Syllabus

Specialization in Photovoltaics

University of Northumbria

<table>
<thead>
<tr>
<th>Module</th>
<th>CP</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaic Cell and Module Technology</td>
<td>10</td>
<td>Semiconductor materials and characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Band theory and the absorption of light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carrier transport, mobility and diffusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory of the ideal diode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photocurrent and spectral response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behaviour of real diodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effect of operating conditions on I-V characteristic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crystal growth and processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thin film growth techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of cell and module design</td>
</tr>
<tr>
<td>Advanced Photovoltaic Cell Design</td>
<td>5</td>
<td>Overview of technology status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentrator and multijunction concepts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High efficiency cell designs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic and polymer cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced material and cell characterization</td>
</tr>
<tr>
<td>Economics, Policy and Environment</td>
<td>5</td>
<td>Economic theory and life cycle assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Financing mechanisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental impact assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Historical market development and projections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Government policies and market development schemes</td>
</tr>
<tr>
<td>Photovoltaic System Technology</td>
<td>10</td>
<td>Introduction to PV system design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grid connected systems – electrical design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grid connected systems – building integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large ground based PV systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverters for PV systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand-alone PV systems – design and application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PV systems for space applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentrator PV systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment of system performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quality assurance aspects</td>
</tr>
</tbody>
</table>