Accuracy of near real time updates in wind power forecasting with regard to different weather regimes

Nadja Saleck\(^1\), Florian Bertsch\(^2\),
Lüder von Bremen\(^1\), Detlev Heinemann\(^1\)

\(^1\) ForWind, University of Oldenburg, Germany
\(^2\) Department of Computer Science, Humboldt-Universität zu Berlin, Germany

7th EMS Annual Meeting
8th European Conference on Applications of Meteorology
San Lorenzo de El Escorial, Spain, 01 – 05 October 2007
Outline

- Study site
- Wind power forecasting - method
- Cluster analysis – method and results
- Observed power by clusters
- Forecast errors by clusters
- Conclusions
Study site

North-West-Germany single wind farms
Wind power forecast

→ data ←
observed wind power input (2004 – 2006)

→ objective ←
forecast wind power of the next 4 hours
without wind speed information from weather forecasts (Numerical Weather Prediction)

→ method ←
Neural Networks
Clustering

data: 500 hPa heights from ECMWF analysis data (6-hourly), Jan. 2005 – April 2007

Principal Component Analysis (PCA)
- reduction of data
- take as much components to have 99 % of explained variance

→ relate single clusters to points in time

Cluster analysis
- k-mean clustering
- separately for:
 - *summer* (April - Sept) and
 - *winter* (Oct. - March)

Time and Cluster Assignment

<table>
<thead>
<tr>
<th>Time</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-May-2005 06:00:00</td>
<td>1</td>
</tr>
<tr>
<td>03-May-2005 12:00:00</td>
<td>1</td>
</tr>
<tr>
<td>03-May-2005 18:00:00</td>
<td>1</td>
</tr>
<tr>
<td>04-May-2005 00:00:00</td>
<td>1</td>
</tr>
<tr>
<td>04-May-2005 06:00:00</td>
<td>1</td>
</tr>
<tr>
<td>04-May-2005 12:00:00</td>
<td>4</td>
</tr>
<tr>
<td>04-May-2005 18:00:00</td>
<td>4</td>
</tr>
<tr>
<td>05-May-2005 00:00:00</td>
<td>5</td>
</tr>
<tr>
<td>05-May-2005 06:00:00</td>
<td>5</td>
</tr>
<tr>
<td>05-May-2005 12:00:00</td>
<td>5</td>
</tr>
<tr>
<td>05-May-2005 18:00:00</td>
<td>5</td>
</tr>
<tr>
<td>06-May-2005 00:00:00</td>
<td>5</td>
</tr>
<tr>
<td>06-May-2005 06:00:00</td>
<td>5</td>
</tr>
<tr>
<td>06-May-2005 12:00:00</td>
<td>5</td>
</tr>
<tr>
<td>06-May-2005 18:00:00</td>
<td>5</td>
</tr>
<tr>
<td>07-May-2005 00:00:00</td>
<td>5</td>
</tr>
</tbody>
</table>
Summer - Cluster

500 hPa level January 2005 - April 2007

Cluster No. 1 Cluster No. 2 Cluster No. 3 Cluster No. 4

Cluster No. 5 Cluster No. 6 Cluster No. 7

ForWind
Center for Wind Energy Research
Summer - Cluster

sea level January 2005 - April 2007

Cluster No. 1 Cluster No. 2 Cluster No. 3

Cluster No. 4

Cluster No. 5 Cluster No. 6 Cluster No. 7

hPa

-20 0 20 40 60

40

-20 0 20 40 60

40

-20 0 20 40 60

40

-20 0 20 40 60

40

1000 1005 1010 1015 1020 1025

hPa
Winter - Cluster

500 hPa level January 2005 - April 2007

Cluster No. 1 Cluster No. 2 Cluster No. 3 Cluster No. 4
Cluster No. 5 Cluster No. 6 Cluster No. 7

ForWind
Center for Wind Energy Research
Winter - Cluster

Sea level January 2005 - April 2007

Cluster No. 1
Cluster No. 2
Cluster No. 3
Cluster No. 4
Cluster No. 5
Cluster No. 6
Cluster No. 7

Latitude
Longitude

hPa

ForWind
Center for Wind Energy Research
Observed wind power input for different clusters

Summer

Winter

Number of cluster

Observed wind power (% inst. power)
Forecast errors (RMSE) of wind power forecasts depending on clusters - winter

- Winter cluster sea level pressure
- NN (training with three wind farms)
- NN (training with one wind farm)
- persistence

Forecast:
- one wind farm (●), 2005
- training with data of 2004

ForWind
Center for Wind Energy Research
Training within clusters
Forecast errors (RMSE) - winter

RMSE (% inst. power)

look ahead time (h)

forecast:
one wind farm (.), 2006
training with data of 2005,
separately for each cluster

persistence
NN (training with complete data)
NN (training within the single clusters)
Conclusions

• near real time updates, require: near real time wind power data
• advantage: no NWP data necessary – very actual shortest term forecasts possible
• wind power input and forecast errors depend on weather situation (clusters)
• for some clusters improvements are possible (as shown):
 • consideration of geographical distribution of the wind farms
 • training differentiation by clusters

Perspectives

• larger data set including more wind farms
• more sophisticated methods to capture spatial patterns
• apply different methods: Neural Networks, autoregressive models
• combine with model using NWP
Thank you for your attention.

this work was funded by EWE AG

ForWind – Center for wind energy research
Carl von Ossietzky University Oldenburg, Germany
nadja.saleck@forwind.de
Forecast errors (RMSE) of wind power forecasts depending on clusters - summer

Forecast:
one wind farm (.), 2005
training with data of 2004

Summer cluster sea level pressure

NN (training with three wind farms)

RMSE (% inst. power)
look ahead time (h)
Summer – Cluster

temporal distribution

occurence of each cluster (%)

number of cluster

Cluster No. 1 Cluster No. 2 Cluster No. 3 Cluster No.4
Cluster No. 5 Cluster No. 6 Cluster No. 7
Winter – Cluster

Temporal distribution

Occurrence of each cluster (%)