Module Handbook Photovoltaics Northumbria

Fakultät 5: Mathematik und Naturwissenschaften Institut für Physik	Category:
Subject: European Master in Renewable Energy	- Master Module
Summer Term 2017	Degree award:
	- Master

| Emphases: | Sections: |
| - | |

| Module reference number/Title: |
| pre351 - Photovoltaic Cell and Module Technology |

Duration: 1 semester	Type of program:
Cycle: once a year	-
Type of module: mandatory	Lectures, Laboratories
Level: MM (master module)	Language: English
This module should be taken in 2nd semester	Attainable credit points: 10,00 CP

| Person responsible for the programme: | Person responsible for this module: |
| Professor N. Pearsall | Dr. I. Forbes |

| Alternative person(s) responsible for this module: |
| Dr. V. Barrioz |

| Examiner(s): |
| Another member of staff from the Department (not teaching on the module) and the external examiner (from another UK University) appointed for the course. |

| Objective of the module / skills: |
| After completing the module, the student will |
| - have a critical understanding of the physical principles relating to the operation and design of photovoltaic cells. |
| - be able to compare and analyse the design and operation of the main types of photovoltaic cells. |
| - have a critical understanding of the effect of material purity and crystallinity on the device performance. |
| - be able to compare and evaluate different methods for the fabrication of photovoltaic cells in terms of device properties and manufacturing issues. |
| - have a critical understanding of the principles of operation and design of photovoltaic modules. |
| - be able to compare and evaluate methods for the fabrication of photovoltaic modules, including performance and manufacturing issues. |

| Content of the module: |
| 1. Physics of Solar Cell Devices: |
- Solar spectrum, solar constant and air mass.
- Important semiconductors. Important solar cell devices.
- Drude theory. Breakdown of classical theory. Quantum theories of conduction: E-k curves, energy bandgap and effective masses, direct and indirect transitions.
- Carrier statistics in equilibrium - intrinsic and extrinsic behaviour.
- Carrier transport, mobilities and diffusion coefficients, scattering mechanisms. Hall effect.
- Non-equilibrium behaviour: direct, indirect and surface recombination, carrier lifetime and diffusion length.
- Current density and continuity equations, examples of solutions.
- Optical and thermal properties of semiconductors. Antireflection coatings. p-n junction in equilibrium: built in voltage, depletion region and depletion capacitance. Derivation of I-V characteristics in the dark.
- Variations of photocurrent and open circuit voltage with incident light intensity. Optimum energy bandgap of a solar cell.
- Loss mechanisms. Introduction to tandem/ multijunction concepts.
- Real diodes: recombination and generation in the depletion region, effects of series and leakage resistance on ideal behaviour. Schottky diodes and Ohmic contacts. Interface states.
- Heterojunctions: Anderson model, current transport models, heterojunction window effect.
- Effects of temperature and radiation on solar cell performance.

2. Solar Cell Fabrication Technologies
- Introduction: Important semiconductors and solar cell devices.
- Important semiconductor parameters. Effects of lattice vibrations, impurity atoms and other crystal imperfections on these parameters.
- Purification of silicon: chemical, zone refining and gettering. Segregation coefficient.
- Crystal growth: Bridgmann methods, Czochralski method and Floating Zone Methods.
- Advanced epitaxial growth methods: MBE, MOCVD, LPE AND VPE.
- Low cost thin film deposition methods: thermal evaporation methods, sputtering methods and wet chemical methods, e.g electrodeposition, autocatalytic deposition, spray pyrolysis and screen printing.
- Compensation doping: alloying, solid state diffusion and ion implantation. Dielectric deposition - thermal oxidation of silicon, LPCVD and PECVD silicon oxide and nitrides.
- Photolithography. Etching - wet and dry methods.
- Overview of characterisation techniques for semiconductor materials and cells.
- Overview of design of silicon, III-V and thin film solar cells for terrestrial and space applications and the design and fabrication of photovoltaic modules made from these cells.

Suggested reading:
Proceedings of IEEE Photovoltaic Specialist Conferences.

Comments:
Helpful previous knowledge:
| - | Core module of European Master on Solar Energy |
| - | Associated with the module(s): |

| Prerequisites for admission: | - |

| Maximum number of students / selection criteria: | - |

Types of examinations:	-
Written exam (60%, 3 hours)	-
Laboratory Reports (40%)	-

| Examination periods: | - |
| At the end of the semester | - |

| Registration procedure: | - |
European Master in Renewable Energy

Subject: European Master in Renewable Energy
Category: Master Module
Degree award: Master
Summer Term 2017

Module reference number/Title:

pre352 - Advanced Photovoltaic Cell Design

<table>
<thead>
<tr>
<th>Duration</th>
<th>Type of program</th>
<th>Type of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>-</td>
<td>mandatory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>once a year</td>
<td>English</td>
<td>MM (master module)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>This module should be taken in 2nd semester</th>
<th>Workload</th>
<th>Required attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 hours</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

Person responsible for the programme:

- Prof. N. Pearsall

Person responsible for this module:

- Dr. R. Fu

Alternative person(s) responsible for this module:

- Examiner(s):

Objective of the module / skills:

After completing the module, the student will be able to:
- Critically appraise the choice of semiconductors used and the design and fabrication methods used to produce an advanced PV device.
- Critically appraise the characterisation methods used with semiconductor materials and with PV devices.
- Perform a literature review on advanced PV devices to a professional standard.
- Present data and information both verbally and in the written form to a professional standard.

Content of the module:

1. **Introduction**
 - Flat plate modules. Concentrator solar cells. Multijunction concepts.
 - Overview of types of solar cell developed - status of the technologies.

2. **Advanced Devices**
 - Polycrystalline silicon.
 - Space applications. Physics of multijunction cells. Quantum well devices.
- Thermophotovoltaic devices.

3. Advanced Characterisation Methods
- Material characterisation: X-ray diffraction, electron and ion beam characterisation methods, optical characterisation, Van der Pauw length.
- Device Characterisation: DLTS, photoluminescence and PAS.
- Solar simulators.
- Measurement of fill-factor, solar conversion efficiency and spectral response.
- I-V-T and C-V-f measurements. Radiation damage.

4. Literature Review
This will be undertaken for one of the following topics: crystalline silicon devices, III-V devices or thin film devices.

Suggested reading:
Proceedings of IEEE Photovoltaic Specialist Conferences.

Comments:
-
Weblink:
-
Prerequisites for admission:
-

Helpful previous knowledge:
Core module of European Master on Solar Energy

Associated with the module(s):
-

Maximum number of students / selection criteria:
-
Types of examinations:
Written report (literature review): The module assessment is in the form of a review of approximately 3,000 words, chosen by the student from a list of PV device categories.

Examination periods:
At the end of the semester
Registration procedure:
-

Subject: European Master in Renewable Energy
Summer Term 2017

Module reference number/Title:
pre353 – Photovoltaics, Economics, Policy and Environment

Duration:	1 semester
Cycle:	once a year
Type of module:	mandatory
Level:	MM (master module)
This module should be taken in 2nd semester	

Type of program:
- Lectures, seminars

Language:
- English

Attainable credit points:
- 5,00 CP

Workload:
- 100 hours

Required attendance:
- 24 hours

Person responsible for the programme:
- Prof. N. Pearsall

Person responsible for this module:
- Prof. N. Pearsall

Examines:
- -

Objective of the module / skills:
After completing the module, the student will be able to:
- Critically analyse the international policies relating to photovoltaics and other energy technologies focusing on the strategic, environmental and economic implications of these policies
- Perform an economic and/or environmental analysis of a photovoltaic system.

Content of the module:
1. Economic Analysis
 - Economic theory - net present value, effect of interest rates, definition of capital and recurrent costs
 - Production economics - definition of production costs, economies of scale, projected manufacturing costs
 - Subsidies and tariff issues - effect of electricity supply costs on system viability
 - Financing mechanisms - review of international financing mechanisms for purchase and operation of systems
2. Policy Issues
 - Market development and projections
 - Review and appraisal of government policies and market development schemes
 - Security of supply
 - Climate change issues
 - Energy for development - role of photovoltaics
<table>
<thead>
<tr>
<th>3. Environmental Impact Assessment</th>
<th>Helpful previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Process definition for module production</td>
<td>Core module of European Master on Solar Energy</td>
</tr>
<tr>
<td>- Hazard assessment</td>
<td>Associated with the module(s):</td>
</tr>
<tr>
<td>- EC environmental directives</td>
<td>-</td>
</tr>
<tr>
<td>- Embodied energy calculations</td>
<td></td>
</tr>
<tr>
<td>- Energy payback times and ratios</td>
<td></td>
</tr>
<tr>
<td>- Calculation of associated CO2 and other emissions</td>
<td></td>
</tr>
</tbody>
</table>

Suggested reading:
- Journal of "Progress in Photovoltaics"
- Proceedings of European Photovoltaic Solar Energy Conferences
- Proceedings of IEEE Photovoltaic Specialist Conferences
- IEEEXplore database
- Environmental data sources
- Government literature (including European Commission and international) on renewable energy promotion
- IEA Photovoltaic Power Systems Programme reports

Comments:
-
Weblink:
-
Prerequisites for admission:
-
Maximum number of students / selection criteria:
-
Types of examinations:
 - Written report (essay, approximately 3,000 words) and Presentation (10 minutes)
Examination periods:
 - At the end of the semester
Registration procedure:
-
<table>
<thead>
<tr>
<th>Fakultät 5: Mathematik und Naturwissenschaften</th>
<th>Category:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Physik</td>
<td>- Master Module</td>
</tr>
<tr>
<td>Subject: European Master in Renewable Energy</td>
<td>Degree award:</td>
</tr>
<tr>
<td>Summer Term 2017</td>
<td>- Master</td>
</tr>
</tbody>
</table>

Emphases:

-

Sections:

-

Module reference number>Title:

pre354 - Photovoltaic System Technology

Duration: 1 semester	Type of program:
Cycle: once a year	-
Type of module: mandatory	Lectures, seminars
Level: MM (master module)	Language: English
This module should be taken in 2nd semester	Attainable credit points: 10,00 CP
	Workload: 200 hours
	Required attendance: 48 hours

Person responsible for the programme:

Prof. N. Pearsall

Person responsible for this module:

Prof. N. Pearsall

Alternative person(s) responsible for this module:

-

Examiner(s):

another member of staff from the Department (not teaching on the module) and the external examiner (from another UK University) appointed for the course.

Objective of the module / skills:

After completing the module, the student will be able to:

- Assess the system requirements for both grid connected and stand alone applications.
- Design and develop a PV system by evaluating complex customer needs in relation to an application.
- Critically evaluate the performance of a PV system in comparison to a theoretical model of such a system, calculating yields and efficiencies.
- Analyse the main system losses and compare methods for minimising these for various system designs.

Content of the module:

1. Basic systems design
 - Photovoltaic (PV) arrays, support structures
 - Electrical Connections and wiring issues
 - BOS components
 - Stand alone and grid connected systems
 - System sizing
2. Stand-alone systems
 - Applications
- Performance assessment and sizing
- Standards and regulations

3. Grid connected systems - electrical
- Inverter systems and electrical supply issues
- Grid connection regulations
- Harmonic content, reactive power, and wiring issues

4. Grid connected systems - large scale
- Design of large scale systems
- Case studies

5. Grid connected systems - building integrated
- System design and sizing
- Energy in buildings and building components
- Installation and operation
- Case studies

6. Concentrator systems
- Design of concentrator systems
- Operation and maintenance

7. Monitoring and performance analysis
- Monitoring specifications
- Yield and performance ratio, and MTBF
- Operational issues and maintenance

8. Standards and regulations
- Standards for construction and operation
- Regulations governing system design and operation
- Health and safety issues

9. Space systems
- Array configurations
- Quality control and assessment
- Design of systems
- BOL and EOL design tradeoffs

Suggested reading:

Journals:
- Progress in Photovoltaics
- Renewable Energy
- Various IEEE journals relating to electrical engineering

Databases and Websites
- IEA PV Power Systems Programme (www.iea-pvps.org)
- European Photovoltaic Industries Association (http://www.epia.org/home/)
- PVGIS web site (http://re.jrc.ec.europa.eu/pvgis/)

Other Resources
- Measurement data from system trials
- PVSyst software
<table>
<thead>
<tr>
<th>Comments:</th>
<th>Helpful previous knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Core module of European Master on Solar Energy</td>
</tr>
<tr>
<td>Weblink:</td>
<td>Associated with the module(s):</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prerequisites for admission:</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum number of students / selection criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of examinations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam (60%, 3 hours)</td>
</tr>
<tr>
<td>Written report (40%, design assignment): Feasibility report, maximum of 10 pages plus technical appendices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination periods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Registration procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>