Fermat's Last Theorem over small real quadratic fields

Let K be a real quadratic field and O_{K} its ring of integers. Let p be a prime. The equation $x^{p}+y^{p}=z^{p}$, where $x, y, z \in O_{K}$ is called the Fermat equation over K with exponent p.
In joint work with Siksek we have shown that for $5 / 6$ of the real quadratic fields K, there is a constant B_{K} (depending only on K) such that if $p>B_{K}$ then all solutions to the Fermat equation satisfy $x y z=0$. It is natural to ask what can be said about the constant B_{K}. In this talk, I will discuss how we can prove that $B_{K}=4$ for several small real quadratic fields.

