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By means of numerical simulations we investigate the geometric properties of loops on hypercubic
lattice graphs in dimensions d = 2 through 7, where edge weights are drawn from a distribution
that allows for positive and negative weights. We are interested in the appearance of system-
spanning loops of total negative weight. The resulting negative-weight percolation (NWP) problem
is fundamentally different from conventional percolation, as we have seen in previous studies of this
model for the 2d case. Here, we characterize the transition for hypercubic systems, where the aim
of the present study is to get a grip on the upper critical dimension du of the NWP problem.

For the numerical simulations we employ a mapping of the NWP model to a combinatorial op-
timization problem that can be solved exactly by using sophisticated matching algorithms. We
characterize the loops via observables similar to those in percolation theory and perform finite-size
scaling analyses, e.g. 3d hypercubic systems with side length up to L=56 sites, in order to estimate
the critical properties of the NWP phenomenon. We find our numerical results consistent with an
upper critical dimension du =6 for the NWP problem.
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I. INTRODUCTION

The statistical properties of lattice-path models on
graphs, equipped with quenched disorder, have experi-
enced much attention during the last decades. They have
proven to be useful in order to characterize, e.g., linear
polymers in disordered/random media [1–5], vortices in
high Tc superconductivity [6, 7], and domain-wall exci-
tations in disordered media such as spin glasses [8, 9]
and the solid-on-solid model [10]. The precise computa-
tion of these paths can often be formulated in terms of a
combinatorial optimization problem and hence might al-
low for the application of exact optimization algorithms
developed in computer science.

For an analysis of the statistical properties of these
lattice-path models, geometric observables and scaling
concepts similar to those developed in percolation the-
ory [11, 12] have been used conveniently. In the past
decades, a large number of percolation problems in var-
ious contexts have been investigated through numerical
simulations. Among these are problems where the fun-
damental entities are string-like, as for the lattice path
models mentioned in the beginning, rather than clusters
consisting of occupied nearest neighbor sites, as in the
case of usual random bond percolation.

Recently, we have introduced [13] negative-weight per-

colation (NWP), a problem with subtle differences as
compared to other string-like percolation problems. In
NWP, one considers a regular lattice graph with peri-
odic boundary conditions (BCs), where adjacent sites
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are joined by undirected edges. Weights are assigned to
the edges, representing quenched random variables drawn
from a distribution that allows for edge weights of either
sign. The details of the weight distribution are further
controlled by a tunable disorder parameter, see Sec. II.
For a given realization of the disorder, one then computes
a configuration of loops, i.e. closed paths on the lattice
graph, such that the sum of the edge weights that build
up the loops attains an exact minimum and is negative.
Note that the application of exact algorithms in contrast
to standard sampling approaches like Monte Carlo sim-
ulations avoids problems like equilibration. Also, since
the algorithms run in polynomial time, large instances
can be solved. As an additional optimization constraint
we impose the condition that the loops are not allowed
to intersect; consequently there is no definition of clus-
ters in the NWP model. Due to the fact that a loop is
not allowed to intersect with itself or with other loops
in its neighborhood, it exhibits an “excluded volume”
quite similar to usual self-avoiding walks (SAWs) [12].
The problem of finding these loops can be cast into a
minimum-weight path (MWP) problem, outlined below
in more detail. A pivotal observation is that, as a func-
tion of the disorder parameter, the NWP model features
a disorder-driven, geometric phase transition. In this re-
gard, depending on the disorder parameter, one can iden-
tify two distinct phases: (i) a phase where the loops are
“small”, meaning that the linear extensions of the loops
are small in comparison to the system size, see Fig. 1(a).
(ii) a phase where “large” loops exist that span the entire
lattice, see Fig. 1(c). Regarding these two phases and in
the limit of large system sizes, there is a particular value
of the disorder parameter at which system-spanning (i.e.
percolating) loops appear for the first time, see Fig. 1(b).

Previously, we have investigated the NWP phe-
nomenon for 2d lattice graphs [13] using finite-size scaling
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FIG. 1: Samples of loop configurations for a 3d hypercubic
lattice with side length L = 24 and periodic boundary con-
ditions. Percolating (nonpercolating) loops are colored black
(gray). The snapshots relate to different values of the disor-
der parameter ρ, i.e. (a) ρ=0.10, (b) ρ=0.13, (c) ρ=0.17, so
as to illustrate the NWP of loops. In the limit of large system
sizes and above the critical point ρc = 0.1273(3), the lattice
features system-spanning loops of total negative weight.

(FSS) analyses, where we characterized the underlying
transition by means of a whole set of critical exponents.
Considering different disorder distributions and lattice
geometries, the exponents where found to be universal in
2d and clearly distinct from those describing other perco-
lation phenomena. In a subsequent study we investigated
the effect of dilution on the critical properties of the 2d
NWP phenomenon [14]. Therein we performed FSS anal-
yses to probe critical points along the critical line in the
disorder-dilution plane that separates domains that al-
low/disallow system-spanning loops. One conclusion of
that study was that bond dilution changes the universal-
ity class of the NWP problem. Further we found that, for
bond-diluted lattices prepared at the percolation thresh-
old of 2d random percolation and at full disorder, the
geometric properties of the system-spanning loops com-
pare well to those of ordinary self-avoiding walks.

Here, we study the negative weight percolation prob-
lem on hypercubic lattice graphs in dimensions d = 2
through 7. The aim of the present study is to determine
the upper critical dimension of the NWP problem from
computer simulations for systems with finite size. In this
regard, we compute the ground state (GS) loop configu-
rations for the NWP model for a fairly general disorder
distribution (described below in Sec. II) and character-
ize the resulting loops using observables from percola-
tion theory. We perform finite-size scaling analyses to
extrapolate the results to the thermodynamic limit. As
a fundamental observable that provides information on
whether the upper critical dimension du is reached, we
monitor the fractal dimension df of the loops. The fractal
dimension can be defined from the scaling of the average
length 〈`〉 of the percolating loops as a function of sys-
tem size L according to 〈`〉 ∼ Ldf . In 2d we previously
obtained the estimate df =1.266(2) [13]. This tells that
in 2d the loops are, in a statistical sense, somewhat less
convoluted than SAWs (dSAW

f = 1.333). For d ≥ du we
expect to observe df =2, as for usual self-avoiding lattice
curves. This means, the “excluded volume” effect men-
tioned earlier becomes irrelevant and the loops exhibit

the same scaling as ordinary random walks.
The remainder of the presented article is organized as

follows. In section II, we introduce the model in more
detail and we outline the algorithm used to compute the
loop configurations. In section III, we list the results of
our numerical simulations and in section IV we conclude
with a summary.

II. MODEL AND ALGORITHM

In the remainder of this article we consider regular hy-
percubic lattice graphs G=(V,E) with side length L and
fully periodic boundary conditions (BCs) in dimensions
d = 2 . . . 7. The considered graphs have N = |V | = Ld

sites i ∈ V and a number of |E| = dN undirected edges
{i, j}∈E that join adjacent sites i, j∈V . We further as-
sign a weight ωij to each edge contained in E, represent-
ing quenched random variables that introduce disorder
to the lattice. In the present work we consider lattices
which exhibit a fraction (1 − ρ) of edges with weight 1
and a fraction ρ of edges following a Gaussian disorder,
i.e.,

P (ω) = ρ exp (−ω2/2)/
√

2π + (1 − ρ)δ(ω − 1) . (1)

This allows explicitly for loops L with a negative total
weight ωL=

∑
{i,j}∈L ωij . To support intuition: For any

nonzero value of the disorder parameter ρ, a sufficiently
large lattice will exhibit at least “small” loops that have
negative weight, see Fig. 1(a). If the disorder parame-
ter is large enough, system-spanning loops with negative
weight will exist, see Figs. 1(b),(c).

The NWP problem statement then reads as follows:
GivenG together with a realization of the disorder, deter-
mine a set C of loops such that the configurational energy,
defined as the sum of all the loop-weights E =

∑
L∈C ωL,

is minimized. Therein, the weight of an individual loop
is smaller than zero. As further optimization constraint,
the loops are not allowed to intersect. Note that C may
also be empty (clearly this is the case for ρ=0). The set
of optimum loops is obtained using an appropriate trans-
formation of the original graph as detailed in [15]. For the
transformed graphs, minimum-weight perfect matchings
(MWPM) [16–18] are calculated, yielding the loops for
each particular instance of the disorder. This procedure
allows for an efficient implementation [19] of the simula-
tion algorithms. Here, we give a brief description of the
algorithmic procedure that yields a minimum-weight set
of loops for a given realization of the disorder. Fig. 2
illustrates the 3 basic steps, which are detailed next:

(1) each edge, joining adjacent sites on the original
graph G, is replaced by a path of 3 edges. Therefore,
2 “additional” sites have to be introduced for each edge
in E. Therein, one of the two edges connecting an ad-
ditional site to an original site gets the same weight as
the corresponding edge in G. The remaining two edges
get zero weight. The original sites i ∈ V are then “dupli-
cated”, i.e. i→ i1, i2, along with all their incident edges
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FIG. 2: Illustration of the algorithmic procedure: (a) orig-
inal lattice G with edge weights, (b) auxiliary graph GA

with proper weight assignment. Black edges carry the same
weight as the respective edge in the original graph and grey
edges carry zero weight, (c) minimum-weight perfect match-
ing (MWPM) M : bold edges are matched and dashed edges
are unmatched, and (d) loop configuration (bold edges) that
corresponds to the MWPM depicted in (c).

and the corresponding weights. For each of these pairs
of duplicated sites, one additional edge {i1, i2} with zero
weight is added that connects the two sites i1 and i2.
The resulting auxiliary graph GA = (VA, EA) is shown in
Fig. 2(b), where additional sites appear as squares and
duplicated sites as circles. Fig. 2(b) also illustrates the
weight assignment on the transformed graph GA. Note
that while the original graph (Fig. 2(a)) is symmetric,
the transformed graph (Fig. 2(b)) is not. This is due to
the details of the mapping procedure and the particu-
lar weight assignment we have chosen. A more extensive
description of the mapping can be found in [9].

(2) a MWPM on the auxiliary graph is determined
via exact combinatorial optimization algorithms [20]. A
MWPM is a minimum-weighted subset M of EA, such
that each site contained in VA is met by precisely one
edge in M . This is illustrated in Fig. 2(c), where the
solid edges represent M for the given weight assignment.
The dashed edges are not matched. Due to construction,
the auxiliary graph consists of an even number of sites
and since there are no isolated sites, it is guaranteed that
a perfect matching exists.
Note that obtaining the MWPM can be done in poly-
nomial time as a function of the number of sites, hence
large system sizes with hundreds of thousands of sites are
feasible.

(3) finally it is possible to find a relation between the
matched edges M on GA and a configuration of negative-

weighted loops C on G by tracing back the steps of the
transformation (1). Regarding this, note that each edge
contained in M that connects an additional site (square)
to a duplicated site (circle) corresponds to an edge on
G that is part of a loop, see Fig. 2(d). Note that, by
construction of the auxiliary graph, for each site i1 or
i2 matched in this way, the corresponding twin site i2/i1
must be matched to an additional site as well. This guar-
antees that wherever a path enters a site of the original
graph, the paths also leaves the site, corresponding to the
defining condition of loops. All the edges in M that con-
nect like sites (i.e. duplicated-duplicated, or additional-
additional) carry zero weight and do not contribute to a
loop on G. Once the set C of loops is found, a depth-first
search [15, 17] can be used to identify the loop set C and
to determine the geometric properties of the individual
loops. For the weight assignment illustrated in Fig. 2(a),
there is only one negative weighted loop with ωL = −2
and length ` = 8.

Note that the result of the calculation is a collection C
of loops such that the total loop weight, and consequently
the configurational energy E , is minimized. Hence, one
obtains a global collective optimum of the system. Ob-
viously, all loops that contribute to C possess a negative
weight. Also note that the choice of the weight assign-
ment in step (1) is not unique, i.e. there are different ways
to choose a weight assignment that all result in equiva-
lent sets of matched edges on the transformed lattice,
corresponding to the minimum-weight collection of loops
on the original lattice. Some of these weight assignments
result in a more symmetric transformed graph, see e.g.
[15]. However, this is only a technical issue that does not
affect the resulting loop configuration. Albeit the trans-
formed graph is not symmetric, the resulting graph (Fig.
2(d)) is again symmetric. The small 2d lattice graph
with free BCs shown in Fig. 2 was chosen intentionally
for illustration purposes. The algorithmic procedure ex-
tends to higher dimensions and fully periodic BCs in a
straight-forward manner.

In the following section we will use the procedure out-
lined above to investigate the NWP phenomenon on hy-
percubic lattices.

III. RESULTS

In the current section we will present the results of
our simulations, carried out in order to characterize the
critical behavior of the NWP phenomenon in dimen-
sions d = 2 . . . 7. To accomplish this, we use observ-
ables similar to those used in percolation theory and per-
form FSS analyses. The fundamental observables related
to an individual loop L are its weight ωL and length
` =

∑
{i,j}∈L 1. Further, we determine the linear exten-

sions Ri, i=1 . . . d, of a given loop by projecting it onto
the independent lattice axes. The largest of those val-
ues, i.e. R=maxi=1...d(Ri), is referred to as the spanning
length of the loop. To characterize the full perimeter of
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an individual loop on a coarse grained scale, we can fur-

ther define the “size” Rs =
∑d

i=1Ri, i.e. the length of
the loop if all small scale irregularities where flattened
[21]. The remainder of the present section is organized
as follows. In subsections III A and III B, we will first
locate the critical points and exponents that character-
ize the NWP phenomenon on hypercubic lattice graphs.
Therefore we perform FSS analyses that involve data for
different values of the disorder parameter. For these scal-
ing analyses we considered hypercubic lattices with side
lengths up to Lmax, and a respective number of disorder
configurations nmax, as listed in Tab. I. In subsection
III C we will then state our results on the critical behavior
of energetic and geometric loop-observables. Therefore,
right at the critical points for the various dimensions, we
perform simulations for lattices up to Lρc

max and nρc
max, as

listed in Tab. I.

A. Scaling analyses to obtain critical points and

exponents in d=2 . . . 7

In the present subsection, we illustrate the analysis for
the simulated data on 3d hypercubic lattices in detail.
Although we performed similar analyses for the remain-
ing dimensions, we do not show figures for d = 2, 4 − 7
but include the final results in Tab. II. As pointed out
earlier, a loop is called percolating if its spanning length
R is equal to the system size L. This is a binary decision
for each realization of the disorder and it is further used
to obtain the percolation probability PL(ρ) for a lattice
graph of a certain size L at a given value of the disorder
parameter ρ. According to scaling theory, one expects
PL(ρ) to satisfy the scaling expression

〈PL(ρ)〉 ∼ f1[(ρ− ρc)L
1/ν ], (2)

wherein 〈. . .〉 denotes the disorder average and ρc is the
critical value of the disorder parameter above which sys-
tem spanning loops first appear as L→∞. Further, ν
is a critical exponent that describes the divergence of a
typical length scale in the NWP problem as the critical

TABLE I: System sizes and number of disorder configurations
considered. From left to right: dimension d, largest system
size Lmax and respective number of samples nmax considered
for the scaling analysis that involves various values of the
disorder parameter ρ, largest system size Lρc

max and number
of samples nρc

max considered for the analysis at ρc, and, number
Nloops of loops collected at Lρc

max.

d Lmax nmax Lρc
max nρc

max Nloops

2 128 40 000 512 (384) 3 200 (21 200) 25 144 685
3 48 9 600 56 19 200 14 292 489
4 24 4 800 24 9 600 4 172 813
5 12 6 400 12 12 200 1 762 955
6 8 6 400 8 6 400 520 368
7 5 4 800 5 12 800 204 459

point is approached. Finally, f1[·] denotes an (unknown)
universal scaling function. Eq. 2 implies that if one plots
PL(ρ) as a function of the scaled variable x ≡ (ρ−ρc)L1/ν

and if one adjusts ρc and ν to their proper values, one
should find a collapse of the data curves belonging to dif-
ferent values of L onto a master curve. Note that above,
x constitutes a lowest order polynomial approximation to
f1[x] regarding the disorder parameter ρ around the crit-
ical point ρc. The resulting scaling plot for the data of 3d
hypercubic lattices is shown in Fig. 3(a). Therein, consid-
ering Eq. 2, a best data collapse of the curves for L≥24
yields the parameters ρc = 0.1273(3) and ν = 1.00(2)
(S = 1.02), where the scaling analysis was restricted to
the finite interval dx = [−0.2 : 0.4] enclosing the critical
point on the rescaled x-axis. The value of S measures
the mean square deviation of the data points from the
master curve in units of the standard error and thus pro-
vides information on how well the simulated data fits
the scaling expression, see Refs. [22, 23]. Here, the data
collapse is considered to be good if the numerical value
of S ≤ 2. Further, the quality S of the data collapse
and the resulting estimates for the critical parameters
did not depend much on the size of the chosen interval
dx. As an alternative, the maxima of the associated fluc-
tuations, i.e. var(PL(ρ)) = 〈PL(ρ)2〉−〈PL(ρ)〉2, can be
used to define system size dependent, “effective” critical
points ρ(L) [12]. These maxima are located at precisely
those values of ρ where PL(ρ) = 1/2, and just as PL(ρ)
approaches a step function in the thermodynamic limit,
ρ(L) approaches ρc as L → ∞. In this regard, we ex-
pect the sequence of effective critical points to attain an
asymptotic value as ρ(L) = ρc + aL−1/ν . First, we ob-
tained the estimates of ρ(L) by fitting a Gaussian func-
tion to the peaks of var(PL(ρ)). Applying the above scal-
ing form to the data points thus obtained (see upper inset
of Fig. 3(a)), then yields ρc=0.1270(4) and ν=1.02(4) in
agreement with the estimates reported earlier. Further,
for each realization of the disorder we can compute the
size of the smallest box that fits the largest loop on the
lattice, i.e. VB =Πd

i=1Ri. For the normalized box-size we
observe the scaling behavior 〈VB/L

d〉 ∼ f2[(ρ − ρc)L
1/ν ]

TABLE II: Critical properties that characterize the NWP
phenomenon in d=2 . . . 7. From left to right: Lattice dimen-
sion d, critical point ρc, critical exponent ν that describes the
divergence of a typical length scale, order parameter exponent
β, fluctuation exponent γ, fractal dimension df at criticality
and Fisher exponent τ . Note that the figures for d = 2 are
taken from Ref. [13].

d ρc ν β γ df τ
2 0.340(1) 1.49(7) 1.07(6) 0.77(7) 1.266(2) 2.59(3)
3 0.1273(3) 1.00(2) 1.54(5) -0.09(3) 1.459(3) 3.07(1)
4 0.0640(2) 0.80(3) 1.91(11) -0.66(5) 1.60(1) 3.55(2)
5 0.0385(2) 0.66(2) 2.10(12) -1.06(7) 1.75(3) 3.86(3)
6 0.0265(2) 0.50(1) 1.92(6) -0.99(3) 2.00(1) 4.00(2)
7 0.0198(1) 0.41(1) – – 2.08(8) 4.50(1)
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FIG. 3: Results of the FSS analyses for the NWP problem on
3d hypercubic lattice graphs. (a) scaling plot of the percola-
tion probability PL(ρ). The main plot shows the data collapse
after rescaling the raw data according to Eq. 2. The inset at
the bottom illustrates the unscaled data close to the critical
point ρc. The inset on top shows the scaling of the effective
critical points ρ(L), obtained from the finite size fluctuations
var(PL(ρ)). (b) scaling plot of the order parameter P∞. The
main plot shows the data collapse after rescaling the raw data
according to Eq. 3, and the inset shows the unscaled data.

(not shown), with scaling parameters ρc=0.1273(2) and
ν=0.99(4) (S=1.00). Since the analyses related to these
three different observables conclude with scaling param-
eters that agree within the error bars, we are confident

that the respective values of ρc and ν, listed in Tab. II,
properly describe the critical behavior of the NWP phe-
nomenon on 3d hypercubic lattice graphs.

A second critical exponent is related to the scaling be-
havior of the order parameter P∞=`/Ld, which measures
the probability that a site on the lattice graph belongs
to the largest loop. Therein, ` refers to the length of the
largest loop for each realization of the disorder. Accord-
ing to scaling theory one can expect P∞ to scale as

〈P∞〉 ∼ L−β/νf3[(ρ− ρc)L
1/ν ], (3)

wherein β signifies the order parameter exponent. Again,
for the 3d data, a FSS analysis utilizing a collapse of the
data curves for L≥24 yields the estimate β=1.54(5) (S=
1.24). A scaling plot of the order parameter is presented
in Fig. 3(b). Therein, the data collapse is best close to the
critical point. So as to reduce the effect of the corrections
to scaling off criticality, the scaling analysis was restricted
to the finite interval dx= [−0.15 : 0.225] on the rescaled
x-axis.

The corresponding estimates of ρc, ν and β for hyper-
cubic lattice graphs in d=2, 4− 7, resulting from similar
FSS analyses, are listed in Tab. II.

B. Scaling analysis of the loop-length ratio

During the simulations we recorded the energetic and
geometric properties of the largest and 2nd largest loops,
with respective lengths `1 and `2, for each realization of
the disorder. The average loop-length ratio 〈`1/`2〉 for
these loops was found to satisfy the scaling expression

〈`1/`2〉 ∼ f4[(ρ− ρc)L
1/ν ]. (4)

In order to assess the corresponding scaling behavior, we
discarded samples that featured less than two loops (i.e.
samples with `2 =0). A similar scaling for the cluster-size
ratio was previously confirmed for usual random perco-
lation [24]. It stems from the fact that the largest and
2nd largest clusters exhibit the same fractal dimension
at the critical point. For usual percolation this issue was
addressed earlier [25]. Further, we observed a similar
scaling behavior in the context of an analysis of ferro-
magnetic spin domains at the T = 0 spin glass to ferro-
magnet transition for the 2d random bond Ising model
[26].

Regarding the data for hypercubic lattices of different
dimensions d and considering Eq. 4, we here yield the
estimates

3d : ρc=0.1274(3) ν=0.99(5) S=0.87 [−0.45:0.45]

4d : 0.0641(4) 0.80(9) 0.69 [−0.30:0.35]

5d : 0.0382(4) 0.68(9) 0.57 [−0.75:0.35]

6d : 0.0262(1) 0.50(3) 0.73 [−0.13:0.28]

that agree with those obtained earlier in subsection III A,
listed in Tab. II, within error bars. Note that for the 7d
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〈`1/`2〉 on 3d hypercubic lattice graphs. The main plot shows
the data collapse after rescaling the simulated data according
to Eq. 4 and the inset illustrates the unscaled data close to
the critical point.

systems, our data did not allow for a decent analysis of
the loop-length ratio. Also, there are no results listed
for the 2d case. This is so, since at the time we per-
formed the simulations for the 2d square systems, we did
not write out the second largest loop length, explicitly.
A scaling plot that illustrates the behavior of the loop
length ratio for the 3d systems is presented as Fig. 4.
Further, note that the estimates of the scaling parame-
ters (for the various values of d) did not depend much on
the size of the considered scaling interval. E.g., for the
3d systems considering dx = [−0.4 : 1.25], we obtained
ρc=0.1273(4) and ν=1.00(6) with the somewhat larger
quality S=0.97.

Note that the scaling according to Eq. 4 was estab-
lished empirically. So as to check whether that scal-
ing assumption fits the data well, we allowed for a fur-
ther free parameter, considering a scaling of the form
〈`1/`2〉∼Lκf5[(ρ−ρc)L1/ν ]. We found that the best data
collapse for given intervals dx where attained for values
ρc and ν in agreement with those above and |κ|≈10−3.

C. Scaling at the critical point

As pointed out above, during the simulation we
recorded the linear extensions Ri, i = 1 . . . d, of the in-
dividual loops by projecting it onto the independent lat-
tice axes. So as to study the scaling of the loop shape, we
collected, for each dimension d, a large number Nloops of
loops (see Tab. I) at the critical point ρc for the largest
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FIG. 5: Results of the FSS analyses to estimate the fractal
dimension df of the loops. The main plot shows the scaling
of the average loop length 〈`〉 as function of the system size
L for d = 2 . . . 5. The dashed lines indicate the asymptotic
scaling according to 〈`〉 ∼Ldf , with values df listed in Tab.
II. Note that the data sets where shifted upwards by a factor
4, 20 and 100 for d=3, 4, 5, respectively. The inset shows the
scaling of the average loop size 〈Rs〉 as function of the “true”

loop length ` for d = 6, 7. The dashed lines are ∼ `1/2, to
which the asymptotic scaling 〈Rs〉 ∼ `1/df can be compared.
The 7d data was shifted upwards by a factor 2.

system size Lρc
max considered for the respective setup. For

those loops we then monitored the volume to surface ratio
VB/SB of the smallest box that fits the individual loops as

a function of the coarse-grained loop size Rs =
∑d

i=1Ri,

where VB = Πd
i=1Ri and SB = 2 × ∑d

i=1 VB/Ri. For hy-
percubic volumes with identical values Ri, i = 1 . . . d,
one would expect to find VB/SB = (2dd)−1Rs. Con-
sidering d = 2 . . . 6 and performing fits to the form
〈VB/SB〉Rs

= cRψs we yield |ψ − 1| ≈ 10−2 and values of
c reasonably close to (2dd)−1 in order to conclude that
the loops, in a statistical sense, are not oblate but pos-
sess a rather spherical shape. E.g., in 3d we obtained
c/(2dd) = 0.95(1) and ψ = 1.00(3). However, in 7d the
data is not well represented by the scaling form above.
In this regard, we found our data best fit by the precise
scaling form 〈VB/SB〉`=0.003(1)(`+15(3))1.1(1), where we
considered the “true” loop length ` instead of Rs. Un-
fortunately, this contains no information that relates to
the “loop-shape factor” (2dd)−1 introduced above.

Next, we aim to determine the fractal dimension df
of the loops, which can be defined from the scaling be-
havior of the average loop length 〈`〉 as a function of the
linear extend L of the hypercubic lattice graphs at the
critical point ρc according to 〈`〉 ∼Ldf . For dimensions
d = 2 . . . 5 we thus analyzed the largest loop found for
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each realization of the disorder and employed the scaling
relation above, see Fig. 5. The resulting estimates for df
are listed in Tab. II. Further, we verified that the prob-
ability density function DL(ρ) of the largest loop length
found for each realization of the disorder yields a data col-
lapse after a rescaling of the form DL(`)∼L−df f6[`/L

df ]
(not shown). Due to the few and small system sizes that
can be reached in d=6, 7 (Lρc

max =8, 5, respectively), the
data analysis turned out to be somewhat more intricate.
For those two cases we considered only the largest lattice
and analyzed the scaling behavior of all the small, i.e.
nonpercolating, loops, where we considered the scaling
form 〈Rs〉 ∼ `1/df . For the considered lattice sizes the
values of ` where not too diverse and we collected 520368
(6d) and 204459 (7d) loops that comprise the estimates
df = 2.00(1) (6d) and 2.08(8) (7d), see Fig. 5. However,
note that for the data analysis all those data points have
to be discarded that are strongly affected by the granu-
larity of the lattice. For this reason, all the data points
for `≤10 have been withdrawn. Unfortunately, at ρc, the
number density n` of loops with a given length ` decays
algebraically as n`∼ `−τ , where τ ≥1 + d/2 (see below).
This means, considering `>10, the values of df obtained
from the scaling form above stem from only a fraction of
the collected loops. E.g., for 6d and `>10 we have only
5884 loops that represent the respective averages 〈Rs〉.
Hence, the results for d=6 and 7 have to be taken with a
grain of salt. However, the fact that d=6 is the smallest
dimension for which the fractal dimension of the loops
attains the value of df =2 suggests an upper critical di-
mension du=6 for the NWP phenomenon. In a previous
study [13] we found that for 2d systems, the weight ωL of
a loop L is proportional to its length `. Here, we verified
the same behavior for the various dimensions considered.
More precise, we collected loops for the largest system
size Lρc

max at the critical point ρc of a given dimension d.
Regarding the loop weight we found a best fit to the data
by using the scaling form 〈ωL〉∼`(1+ c1/`

c2), wherein c1
was of order 10 and c2≈1 for all dimensions considered.

Another critical exponent can be obtained from the
scaling of the finite size susceptibility associated to the
order parameter, i.e. χL=Ldvar(P∞)≡L−dvar(`). Basi-
cally, this observable measures the mean-square fluctua-
tion of the loop length and it exhibits the critical scaling
χL ∼ Lγ/ν (not shown). The resulting estimates of the
fluctuation exponent γ are listed in Tab. II and are found
to agree with the scaling relation γ + 2β = dν within er-
ror bars. Note that in 7d the quality of the data was not
sufficient to obtain an estimate for γ.

Finally, we investigate the number density n` of all
nonpercolating loops with length `. Right at the criti-
cal point, it is expected to exhibit an algebraic scaling
n` ∼ `−τ , governed by the Fisher exponent τ . For the
largest lattice graphs simulated for the various values of
d, we obtain the estimates listed in Tab. II, see also Fig.
6. For the corresponding data analyses, very small loops
have to be neglected since they are affected by the granu-
larity of the lattice and very large loops have to be with-
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100
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100 101 102 103

n `

`

2d

3d

4d
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FIG. 6: Results of the FSS analyses for the number density
n` of all nonpercolating loops with length ` for d = 2 . . . 7.
Right at ρc, the number density exhibits an algebraic scaling
n`∼`−τ , with τ listed in Tab. II. Note that the the data sets
for dimensions d where scaled by a factor 102(6−d).

drawn since they are affected by the lattice boundaries.
From scaling, the Fisher exponent can be related to the
fractal dimension via the scaling relation τ − 1 = d/df .
Note that the values of τ and df listed in Tab. II where
obtained independently and are found to agree with the
latter scaling relation within error bars, in support of the
estimate du=6 suggested above.

IV. CONCLUSIONS

In the present study, we performed numerical simula-
tions on hypercubic lattice graphs with “Gaussian-like”
disorder in dimensions d= 2 through 7. The aim of the
study was to identify the upper critical dimension of the
NWP phenomenon. Therefore, we used a mapping of
the NWP model to a combinatorial optimization problem
that allows to obtain configurations of minimum weight
loops by means of exact algorithms. We characterized
the loops using observables from percolation theory and
performed FSS analyses to estimate critical points and
exponents that describe the disorder driven, geometric
phase transition related to the NWP problem in the dif-
ferent dimensions.

Albeit the data analysis is notoriously difficult for large
values of d, we find our results consistent with an upper
critical dimension du=6 for the NWP model. This con-
clusion was based on the estimates of the fractal dimen-
sion of the loops, which, in 6d attains the value df =2 for
the first time (bear in mind that df =2 indicates the scal-
ing of a completely uncorrelated lattice curve). Further,
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in 6d, the critical exponent ν = 0.5 that describes the
divergence of a typical length scale in the NWP problem
matches the value of ν for usual random percolation at
the upper critical dimension [12]. According to our re-
sults, the FSS exponent ν still changes for d>du, which,
at a first glance appears to be a little odd. However, this
seems to be in agreement with the FSS for random perco-
lation above six dimensions, where it was found that the
corresponding exponent takes the value 3/d [27]. More-
over, the value ν=0.41(1) for the 7d systems found here
is close to the percolation estimate 3/7≈0.429.

At this point, we would like to note that its tempting
to perform simulations for the NWP problem on random
graphs, where one has direct access to the mean field
exponents that describe the transition. Since the upper
critical dimension can be defined as the smallest dimen-
sion for which the critical exponents take their mean field
values, such simulations could be used to provide further
support for the result du=6 obtained here.

Note that rather similar results where found in the
context of the optimal-path problem [28], wherein one
aims to minimize the largest weight along a single path,
in contrast to minimizing the sum of weights of multi-
ple loops, as above. Further, the optimal path problem
can be mapped to the minimum-spanning tree problem
[29] and to invasion percolation with trapping [30]. Re-
garding the optimal path problem in strong disorder [31],
quite similar fractal scaling exponents can be observed:
dopt =1.222(3) (2d, Ref. [32]), 1.44(1) (3d, Ref. [31]) and
1.59(2) (4d, Ref. [33] wherein also the approximate scal-
ing relation dopt = (d + 4)/5 was hypothesized). The
correspondence to invasion percolation with trapping fur-
ther suggests an upper critical dimension dopt

u =6 [31] for

the optimal path problem.

Finally, we will elaborate on the results for the 3d sys-
tems. In an earlier study [13], we performed simulations
for 3d hypercubic lattice graphs respecting a bimodal dis-
tribution (ω = ±1) of the edge-weights. Therein, the
most reliable results include the estimates ν = 1.02(3),
obtained from a FSS analysis of the percolation prob-
ability, and df = 1.43(2), obtained from the scaling of
the “small” loops at the respective critical point. These
values are reasonably close to those found here for the
“Gaussian-like” disorder in order to conclude that the
exponents in 3d are universal, i.e. they do not depend on
minor details of the problem setup as, e.g., the disorder
distribution. Further, the exponents ν, β and df for the
3d setup found here are close by those that describe the
disorder induced vortex loop percolation transition for
the superconductor-to-normal transition in a 3d strongly
screened vortex glass model [6].
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