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From the principle that subjective dissimilarity between 2 stimuli is determined by their ra-
tio, Fechner derives his logarithmic law in 2 ways. In one derivation, ignored and forgotten in 
modern accounts of Fechner’s theory, he formulates the principle in question as a functional 
equation and reduces it to one with a known solution. In the other derivation, well known and 
often criticized, he solves the same functional equation by differentiation. Both derivations are 
mathematically valid (the much-derided “expedient principle” mentioned by Fechner can be 
viewed as merely an inept way of pointing at a certain property of the differentiation he uses). 
Neither derivation uses the notion of just-noticeable differences. But if Weber’s law is accepted 
in addition to the principle in question, then the dissimilarity between 2 stimuli is approxi-
mately proportional to the number of just-noticeable differences that fit between these stimuli: 
The smaller Weber’s fraction the better the approximation, and Weber’s fraction can always 
be made arbitrarily small by an appropriate convention. We argue, however, that neither the 2 
derivations of Fechner’s law nor the relation of this law to thresholds constitutes the essence of 
Fechner’s approach. We see this essence in the idea of additive cumulation of sensitivity values. 
Fechner’s work contains a surprisingly modern definition of sensitivity at a given stimulus: the 
rate of growth of the probability-of-greater function, with this stimulus serving as a standard. 
The idea of additive cumulation of sensitivity values lends itself to sweeping generalizations of 
Fechnerian scaling.

Gustav Theodor Fechner’s principal work, Elemente 
der Psychophysik, turned 150 years old in 2010. From 
the publication of this book many date the beginnings 
of scientific psychology. By the mid-19th century the 
Enlightenment tradition had long since made the ad-
jective scientific synonymous with physics-like. That 
is, the scientific implied systematic measurements 
informing a mathematical theory and being guided 
by it, the theory itself consisting of postulated laws 
and their logical consequences. Therefore, the term 
psychophysics, coined by Fechner in the Elemente, 

was especially appropriate: Although its meaning is 
derived from the relations “of the material and the 
mental,” it can also be understood as designating the 
psychology aspiring to be “like physics.”
	 Before Fechner’s work, Ernst Weber (1846) sys-
tematically experimented with pairwise comparisons 
of weights and visually presented line segments, but 
his observations did not lead him beyond an empiri-
cal generalization bearing his name. Although called a 
“law,” this generalization played a very different role 
from, say, Newton’s laws of motion, as it was not used 



to derive anything else from it. Johann F. Herbart 
(1824), on the other hand, constructed an elaborate 
mathematical theory of “strengths” of mental events 
(Vorstellungen) interacting in one’s mind. He did not 
think it imperative, however, to be able to somehow 
measure these “strengths” or indeed to be able to 
identify individual mental events as separate entities. 
Despite Herbart’s titling his principal treatise Psy-
chology as Science, it more appropriately falls under 
the rubric of mathematical metaphorizing.
	 Unlike Herbart’s mental events, Fechner’s sensa-
tions are identifiable by the stimuli causing them. To 
reproduce a sensation one simply has to present to 
the observer the same stimulus under the same con-
ditions (although the conditions may not be entirely 
controllable if they include the observer’s physiologi-
cal states). Unlike Herbart’s nebulous “strengths of 
mental events,” the notion of a sensation magnitude 
is operationally defined: There are certain empirical 
and computational procedures that allow one to ar-
rive at numbers representing these magnitudes. The 
measurements of difference thresholds described in 
the Elemente can be viewed as “merely” elaborate 
versions of those used before him, but their signifi-
cance was in something else: They did not interest 
Fechner for their own sake but rather as a way to in-
form a mathematical theory of subjective differences 
and sensation magnitudes. This conjunction of the 
mathematical and the operational makes the dating 
of scientific psychology from the Elemente amply de-
served. Its only historical rival in this respect seems to 
be Daniel Bernoulli’s (1738/1954) admirable analysis 
of “moral wealth,” which can be viewed as having 
founded the modern theory of decision making, more 
than a century before Fechner’s work.1

	 Not everyone would agree with this characteriza-
tion of Fechner’s work. Many contemporary psycho-
physicists, in the wake of S. S. Stevens’s disparage-
ment of Fechner’s theory (Stevens, 1960, 1961), would 
reduce the principal significance of Fechner’s work to 
the first systematic presentation of the three classical 
methods of measuring thresholds. It is Fechner’s the-
ory that, however, is the exclusive focus of this article. 
Ever since the publication of the Elemente, Fechner 
was criticized for being conceptually confused when 
dealing with just-noticeable differences (JNDs) in 
relation to his psychophysical function, and for using 
faulty mathematical reasoning in critical derivations 
(Elsas, 1886; Müller, 1878; Luce & Edwards, 1958). 

We think this criticism is based on misinterpreta-
tion, even if to a large extent it is due to Fechner’s 
own expository and terminological shortcomings. 
We argue in this article that Fechner’s derivations of 
his logarithmic law are valid, and we discuss in some 
detail their logical relation to Fechner’s methods of 
measuring thresholds and sensitivity. We then present 
our extraction from Fechner’s theory of what we think 
to be its most essential and enduring aspects, and we 
proceed to discuss our understanding of what it is 
that one can call the main Fechnerian idea, the legacy 
of Fechner’s theory to contemporary psychophysics.
	 In accomplishing these goals we do not attempt 
a textual analysis of the Elemente, or indeed any of 
Fechner’s other works. Fechner’s writing is often 
less than clear and open to conflicting interpreta-
tions. This article is more of a reconstruction than 
a review or historical analysis: We try to reconstruct 
the logic of the Fechnerian approach, and we do 
this using the language acceptable in modern psy-
chophysics rather than Fechner’s own words. Our 
reconstruction, however, is not an alternative reality, 
a substitution of what ought to have been said for 
what has been said. We ascribe to Fechner’s theory 
only the positions that are unequivocally contained 
in Fechner’s texts or can be plausibly inferred from 
them. Thus, it is a fact that the Elemente contains two 
derivations of Fechner’s law, one of which is based 
on presenting a certain principle (which we call the 
W-principle) as a Cauchy-type functional equation. 
It is a fact that neither derivation makes use of JNDs; 
therefore, neither derivation is based on Weber’s law 
or the postulated subjective equality of JNDs (known 
today as “Fechner’s postulate”). It is a fact that the 
counting of just-noticeable increments leading from 
one stimulus to another as a procedure for measuring 
subjective difference between them is understood by 
Fechner as an approximation only, justified if Weber’s 
fraction is sufficiently small.2

	 The situation is different with our understanding 
of what constitutes the “main Fechnerian idea”: We 
see it as the idea of summation of differential sen-
sitivity values along an interval of stimulus values, 
and this choice is determined by our own view of 
psychophysics and its historical development after 
Fechner. Even so, our interpretation is consistent 
with Fechner’s views. It is supported, in particular, 
by Fechner’s emphasizing (in the Elemente and in 
his other writings) that the idea of summation of very 
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small subjective increments would constitute a valid 
basis for psychophysical measurement even if We-
ber’s law (the term Fechner uses to designate both the 
law established by Weber and a law of his own, called 
here the W-principle) were abandoned or replaced 
by another law, leading to functions other than the 
logarithmic one.
	 As a brief biographical note, Fechner was nearly 
60 when he published the Elemente. Before this 
event, one might argue, he published nothing of no-
table scientific value, except possibly for an appendix 
to his Zend-Avesta (1851), in which he described his 
insight of the logarithmic law. On and off, Fechner 
continued to be active in psychophysics for almost 
30 years after the Elemente, having published his last 
and rather insightful article in 1887, the year of his 
death at the age of 86. Quite a source of inspiration 
for aging scientists.

Fechner’s Unidimensional World
The most conspicuous feature of Fechner’s approach 
to the relations “of the material and the mental,” the 
feature that has remained ubiquitous in psychophys-
ics up to the present day and in the opinion of many 
almost defining it, is the unidimensionality of both 
the material and the mental: The former is repre-
sented by unidimensional continua of intensity and 
extent, the latter by corresponding unidimensional 
continua of the “sensation magnitudes.” Mathemati-
cally, both a mental continuum and its “physical cor-
relate” are sets of nonnegative real numbers. The 
basic relation of the two is simple: Subjective mag-
nitude increases with stimulus magnitude (intensity 
or extent) beginning with some positive value o of the 
latter, called the absolute threshold. The value of o 
is subject to stochastic variability, but we will follow 
Fechner in acknowledging this but treating it as a 
constant. We will disregard the issue of “negative,” 
subliminal sensations, which interested Fechner but 
remained extraneous to his theory. Contrary to the 
notion that Fechner’s theory is critically based on 
the notion of a JND, the function relating a mental 
continuum to its physical counterpart is explicitly 
assumed by Fechner to be continuous (Elemente, p. 
20 of Vol. 1, and p. 85 of Vol. 2).3

	 However, sensation magnitude need not be taken 
as a primitive of Fechner’s theory. The logic of the 
latter is more consistent with the view that the notion 
of sensation magnitude is constructed by means of 

a more basic concept of difference sensation (Unter-
schiedsempfindung). In Fechner (1887), his last work 
on psychophysics, Fechner states this explicitly (see 
p. 9): The notion of sensation magnitude is linked 
to that of difference sensation through what Fech-
ner calls the “intermediate” concept of sensation 
difference (Empfindungsunterschied), or difference 
between sensations. The link is established by pos-
tulating that the difference sensation for stimuli a and 
b and the difference between the two corresponding 
sensations, though logically different notions, are 
numerically equal to each other: The sensation of 
difference between two stimuli is the same as the in-
crement in sensation magnitude from the lesser to the 
greater of the two stimuli (cf. Elemente, p. 85 of Vol. 
2). Stated in modern terms (and replacing the term 
difference sensation with a more modern-sounding 
subjective dissimilarity), for stimuli a and b above or 
at the threshold value o, their subjective dissimilar-
ity D(a,b) in Fechner’s theory has the properties of 
a unidimensional distance: D(a,b) = 0 if and only if 
a = b; D(a,b) = D(b,a); and, whenever a ≤ b ≤ c,

D(a,c) = D(a,b) + D(b,c).	 (1)

This additivity property is central for Fechner’s 
theory, as he repeatedly states when discussing the 
notion of measurement (e.g., Elemente, pp. 56, 60 
of Vol. 1 and chapter 20 in Vol. 2). It is equivalent to 
assuming that for o ≤ a ≤ b the subjective dissimilar-
ity D(a,b) can always be presented as the difference 
D(o,b) – D(o,a). The quantities D(o,b) and D(o,a) 
are dissimilarities of the respective stimuli from the 
absolute threshold o, and it is these quantities that 
Fechner calls the magnitudes of the sensations caused 
by, respectively, b and a.4

JNDs, Weber’s Law, and W-Principle
The notion of a JND (which term we use throughout 
this article as synonymous to Fechner’s differential 
threshold), poses a great, if not the greatest, concep-
tual problem for Fechner’s theory. In chapter 10 of 
the Elemente Fechner subscribes to the notion that 
if the physiological representations of stimuli a and 
b are sufficiently close to each other, these stimuli are 
perceived as precisely the same (Vol. 1, pp. 242–243). 
At the same time, he thinks of sensation magnitudes 
of a given kind as forming a continuum and of the 
psychophysical function as mapping two distinct 
stimuli, however close, into two distinct sensations. 
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To justify his “method of right and wrong cases” 
(now known as the method of constant stimuli), Fech-
ner acknowledges that a stimulus b, however close 
to a, will be perceived sometimes greater than a and 
sometimes less than a (Elemente, Vol. 1, pp. 77, 247). 
And it is clear from his use of normal ogives to ap-
proximate psychometric functions (discussed later in 
this article) that, for a fixed stimulus a, the probability 
Pr[a  b] with which a stimulus b is judged to be 
greater than a is different for different values of b. It 
is reasonable therefore to disregard Fechner’s belief 
in true indistinguishability (stated in terms of the re-
lations between physiological and mental processes 
rather than the latter and stimuli; see Elemente, Vol. 
1, pp. 248–249) and to ascribe to him the modern 
psychophysical view according to which a JND is 
merely an expedient characterization of a distribution 
of comparative responses to pairs of stimuli, adopted 
by a convention, such as the difference between two 
arbitrarily chosen quantiles of a psychometric func-
tion or an arbitrarily chosen measure of spread for 
matching values in the method of adjustments.
	 Weber’s law can be formulated as the statement

a′
a = 1 + C*,	 (2)

where a′  denotes a stimulus just noticeably greater 
than a, and C* is a positive constant (traditionally re-
ferred to as Weber’s fraction). The value of a′  clearly 
depends on the method of measurement used and 
the convention adopted. Thus, with the method of 
constant stimuli, a′  for a given a is defined by

Pr[a  a′] = p,	 (3)

where p is some probability value between ½ and 1 
(we make here some simplifying assumptions that will 
be explicated later). In his definition of JND, Fechner 
sets p equal to 1 with the proviso that Pr[a  b] < 1, 
for any b < a′  (Elemente, Vol. 1, p. 128). But his analy-
sis of pairwise comparisons of weights (Elemente, Vol. 
1, pp. 182–201) shows that he thought Weber’s law 
applied to any value of p > ½. The value of C* then 
depends on one’s choice of p: The closer the latter 
to ½, the smaller the C*.
	 If the method used is that of the “average error” 
(the method of adjustment, or matching), then a′  can 
be defined as

a′ = a + kσ(a),	 (4)

where σ(a) is some measure of spread (say, standard 
deviation) of stimuli judged to match a, and k is an 
arbitrary positive constant. There can be no justifi-
cation for preferring one value of k to another, and 
although one’s choice of k does not affect the validity 
of Weber’s law, it affects the value of C*: The smaller 
the k, the smaller the C*.
	 That C* depends on p in the method of constant 
stimuli and on k in the method of adjustment and that 
in both cases C* can be made arbitrarily small will 
be seen to be important for operational aspects of 
Fechner’s theory. Even with the “method of JNDs” 
(known today as the method of limits), where a′ is 
defined as a measure of central tendency μ(a) of the 
distribution of stimuli judged to be just noticeably 
greater than a, one can argue that the value of C* can 
be made arbitrarily small by using an arbitrarily small 
positive k in the modified definition

a′ = a + k(μ(a) − a).	 (5)

Fechner knew that this method can be trusted less 
than the other two because μ(a) in it is greatly af-
fected by “subjectivity” (Elemente, Vol. 1, p. 75), that 
is, observers’ decision-making criteria.
	 We see that the definition of a′  in Weber’s law 
does not relate to the notion of subjective dissimilar-
ity D(a,b) in any direct way. Response probabilities, 
standard deviations of matches, and the means of 
stopping points in sequences of stimuli are all objec-
tive characteristics of observable response distribu-
tions. However, it is widely believed, and parts of the 
Elemente (e.g., pp. 59, 68 of Vol. 1 and pp. 58, 428 of 
Vol. 2) may indeed be interpreted as suggesting this, 
that Fechner assumed that any two stimuli separated 
by a JND (at least for some methods and conventions 
used to define it) have a fixed degree of subjective 
dissimilarity:

D(a,a′) = C,	 (6)

where C is some positive constant (which may be dif-
ferent for different physical continua, say, intensities 
of tones of different frequencies). This statement is 
sometimes called “Fechner’s postulate.” With this 
postulate accepted, Weber’s law can be augmented 
into the statement

Weber’s Law + Fechner’s Postulate. With an 
appropriate definition of JND, the ratio a′ /a of 
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any two stimuli separated by one JND is con-
stant, and so is the dissimilarity between these 
stimuli, D(a,a′ ).

Later in this article (where we discuss Elsas’s criti-
cism) we will see that this formulation creates difficul-
ties for Fechner’s theory.
	 For now, however, observe the following con-
sequence of this formulation: Denoting by a(n)′ the 
stimulus separated from the smaller stimulus a by n 
JNDs (n = 1, 2, . . .), we have

a(n)′    a(n)′

a    a(n−1)′ × . . . × 
a′
a = 1 + C*n=

and

D a,a(n)′ = D a,a′ + . . . + D a(n−1)′,a(n)′ = nC.

In other words, equal ratios of stimulus magnitudes 
give rise to equal dissimilarities, provided the stimuli 
are separated by an integer number of JNDs. Fechner 
does not use this reasoning explicitly, but he formu-
lates a statement that he calls “Weber’s law,” which 
can be viewed as the previous formulation but with-
out mentioning JNDs:

W-principle. The subjective dissimilarity 
between stimuli with physical magnitudes a 
and b (provided o ≤ a ≤ b, where o is absolute 
threshold) is determined by the ratio of these 
magnitudes, b/a.

We will call this statement the W-principle to allude 
to the fact that in the Elemente Fechner called it “We-
ber’s law” (chapter 9 in Vol. 1) and at the same time 
to distinguish it from Weber’s law conventionally un-
derstood as referring to (2). Stated in symbols, this 
principle says that D(a,b) is some function of b/a. 
Fechner’s own numerous formulations are almost 
equally precise (e.g., the concise formulation “sen-
sation differences or sensation increments remain the 
same as long as ratios of stimuli remain the same,” on 
p. 134 of Vol. 1 of the Elemente).
	 Note that Weber’s law (2), “Fechner’s postulate” 
(6), and the W-principle are logically independent, in 
the sense that each can hold true with the other two 
being false. If the W-principle is postulated, however, 
then “Fechner’s postulate” and Weber’s law logically 
imply each other: Both must be true or both false, 
for any given way of measuring JNDs. The conjunc-
tion of Weber’s law with “Fechner’s postulate” does 

not imply the W-principle, except for pairs of stimuli 
separated by an integer number of JNDs (as explained 
later, one needs “infinitesimal” versions of Weber’s 
law and “Fechner’s postulate” to be able to derive the 
W-principle from them in full generality). We cannot 
be certain that Fechner was clear in his mind about 
all these logical relations.
	 With this preamble, let us consider how Fechner 
derives his celebrated law.

Fechner’s Forgotten Derivation of Fechner’s Law
The controversial derivation believed to involve 
Weber’s law, the postulated subjective constancy 
of JNDs, and a certain differential equation is well 
known (to English-language readers, primarily from 
Boring’s 1950 account). We will deal with it in the 
next section. It is less known (perhaps even entirely 
forgotten in the post-Fechner psychology) that chap-
ter 17 of the Elemente contains a derivation of Fech-
ner’s law from the W-principle formulated in chapter 
9, both the formulation and the derivation making 
no use of JNDs and involving no differentiability as-
sumptions.
	 The W-principle says that if o ≤ a ≤ b,

D(a,b) = F(b/a),	 (7)

where F is some function.5 This statement is equiva-
lent to Fechner’s logarithmic law. Indeed, the state-
ments (7) and (1) combine into the following: When-
ever o ≤ a ≤ b ≤ c,

F(c/b) + F(b/a) = F(c/a).	 (8)

It is not difficult to show, by transforming this equa-
tion into what is known as the Cauchy functional 
equation on positive reals (see Aczél, 1987), that the 
only regular (in particular, nonnegative) function F 
that satisfies it is

F(x) = K log x,  x ≥ 1,	 (9)

where K is some positive constant.6 It follows that (7) 
and (1) can be satisfied if and only if, for any o ≤ a ≤ b,

D(a,b) = K log ba .	 (10)

This is Fechner’s “difference formula” (Unterschieds-
formel). In particular, the sensation magnitude D(o,a) 
for a stimulus a ≤ o is computed as

D(o,a) = K log ao ,	 (11)
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which is the traditional formulation of Fechner’s 
law (called by Fechner the “measurement formula,” 
Massformel).
	 The derivation of this law presented in chapter 17 
of the Elemente (pp. 33–39 of Vol. 2) is essentially the 
same as the modernized account just given. Fechner 
correctly derived (8) and recognized it as a functional 
equation of the type treated by Augustin-Louis Cau-
chy (1821/2009). From this work, by then only 40 
years old, Fechner knew that (9) is the only solution 
for F in (8). With some caveats related to unexpli-
cated assumptions and the domains of the functions 
involved, Fechner’s reasoning in this derivation is 
sound and rigorous.
	 Fechner’s use of the term Weber’s law to desig-
nate the W-principle, (7) (i.e., an equivalent to what 
we now call Fechner’s law), could have been merely 
a token of Fechner’s respect for Weber. But it cre-
ated a conceptual confusion that began dogging him 
during his lifetime and has lasted until the present 
time. As an example, G. E. Müller (1878) essentially 
replicated Fechner’s derivation of the logarithmic law 
by reducing it to a Cauchy-type functional equation 
but claimed superiority because Fechner’s deriva-
tion, in his words, “is making use of the so-called fact 
of a stimulus threshold, without which, as Fechner 
argues erroneously, the logarithmic relation between 
sensation intensity and stimulus intensity cannot be 
derived” (p. 228). Müller was right to think of “stimu-
lus threshold” as a theoretically unnecessary concept 
for Fechner’s derivation of the logarithmic law, but he 
was wrong in assuming that Fechner made use of this 
concept.

The Well-Known (but Misunderstood) Derivation
The juxtaposition of “Fechner’s postulate” and We-
ber’s law leads us to the second, better-known, and 
often criticized derivation of Fechner’s law (see Elsas, 
1886; Luce & Edwards, 1958; Makarov, 1959; Stevens, 
1960). It is given in chapter 16 of the Elemente and 
is usually described by Fechner’s critics as follows. 
Since C in Fechner’s postulate (6) is a constant, and 
since C* in Weber’s law (2) is another constant, one 
can write

D(a,a′) = D(o,a′) − D(o,a) = CC* .
 a′− a   .	 (12)a

Then, the critical account goes on, Fechner invokes 
an “expedient principle” (Hülfsprinzip) according 
to which a′ – a in this formula can be replaced with 

an infinitesimal change da. Assuming the differ-
entiability of the sensation magnitude D(o,a) with 
respect to the stimulus magnitude a, the difference 
D(o,a′) – D(o,a) becomes an infinitesimal incre-
ment dD(o,a). The statement (12) from a trivial 
relation between two constants turns into an infor-
mative differential equation,

dD(o,a) = CC* 
da
a  ,	 (13)

whose solution is, for any o ≤ a ≤ b,

D(o,b) − D(o,a) = D(a,b) = CC* log ba .	 (14)

In this way one gets Fechner’s “difference formula” 
(14) with K = C/C*.
	 Of course, this derivation is mathematically 
flawed. Moreover, as a physicist Elsas (1886) point-
ed out, there is an inconsistency between (12) and 
(14). A simple way of demonstrating it is this: Since 
a′ = (1 + C*)a according to (2), the subjective dissimi-
larity D(a,a′), according to (14), should equal

D(a,a′ ) = CC* log a′
a = CC* log 1 + C*.	 (15)

Because this quantity is different from C, this formula 
contradicts “Fechner’s postulate” (6). In his 1887 ar-
ticle, shortly before his death, Fechner responded to 
this criticism by saying that Weber’s law (2) and the 
differential equation (13) can be related to each other 
only if C* is sufficiently small (Fechner, 1887, p. 166). 
We understand this rejoinder to support the follow-
ing understanding.
	 The factual derivation of Fechner’s law in chapter 
16 of the Elemente does not make use of Weber’s law 
at all. It makes use of the W-principle (which, we keep 
in mind, Fechner called “Weber’s law”). If (7) holds 
and the function F(x) is assumed to be differentiable 
at least at x = 1 (an innocuous assumption for a 19th-
century scientist), then

D(a,a + da) = dD(o,a) = Kda
a ,	 (16)

where K = F ′(1). This is Fechner’s “basic formula” 
(Fundamentalformel), whose solution is the logarith-
mic function (10). If, in addition to the W-principle, 
Weber’s law (2) happens to hold too (or, equivalently, 
“Fechner’s postulate” (6) happens to hold too), then

D(a,a′ ) = K log a′
a = K log1 + C* = C.	 (17)

Now, if C* is very small, then log(1 + C*) ≈ C*, 
whence the interpretation of K as C/C* in (14) and 
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(13) becomes approximately correct, and no contra-
diction ensues. In particular, the expression in (15) 
is approximately equal to C.
	 It was not too risky for Fechner to assume that C* 
is small. Recall that if one uses the method of constant 
stimuli, C* can be made arbitrarily small by choos-
ing p in the defining formula (3) sufficiently close to 
½ (assuming, as Fechner apparently did, that We-
ber’s law holds for any p). If one uses the adjustment 
method or the method of limits, C* can also be made 
arbitrarily small by choosing arbitrarily small value of 
k in the defining formulas (4) and (5). It is not clear, 
however, whether Fechner himself was aware of this 
“small-by-construction” consideration.
	 It seems to us that Fechner’s “expedient principle” 
(chapters 15 and 16 of Vol. 2), the main target of his 
critics’ derision (Luce & Edwards, 1958), is merely an 
inept way of describing the transition from (7) to the 
differential equation (16): The difference sensation 
D(a,b) is some function of (b – a)/a, Fechner says,

D(a,b) = F(b/a) = G


b – a
,a

and the “expedient principle” ensures that as b tends 
to a, making (b – a)/a infinitesimally small, the re-
lationship between D(a,b) and (b – a)/a tends to a 
simple proportionality,7

D(a,a + da) = G


da
 = G′(0)da .a a

This is trivially correct, and this would explain why 
Fechner says that this otherwise bizarre principle is 
a priori valid. Our interpretation is also corroborated 
by the fact that in his 1877 treatise (p. 10) Fechner 
states that his “basic formula” can be presented 
equivalently as (16) or as (7).

Link to Threshold Measurements
The question arises: If Weber’s law and JNDs do not 
play any role in Fechner’s derivations of his law, what 
is the role of Fechner’s methods of measuring JNDs? 
We mentioned at the beginning of this article that the 
pioneering status of the Elemente is in the conjunc-
tion of the mathematical and the operational. Where 
does the latter enter his theory?
	 We know that if both the W-principle (from which 
alone Fechner’s law is derived) and Weber’s law are 
satisfied, then so is “Fechner’s postulate” in the form 
(17), and Fechner’s difference formula (10) can be 
written as

D(a,b) =  
C

    log b
a

,	 (18)
log1 + C*

for o ≤ a ≤ b. Let us count the approximate number 
of JNDs that fit between a and b. Weber’s law implies 
that, starting from a, one can form the geometric pro-
gression a,a(1 + C*),a(1 + C*)2, . . ., until, for some n,

a 1 + C*n ≤b <  a 1 + C*n+1	 (19)

For any given a and b, the smaller the value of C* the 
smaller the interval containing b. By simple algebra,

n≤  
1

    log b
a

<n + 1.	 (20)
log1 + C*

But we can also estimate the number of JNDs fitting 
between a and b by taking the subjective dissimilarity 
D(a,b) in (18) and dividing it by the fixed value C of 
the dissimilarities corresponding to JNDs:

D(a,b) =   
1

    log 
b
a

.	 (21)
log1 + C*C

Because the logarithmic expression in (21) coincides 
with that in (20), it falls between the same two n and 
n + 1. That is, the number of JNDs fitting between 
two given stimuli approximately equals the subjec-
tive

 
dissimilarity between the two stimuli measured 

in units of the subjective value of the JNDs. This links 
Fechner’s theory with empirically measured JNDs 
and empirically measured Weber’s fraction C*. This 
is essentially what the traditional interpretation of 
Fechner’s theory boils down to, and we see that this 
interpretation can be upheld without finding faults 
with Fechner’s reasoning and use of mathematics.

Beyond Weber’s Law and W-Principle
Fechner repeatedly says in the Elemente (e.g., on pp. 
65–66 of Vol. 1 and p. 2 of Vol. 2) that the applicability 
of his approach to (or his “principle of ”) measur-
ing sensation magnitudes is not contingent on the 
validity of “Weber’s law,” and it is never quite clear 
whether he means the W-principle or Weber’s law. 
As stated earlier, it is possible he was not clear in his 
mind about the difference. He must mean Weber’s 
law when he says that it is empirically known to be 
violated outside a middle range of stimulus magni-
tudes (p. 67 of Vol. 1, and pp. 195, 336, and 429 of 
Vol. 2). But in other places the context suggests that 
he means the W-principle (pp. 9–10 and 34–36 of 
Vol. 2). Either understanding raises questions. With 
Weber’s law abandoned (and the W-principle intact), 
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Fechner’s theory seems to lose its operational link 
to threshold measurements. Why then should one 
postulate the W-principle? Why not to assume in-
stead that D(a,b) is a continuous function of stimulus 
difference, for instance? Or the difference of square 
roots of stimulus values? On the other hand, if the 
W-principle is no longer a postulate, then what is this 
“principle” of measurement mentioned by Fechner, 
one general enough to transcend the W-principle and 
specific enough to allow one to base derivations of 
the psychophysical function on it?
	 We think that the key to the answer lies in the 
general notion of additive dissimilarity introduced 
earlier. If we could somehow figure out a measure of 
subjective dissimilarity between any given stimulus 
and a “slightly greater” stimulus, and if, for any two 
stimuli a < b, a sequence

a < a′ < a″ < . . . < a(n)′ ≈ b	 (22)

could be constructed whose each member is “slightly 
greater” than the previous one, then D(a,b) could be 
approximately computed as

D(a,b) ≈ D(a,a′) + . . . + D a(n−1)′,a(n)′.	 (23)

Fechner speaks of this summation “principle” at 
length in the Elemente (p. 60 of Vol. 1, and Chapters 
20 and 31 of Vol. 2). One possibility now is to accept 
“Fechner’s postulate” (6) and think of the “slightly 
greater” in the construction of the sequence (22) as 
meaning “just-noticeably greater.” If the subjective 
dissimilarity between any two successive stimuli in 
such a sequence has a fixed value C, then

D(a,b) ≈ nC.	 (24)

Elemente does not seem to suggest this as a general 
solution, however. Moreover, this is hardly an accept-
able solution for the conceptual problem of measur-
ing dissimilarities. Approximate equality can exist 
only between two quantities that have precise values. 
What is the definition of the precise value of D(a,b), 
even if we are satisfied with estimating it approxi-
mately? What is the dissimilarity between two stimuli 
separated by less than one JND, however defined and 
however small? Fechner is aware of this problem: In 
his discussions of the summation (23) he emphasizes 
that the closer to each other the successive stimuli can 
be taken, the more precisely D(a,b) can be measured 
for arbitrary pairs (a,b). Ideally therefore, Fechner 

says (Elemente, p. 60 of Vol. 1 and p. 65 of Vol. 2), 
the intervals between the successive stimuli in (23) 
should be infinitesimally small.
	 Our interpretation of this is that Fechner in effect 
proposes to present D(a,b) for o ≤ a ≤ b as an integral 
rather than a finite sum:

D(a,b) = ∫ H(x)dx ,	 (25)
b

a

where

H(x) = 
D(x,x + dx)

.	 (26)
dx

One can consider (26) the generalized “basic formu-
la,” with (25) being the correspondingly generalized 
“difference formula.” Fechner’s theory discussed in 
the previous sections can be viewed as based on the 
assumption that

H(x) = K / x,	 (27)

an “infinitesimal version” of Weber’s law. In his 1877 
monograph (chapter 4), however, Fechner discusses 
a variety of possible alternatives to this function, in-
cluding (p. 21)

H(x) = K / xα,	 (28)

with 0 < α < 1. This yields

D(a,b) = K*b1−α − a1−α,	 (29)

a variant (proposed by Plateau, 1872, and Brentano, 
1874) of what later became known as Stevens’s psy-
chophysical function (Stevens, 1975).
	 The question now is, What is a principled way 
of choosing a particular form of the function H(x)? 
Can one reconstruct it from empirical observations? 
An answer can be found in Fechner’s analysis of his 
“method of right and wrong cases.” Let us agree to 
always present stimulus pairs (a,b) so that a ≤ b, and 
let observers’ responses be classified as “a a b” (cor-
rect response) and “a  b” (incorrect response). If 
the response “equal” is allowed, it is supposed to be 
split between these two categories according to some 
rule. To simplify the discussion, let us assume that 
Pr[a a b] does not depend on any stimulus charac-
teristics but their magnitudes a and b. For instance, 
it does not matter which of two tones, a or b, is pre-
sented first; or which of two lights is on the left and 
which on the right; or which of two weights is the 
standard held fixed within a block of trials, and which 
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is the varying comparison weight.8 So the simplifica-
tion consists in presenting Pr[a a b] as some func-
tion γ(a,b), defined on the set of all pairs with a ≤ b. 
It is clear then that Pr[a  b] = 1 – γ(a,b), whence 
γ(a,a) = ½. Now, Fechner’s assumption about γ(a,b) 
can be presented as

γ(a,b) = Φ h(a)(b − a),	 (30)

where Φ is the standard normal integral and h(a) 
some positive number (Elemente, pp. 102 and 107 of 
Vol. 1). One can interpret the right-hand expression 
as the probability with which a random variable A 
normally distributed with the mean a and standard 
deviation 1/h(a) falls below the value b. Fechner 
thinks of A – a as some kind of a measurement error, 
whence it becomes natural to interpret h(a) as the 
“precision” of a measuring device (the term used by 
Carl Friedrich Gauss [1809/2004] in his introduction 
of normal distribution as “the law of errors”). Using 
this analogy, Fechner takes h(a) as a measure of sensi-
tivity at stimulus a. He thinks that empirical evidence 
corroborates the inverse proportionality h(a) = K/a 
and takes this as a way of establishing Weber’s law 
(Elemente, pp. 182–201 of Vol. 1). Note that the notion 
of sensitivity and Weber’s law here are not defined in 
terms of JNDs.
	 We propose that the sensitivity function thus de-
rived, modulo a scaling constant, can be taken as the 
function H in (26): For all x ≥ o,

H(x) = Kh(x).	 (31)

We propose that this reconstruction of the sensitivity 
function from psychometric functions can be taken as 
an illustration of Fechner’s general “principle,” one 
that transcends Weber’s law and the W-principle. 
The “principle” itself can be stated in the form of 
the following instructions:

1.	 For each suprathreshold stimulus x, determine 
empirically (e.g., by means of one of Fechner’s 
methods) a quantity H(x) that can be interpreted 
as a measure of discriminability of x from its 
neighboring stimuli.

2.	Call H(x) the sensitivity at x and identify it with 
H(x) in the “basic formula” (26).

3.	Integrate H(x) from a to b in accordance with 
the “difference formula” (25) to obtain the value 
of subjective dissimilarity D(a,b) between stimuli 
a and b.

Once this approach is implemented using the method 
of constant stimuli, it is not difficult to extend it to 
the other two methods. In the adjustment method 
each stimulus a corresponds to a measure of spread 
σ(a) of the values of stimuli b judged to match a in 
different trials; the sensitivity measure here can be 
chosen as K/σ(a). In the method of limits the sensi-
tivity measure can be chosen as a quantity inversely 
proportional to the mean increment in comparison 
series, K/(μ(a) – a). The latter two definitions reflect 
Fechner’s considering the reciprocal of any measure 
of JND as the corresponding measure of sensitivity 
(we remind the reader that we use the term JND as 
synonymous to differential threshold). This definition 
of sensitivity is well known and is considered classic. 
However, the procedure with fitting a normal ogive to 
response probabilities and gauging how fast it grows 
shows that Fechner could think of alternative ways 
of measuring sensitivity, circumventing an explicit 
use of the notion of a JND. In fact, the introduction 
of the probabilities of comparative responses makes 
the notion of a JND theoretically unnecessary and 
provides a bridge from Fechner’s theory to modern 
psychophysics.

Post-Fechner Developments of the Fechnerian Idea
Presentations of the modern version of the Fech-
nerian idea can be found in Dzhafarov and Colonius 
(1999, 2001) and Dzhafarov (2001). We describe here 
a simplified version, continuing to treat Pr[a a b] 
as a function γ(a,b), defined on the set of all pairs 
with a ≤ b.
	 Fechner’s reliance on the normal ogive (30) is 
certainly an overcommitment to a particular model 
(later dubbed in psychophysics the “phi–gamma 
hypothesis”). A safer approach would be appli-
cable to psychometric functions of any shape. A 
key to such a general approach can be found in 
the fact that the sensitivity measure h(a) in (30) is 
proportional to the slope of the tangent drawn to 
the psychometric function b  γ(a,b) at its median 
(under our simplifying assumptions, at the point 
b = a, where γ = ½):

Φ h(a)(b − a)
|b=a+∝h(a).	 (32)

b
One gets the same proportionality relation if one re-
places Fechner’s ogive (30) with one of many modi-
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fications, which some researchers (e.g., Thurstone, 
1928) would find superior to the phi–gamma hypoth-
esis, such as

γ(a,b) = Φ
   b − a   .	 (33)√s2

a + s2
b

Intuitively, the steeper the slope of the tangent at the 
median, the more discriminable a is from its immedi-
ate neighbors to the right.
	 These observations suggest the following gener-
alization: Use (25) to compute D(a,b) by putting

H(a) = Cγ (a,b)
|b=a+,	 (34)

b

where C is some positive constant characterizing a 
given stimulus continuum. Of course, one has to as-
sume that the right-hand derivative in (34) always ex-
ists and that it is positive and integrable in a. Once we 
have accepted (34), the use of formula (25) is equiva-
lent to assuming that

lim γ(a,b) − 1/2
 = C.	 (35)

D(a,b)
b→a

This can be viewed as an infinitesimal version of 
“Fechner’s postulate,” provided that the notion of 
a and a′ separated by a JND is operationalized as in 
(3). This idea, according to Krantz (1971), has been 
proposed by M. Frank Norman (currently a professor 
emeritus at the University of Pennsylvania).
	 By 1960s, the prevailing opinion among psycho-
physicists was that Fechner’s approach was math-
ematically flawed, and it was proposed in Luce and 
Edwards (1958) and Luce and Galanter (1963) that it 
should be reformulated as the following “Fechner’s 
problem”: Given a psychometric function γ(a,b), find 
an additive distance function D(a,b) such that

γ(a,b) = G(D(a,b)) = G(D(o,b) − D(o,a)),	 (36)

where G is some increasing function (possibly with 
additional regularity constraints). This problem was 
extensively investigated by Falmagne (1971, 1985). 
However, Pfanzagl (1962) noticed that if “Fechner’s 
problem” has a solution with a function G differen-
tiable at zero, then D(a,b) should satisfy (25), with 
H(a) satisfying (34). Krantz (1971) essentially repli-
cated this observation. The reverse clearly is not true: 
(25) and (34), or equivalently (34) and (35), can hold 
without “Fechner’s problem” being solvable. This 
shows that what we call the Fechnerian idea gives 

rise to a more general and flexible scaling procedure 
than “Fechner’s problem.”
	 Long before the formulation of “Fechner’s 
problem,” Hermann von Helmholtz and Erwin 
Schrödinger (better known for his contribution to 
quantum mechanics) intuitively grasped the Fech-
nerian idea and saw in it a potential for breaking away 
from Fechner’s unidimensional world. Formulated in 
terms of the present article, these authors proposed 
to treat the square of the function H(x) in (25), which 
they took to have the Weber-law form K/x, as a met-
ric tensor of unidimensional Riemannian geometry. 
This suggested to them that for stimuli represented 
by vectors of real numbers one could compute Ri-
emannian distances between them by using metric 
tensors generalizing the function K/x. Helmholtz 
(1891) and Schrödinger (1920) applied two different 
generalizations to the three-dimensional color space 
(see Dzhafarov & Colonius, 1999, for details). Ri-
emannian geometry based on differential thresholds 
measured along arbitrary directions in color space 
remains the main mathematical language of color 
science (Robertson, 1978; Wyszecki & Stiles, 1982). 
Color science therefore has always been very Fech-
nerian in flavor, essentially untouched by the “power 
versus logarithm” debate that for more than half a 
century preoccupied psychophysicists. The potential 
of the Fechnerian idea to transcend unidimensional-
ity is not shared by Stevens’s approach.
	 A more direct extension of the Fechnerian idea 
than in Helmholtz and Schrödinger was recently pro-
posed in Dzhafarov and Colonius (1999, 2001) and 
Dzhafarov (2002a, 2002b, 2002c, 2004). If stimuli are 
represented by points in a multidimensional Euclide-
an space, then any point a and any direction of change 
u attached to it can be associated with a Finslerian 
metric function H(a,u), a multidimensional analog of 
the function H(a). The computation of H(a,u) gener-
ally cannot be based on the “probability of greater/
less” psychometric functions, because the responses 
“greater” and “less” require the existence of a seman-
tically linearly ordered property, such as saturation, 
brightness, or beauty. It was proposed therefore to 
use the function

ψ(a,b) = Pr[a and b are judged to be different],

whose estimates can be empirically obtained by pre-
senting to observers pairs of stimuli and asking them 
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to judge them as “different” or “the same,” overall 
or in a specified respect (e.g., shape, color, beauty, 
or brightness). Any two stimuli a and b can be con-
nected by a continuously differentiable path, and the 
metric function H(a,u) can be integrated along this 
path, a multidimensional analog of (25). This yields 
what we call the “psychometric length” of the path, 
and the distance between a and b can be defined as 
the greatest lower boundary for such psychometric 
lengths obtainable across all possible smooth paths 
connecting a to b.
	 In the course of the development of this “Finsle-
rian” extension of Fechner’s idea it has become clear 
it can be further extended to stimulus spaces more 
general than multidimensional manifolds (Dzhafarov 
& Colonius, 2005a, 2005b). It is even possible to con-
struct such an extension for discrete, including finite, 
stimulus spaces (Dzhafarov & Colonius, 2006a), al-
lowing one to use the generalized Fechnerian scaling 
as a data analytic technique rivaling or complement-
ing, depending on one’s preference, the widely used 
multidimensional scaling (Dzhafarov, 2010a). The 
idea of cumulating dissimilarities in a discrete space 
turned out to be the foundation for extending the 
Fechnerian idea to stimulus spaces of a completely 
arbitrary nature (e.g., the space of human faces or the 
space of dynamic scenes). This “ultimate” extension 
is described in Dzhafarov and Colonius (2007) and 
Dzhafarov (2008a, 2008b, 2010b).

Summary
The two derivations of Fechner’s law we find in the 
Elemente are merely two ways of solving the same 
functional equation, (7). Both derivations are mathe-
matically valid, and the only difference between them 
is in that the better-known one assumes the differ-
entiability of F at a particular point. Neither deriva-
tion uses the notion of a JND, so neither is based on 
Weber’s law. However, if Weber’s law is empirically 
established (with the aid of Fechner’s classic methods 
and appropriate conventions), then the functional 
equation in question ensures that the dissimilarity 
between any two just-noticeably different stimuli is a 
fixed quantity C. Then the dissimilarity between any 
two stimuli, if measured in C-units,9 approximately 
coincides with the number of JNDs that fit between 
these two stimuli: The smaller Weber’s fraction C*, 
the better the approximation (and we know that the 

value of C* can be made arbitrarily small). The main 
weakness of Fechner’s derivations of his law is exposi-
tory: By using the same term, “Weber’s law,” for both 
the W-principle and Weber’s law, Fechner has created 
a lasting confusion.
	 The W-principle and Fechner’s derivations of the 
logarithmic law do not constitute the essence of his 
approach. We see this essence in the idea of additive 
cumulation of local sensitivity values H(x), as in (25) 
and (26). The function H(x) is established by using 
Fechner’s methods of determining a measure of dis-
criminability of stimuli from their neighboring stimuli. 
So understood, the idea is immune to many criticisms, 
mathematical and empirical, leveled against Fechner’s 
theory during the 150 years since the publication of 
his principal work. Moreover, unlike the logarithmic 
law (or, indeed, any other form of a function relating 
“sensation magnitude” to “stimulus magnitude”), this 
idea lends itself to generalizations of Fechnerian mea-
surements to stimuli that are not judged in terms of 
semantically unidimensional properties (e.g., bright-
ness, loudness, or length) and to stimuli whose physi-
cal description is not unidimensional, consisting, for 
example, of vectors of real numbers, of numerical func-
tions, and even of stimulus names alone.
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	 1. Bernoulli postulates that one’s perception of a small 
increment dx in one’s wealth x is inversely proportional to x, 
sets up the differential equation dy = Kdx/x (where y stands 
for the subjective value of x, and K is a positive constant) 
subject to the condition y = 0 for some small value x0 of x, 
and arrives at y = K log(x/x0), for all x ≥ x0. He uses this for-
mula to account for the empirical fact that there is an upper 
limit for the amount of money one is willing to pay for one’s 
participation in the so-called Saint Petersburg game, whereas 
the expected gain in this game is infinite (the game consists of 
tossing a coin repeatedly and winning 2n rubles if a head oc-
curs in the nth toss for the first time). The operational aspect 
of Bernoulli’s approach is obvious: One can test his theory 
of subjective utility by experimentally determining costs of 
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appropriately designed gambles. Fechner reviews Bernoulli’s 
work in chapter 47 of the Elemente, among other precursors 
of Fechner’s psychophysical function.
	 2. In Dzhafarov and Colonius (1999) our position was 
that the traditional view that Fechner’s derivation of his law 
is mathematically flawed was only an interpretation rather 
than a fact. However, we also wrote that “[Fechner’s] writings 
are too voluminous and complex to dismiss the traditional 
interpretation of his theory with certainty” (p. 241). Our posi-
tion at present is different: We now reluctantly admit that the 
interpretation in question is simply untenable in view of what 
Fechner factually wrote, his verbosity notwithstanding. We 
say “reluctantly” because we do not want to be seen as join-
ing those who, in their reverence for the grand and famous, 
tend to ascribe to them all kinds of views and developments 
currently deemed clever.
	 3. All references to the Elemente made in this article 
are to the original German publication. Only the first vol-
ume of the book has been translated into English (Fechner, 
1860/1966).
	 4. Titchener (1905) criticized Fechner for attributing 
magnitudes to sensations per se rather than defining them 
through dissimilarities. “The only thing that we can mea-
sure is the distance between two sensations or sense points” 
(p. 25). But Titchener acknowledged that “Fechner had an 
inkling of the truth; he knew that sense-distances are magni-
tudes, and every now and then he seems to look upon the sin-
gle sensation as merely the limiting point of a distance” (pp. 
26–27). Whatever the evolution of Fechner’s factual thinking, 
nothing in the Elemente seems to contradict this “now and 
then” position, unequivocally accepted in Fechner (1887).
	 5. Hye Joo Han pointed out to us that Fechner did not 
need to stipulate any regularity conditions here because F is 
obviously nonnegative, and this alone is sufficient to derive 
the logarithmic law.
	 6. The transformation consists in putting exp(x) = c/b, 
exp(y) = b/a, and F(exp(·))G(·). The equation then be-
comes G(x) + G(y) = G(x + y), with x and y arbitrary positive 
numbers. Cauchy’s 1821 solution was predicated on the as-
sumption that F (equivalently, G) is continuous. It is known 
now (Aczél, 1987) that this assumption can be replaced with 
many other regularity assumptions, including monotonicity 
and nonnegativity.
	 7. That this is indeed what Fechner means can be extract-
ed from the more general (and, unfortunately, entirely verbal) 
descriptions of the “expedient principle” in chapter 15 of the 
Elemente. Thus, on. p. 7 of Vol. 2 Fechner says that the princi-
ple in question ensures that “increments of two interdependent 
continuous quantities . . . are essentially (merklich) propor-
tional as long as they remain very small, whatever the nature of 
their interdependence and however much the interdependence 
in the large may deviate from the law of proportionality.” We 
take this to be a convoluted way of saying that for a differ-

entiable function y = ƒ(x), dy = ƒ′(x0)dx at any x = x0 (hence 

Δy ≈ ƒ′(x0)Δx for sufficiently small Δx). See also the mentions 
of the principle on pp. 11 and 103 of Vol. 2 of the Elemente.
	 8. This simplification is untenable in the general theory 
of pairwise comparisons: Stimuli must be characterized not 
only by their values but also but what is called in Dzhafarov 
(2002d) observation area: being first or second, left or right, 
and so on. Without explicitly encoding stimuli by their obser-
vation areas, one’s analysis is likely to run into logical difficul-
ties. For detailed accounts see Dzhafarov (2006), Dzhafarov 
and Colonius (2006b), and Dzhafarov and Dzhafarov (2010).
	 9. For any given stimulus continuum, C can be set equal 
to unity. As mentioned earlier, however, the value of C should 
be treated as modality specific. This consideration is impor-
tant in evaluating the attempts to empirically invalidate Fech-
ner’s theory based on the number of JNDs fitting between 
isosensitivity curves (Riesz, 1933): This number need not 
be the same for different sound frequencies if the latter are 
treated as distinct stimulus continua (see Dzhafarov, 2001, for 
details; for another way to reanalyze Riesz’s results, see Dzha-
farov & Colonius, 1999).
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