Module Handbook
Sustainable Fuel Systems for Mobility - Groningen

<table>
<thead>
<tr>
<th>Fakultät 5: Mathematik und Naturwissenschaften Institut für Physik</th>
<th>Category:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject: European Master in Renewable Energy Summer Term 2017</td>
<td>- Master Module</td>
</tr>
<tr>
<td></td>
<td>Degree award:</td>
</tr>
<tr>
<td></td>
<td>- Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emphases:</th>
<th>Sections:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module reference number/Title:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pre381 - Processes, Models & Modelling</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration: 1 semester</th>
<th>Type of program:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle: once a year</td>
<td>Lecture, Laboratory, Excursion</td>
</tr>
<tr>
<td>Type of module: mandatory</td>
<td>Language: English</td>
</tr>
<tr>
<td>Level: MM (master module)</td>
<td>Attainable credit points: 10,00 CP</td>
</tr>
<tr>
<td>This module should be taken in 2nd semester</td>
<td>Workload: 280 hours</td>
</tr>
<tr>
<td></td>
<td>Required attendance: 100 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person responsible for the programme:</th>
<th>Person responsible for this module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir. G. Kuiken</td>
<td>Prof. Dr. J. Dam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative person(s) responsible for this module:</th>
<th>Examiner(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ir. J. Bekkering</td>
<td>Prof Dr. J. Dam, dr A Perl, Dr. Ir. J. Bekkering</td>
</tr>
</tbody>
</table>

Objective of the module / skills:
To have demonstrated knowledge and understanding of
- Theoretical concepts
- Material Aspects
- Control & Measurement aspects
- Gas: Production/Conversion/ Treatment/Storage (Hydrogen, BioGas, Green Gas, LNG)
- Liquid: Gas to Liquid; Ethanol, Hydrogen, LNG
- Solid (Clean Coal, BioMass)

To be able to:
- Present an overview of the processes
- Understand the processes for fuel production with a focus on downstream
- Apply theory and concepts in models with a set of constraints for optimizing production and supply chains production and supply

<table>
<thead>
<tr>
<th>Content of the module:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical concepts</td>
<td></td>
</tr>
<tr>
<td>Combustion</td>
<td></td>
</tr>
</tbody>
</table>
- Electromagnetics
- Fluid dynamics
- States (static, transients, phase change)

Materials
- Elaboration of subtopics

Control & Measurement
- Pressure, Heat, Temperature, Flow
- Equipment (valves, pipes, storage, pumps, compressors, Exchangers, Cooling)
- Instrumentation for measuring (Symbols, process diagrams, sensors)

Gas: Production/Conversion/ Treatment/Storage (Hydrogen, Bio Gas, Green Gas, LNG)
- Hydrogen: production (electrolysis, Sabatier, P2G)
- CBG & CNG: compression, storage, application
- Application of Sustainable Gasses in mobility
- Sustainability of gas supply chains
- Liquid: Gas to Liquid; Ethanol, Hydrogen, LNG
- Elaboration of subtopic lectures and lab work

Solid (Clean Coal, Biomass)
- Biochemical
- Thermochemical
- Chemical

Storage
- Introduction
- Overview non electrochemical storage devices (Compressed Air, Pumped Hydro, Fly Wheels, Superconducting magnetic energy storage, Capacitors, Comparison technologies)
- Overview electrochemical storage (Batteries, Hydrogen, Methane)

Suggested reading:
To be announced at the beginning of the lecture period

Comments:
-

Weblink:
-

Prerequisites for admission:
-

Helpful previous knowledge:
-

Associated with the module(s):
-

Maximum number of students / selection criteria:
-

Types of examinations:
Theoretical Concepts (20%): Written exam (1.5 hours)
Measurement & Control (20%): Assignment (written report and presentation)
Fuels (20%): Assignment (written report and presentation)
Storage (20%): Written exam (1.5 hours)
Supply Chain Design (20%): Assignment (written report and presentation)
Examination periods:
Theoretical Concepts: April
Measurement & Control: March
Fuels: March
Storage: March
Supply Chain Design: April
Registration procedure:
-
Fakultät 5: Mathematik und Naturwissenschaften
Institut für Physik
Subject: European Master in Renewable Energy
Summer Term 2017

| **Category:** |
| - Master Module |
| **Degree award:** |
| - Master |

<table>
<thead>
<tr>
<th>Emphases:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sections:</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Module reference number/Title:
pre382 - Biochemical Conversion

Duration:	1 semester
Cycle:	once a year
Type of module:	mandatory
Level:	MM (master module)
This module should be taken in 2nd semester	

| **Type of program:** | - Lecture, Laboratory, Excursion, Tutorial
Language: | English
Attainable credit points: | 10,00 CP
Workload: | 280 hours
Required attendance: | 100 hours |

| **Person responsible for the programme:** | Ir. G. Kuiken
Person responsible for this module: | Dr. J.P. Nap, Dr. F. Faber, Dr. M. Ciepliek (ECN) |

| **Alternative person(s) responsible for this module:** | -
Examiner(s): | Dr. F. Faber, Dr. M. Barankin, Dr. M Ciepliek (ECN) |

Objective of the module / skills:
To have demonstrated knowledge and understanding of
- Chemistry to calculate the thermodynamic outcome of various (bio-) chemical reactions.
- Distinguishing the many choices in biological conversion processes
- The practical challenges that influence availability and reliability of a plant
- Unit operations that are required for a given process
To be able to
- Make mass and energy balances in biological conversion processes
- Set up a biological conversion experiment (e.g. anaerobic digestion or photo bioreactors)
- Model a biofuel production plant and calculate energy conversion efficiencies
- Contribute to discussions with experts

Basic biochemistry
- Molecule concept (Basic chemistry)
- Thermodynamics (calculations on energy and work of chemical reactions)
- Metabolism: various metabolic processes related to biofuel production
 - Photosynthesis: energy efficiencies and energy content
 - Biomass: sources and availability, composition

The making of renewables
- Types of biofuels (Bio-ethanol, Bio-methane, Bio-diesel, Bio-hydrogen, Bio-kerosene and bio-oil,
 Power to biofuel, Comparison with fossil)
- Biological conversion techniques
 - Anaerobic Digestion (Bio-methane)
 - Fermentation (Bio-ethanol)
 - Fermentation (Bio-hydrogen)
 - Transesterification (Bio-Diesel)
- Pre-treatment technology: increasing conversion efficiencies
- Modelling: calculations on microbial growth and biofuel production
- Bioreactor design and operation, bio-methane, bio-ethanol and algal oils (foto bioreactors)
- New technologies in biofuel productions (increasing efficiencies by genetic engineering)
- Economy: modelling and LCA analysis for cost effect biofuel production

The use of biofuels
- Bio refinery and upgrading
- End-use specifications (combustion properties, energy density, storage properties, logistics)
- Mobility
 - Fuel suitability
 - Engine types
 - E-bike; hybrid car, other
 - Infrastructure
- Energy balance
- Evaluation business cases

Suggested reading:
To be announced at the beginning of the lecture period

<table>
<thead>
<tr>
<th>Comments:</th>
<th>Helpful previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weblink:</th>
<th>Associated with the module(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites for admission:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Maximum number of students / selection criteria:

- **Types of examinations:**
 - Basic Chemistry (20%): Written exam (1.5 hours)
 - Making (30%): Written exam (1.5 hours)
 - BioEthanol (20%): Assignment (written report and presentation)
 - Aspen Programming (30%): Assignment (written report and presentation)

Examination periods:

- May

Registration procedure:
-
European Master in Renewable Energy

Summer Term 2017

Subject: European Master in Renewable Energy

Category: Master Module

Degree award: Master

Module reference number/Title:

pre383 - Thermochemical Conversion

Duration: 1 semester
Cycle: once a year
Type of module: mandatory
Level: MM (master module)
This module should be taken in 2nd semester

Type of program: -
Lecture, Laboratory, Tutorials

Language: English
Attainable credit points: 5,00 CP
Workload: 140 hours
Required attendance: 50 hours

Person responsible for the programme:
Ir. G. Kuiken

Person responsible for this module:
Prof. Dr. J. Dam

Alternative person(s) responsible for this module:
-

Examiner(s):
Prof. Dr. J. Dam

Objective of the module / skills:

- To have demonstrated knowledge and understanding of
 - distinguishing between many choices in thermochemical conversion processes
 - unit operations that are required for a given process
 - the practical challenges that influence availability and reliability of a plant
 - literature being published in the field

- To be able to
 - make mass and energy balances
 - evaluate new concepts in terms of efficiency and economics
 - set up a conversion experiment
 - contribute to discussions with experts

Content of the module:

1. **Conversion techniques:**
 - Combustion
 - Torrefaction
 - Pyrolysis
 - Gasification
 - Hydrothermal Upgrading

2. **Reactor design / modelling**
Suggested reading:
To be announced at the beginning of the lecture period

<table>
<thead>
<tr>
<th>Comments:</th>
<th>Helpful previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Weblink:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites for admission:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students / selection criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of examinations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment (written report and presentation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination periods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Registration procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
pre384 - New Business

| **Subject:** European Master in Renewable Energy
| **Summer Term 2017** |
| **Category:** - Master Module
| **Degree award:** - Master |

Module reference number/Title:

| **pre384 - New Business** |

| **Duration:** 1 semester
| **Cycle:** once a year
| **Type of module:** mandatory
| **Level:** MM (master module)
| **This module should be taken in 2nd semester** |

| **Type of program:** -
| **Lecture, Laboratory, Excursion, Tutorials**
| **Language:** English
| **Attainable credit points:** 5,00 CP
| **Workload:** 140 hours
| **Required attendance:** 50 hours |

| **Person responsible for the programme:**
| Ir. G. Kuiken
| **Person responsible for this module:**
| Dr. M. Schoondorp

Alternative person(s) responsible for this module:
Examiner(s):
Dr. M. Schoondorp

Objective of the module / skills:

To have demonstrated knowledge and understanding of:
- The various context factors and issues around sustainable fuel systems, mobility and system integration
- Working with energy concepts and issues around sustainable fuel systems and mobility

To be able to:
- Evaluate legal and social issues around sustainable fuel systems, mobility and system integration
- Judge and provide argumentation turning theory into practice
- Integrate concepts and new developments in solutions
- Perform a basic LCA (hands-on) and interpret the outcomes of more complex LCA

Content of the module:
- Concept of Algae Fuels
- Business Model Theory
- Life Cycle analysis, regulation, risk assessment, finance
- Development of own concepts
- The art of elevator pitches

Suggested reading:
Algae Biofuels (pdf)
Outline Business Model Canvas (provided)
Scientific Articles (provided)

<table>
<thead>
<tr>
<th>Comments:</th>
<th>Helpful previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weblink:</th>
<th>Associated with the module(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites for admission:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Maximum number of students / selection criteria:
-

Types of examinations:
- Concepts of Algae Fuels (20%): Assignment (written report and presentation)
- Business Model Theory and LCA Regulation (40%): Assignment (written report and presentation)
- Development of own concepts & the elevator pitches (40%): Oral presentation

Examination periods:
- May

Registration procedure:
-
