeper

understanding of the underlying principles detached from the

influence of amplitude enhancement and shows that by blindly

modifying the spectral phase, noise reduction can be achieved.
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