
DTD 5 ARTICLE IN PRESS
Review

The neuropsychology of obsessive compulsive disorder: the importance

of failures in cognitive and behavioural inhibition as candidate

endophenotypic markers

S.R. Chamberlaina,*, A.D. Blackwella, N.A. Finebergb, T.W. Robbinsc, B.J. Sahakiana

aDepartment of Psychiatry, University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, P.O. Box 189, Cambridge CB2 2QQ, UK
bDepartment of Psychiatry, Queen Elizabeth II Hospital, Welwyn Garden City, Hertfordshire, UK

cDepartment of Experimental Psychology, University of Cambridge, Cambridge, UK

Received 4 September 2004; revised 12 November 2004; accepted 19 November 2004

Summary

Obsessive compulsive disorder (OCD) is a highly debilitating neuropsychiatric condition with estimated lifetime prevalence of 2–3%, more

than twice that of schizophrenia. However, in contrast to other neuropsychiatric conditions of a comparable or lesser prevalence, relatively little

is understood about the aetiology, neural substrates and cognitive profile of OCD. Despite strong evidence for OCD being familial, with risk to

first-degree relatives much greater than for the background population, its genetic underpinnings have not yet been adequately delineated.

Although cognitive dysfunction is evident in the everyday behaviour of OCD sufferers and is central to contemporary psychological models,

theory-based studies of neurocognitive function have yet to reveal a reliable cognitive signature, and interpretation has often been confounded

by failures to control for co-morbidities. The neuroimaging findings in OCD are amongst the most robust reported in the psychiatric literature,

with structural and functional abnormalities frequently reported in orbitofrontal cortex, anterior cingulate cortex, and caudate nucleus. In spite

of this, our relative lack of understanding of OCD neurochemical processes continues to impede progress in the development of novel

pharmacological treatment approaches. Integrating the neurobiological, cognitive, and clinical findings, we propose that OCD might usefully

be conceptualised in terms of lateral orbitofrontal loop dysfunction, and that failures in cognitive and behavioural inhibitory processes appear to

underlie many of the symptoms and neurocognitive findings. We highlight existing limitations in the literature, and the potential utility of

endophenotypes in overcoming these limitations. We propose that neurocognitive indices of inhibitory functions may represent a useful

heuristic in the search for endophenotypes in OCD. This has direct implications not only for OCD but also for putative obsessive-compulsive

spectrum conditions including attention deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania (compulsive hair pulling).
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1. Introduction

Obsessive compulsive disorder (OCD) is characterised

by intrusive, troubling thoughts that are perceived as the

product of one’s own mind (as distinguished from thought

insertion in patients with schizophrenia, for example) and/or

repetitive, compulsive behaviours or mental rituals

(DSM-IV, 1994). Obsessions typically include thoughts of

harm or death occurring to a loved one, chronic doubting,

fears of contamination, blasphemous or socially unaccep-

table thoughts or impulses, counting, and a preoccupation

with symmetry. Compulsions include excessive hand

washing, placing objects symmetrically, repeatedly check-

ing (e.g. that lights are off), or following set routines.

Though intrusive thoughts and ritualistic behaviours are

frequently reported in the background population (Rachman

and de Silva, 1978; Salkovskis and Harrison, 1984; Muris

et al., 1997), those seen in OCD are considered psycho-

pathological as they are time consuming, cause marked

distress, or significantly interfere with everyday functioning

(DSM-IV, 1994). In many ways they act against the best

interests of the individual and are regarded as egodystonic.

The majority of patients are aware of the irrationality of

their thoughts and behaviours but have limited control over

them (Marazziti et al., 2002). OCD has a lifetime prevalence
of 2–3% (Robins et al., 1984; Myers et al., 1984; Weissman

et al., 1994; Karno et al., 1988), more than twice that of

schizophrenia (NIMH, 1999), and is thought to be more

common in women than men (though this is not necessarily

reflected in the relative proportions reporting to tertiary

referral centres) (Fineberg and Roberts, 2001). OCD is a

hugely debilitating disorder that causes significant impair-

ments in everyday functioning (Leon et al., 1995; Koran

et al., 1996), and is frequently hidden from friends and

colleagues (Hollander, 1997). Mean age of onset has been

estimated at around 20 years of age, though males tend to

develop the disorder slightly earlier than females (Rasmus-

sen and Eisen, 1990). The economic and social burden of the

disease are difficult to quantify, though one study approxi-

mated the economic cost of OCD in the United States to be

$8.4 billion in 1990 (DuPont et al., 1995).

In this selective review, we begin by discussing the

heterogeneous nature of the symptoms and high frequency

of co-morbidities found in people suffering from OCD. We

move on to examine genetic studies, contrasting the

findings in support of genetic contributions from twin

and family studies with the failure to identify specific

molecular genetic factors that may be of importance in the

aetiology. As well as discussing the successes and

limitations of modern treatment approaches, we review
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key brain imaging studies, and cognitive studies, with the

aim of bringing together what is known of the neurobio-

logical and cognitive underpinnings of the disorder.

Integrating the neurobiological, cognitive, and clinical

findings, we propose that OCD might be usefully

conceptualised in terms of lateral orbitofrontal loop

dysfunction, and that failures in cognitive and behavioural

inhibitory processes appear to underlie many of the

symptoms and neurocognitive findings. Given the limi-

tations in the existing research, we argue for a more

endophenotype-centred approach towards the study of

OCD. Endophenotypes represent intermediate measures

(or markers) between top-level symptoms and bottom-level

genetic contributions (see Gottesman and Gould (2003) for

an excellent overview). Fundamentally, endophenotypes

‘grounded in the neurosciences’—to use Gottesman and

Gould’s term—are by definition closer to the underlying

neuropathology than top-level symptoms or clinical

phenotype. The concept has in recent times been applied
Fig. 1. DSM-IV criteria for obsessiv
with success to the study of psychiatric conditions

including attention deficit hyperactivity disorder (ADHD;

Castellanos and Tannock, 2002) and schizophrenia (Got-

tesman and Gould, 2003). We highlight the potential utility

of neurocognitive tasks and neuroimaging techniques,

including those designed to index inhibitory functions, in

the search for OCD endophenotypes.
2. Symptom heterogeneity and co-morbidities

The diagnostic and statistical manual IV (DSM-IV;

Fig. 1) and Yale–Brown obsessive compulsive scale

(Y–BOCS; Goodman et al., 1989a,b) are well established

indices of the presence and severity of OCD symptoms.

However, the nature of the obsessions and compulsions can

vary greatly between individuals with similar ratings of

disease severity, and this has led some researchers to

question the value of treating OCD as a single nosological
e compulsive disorder (OCD).



S.R. Chamberlain et al. / Neuroscience and Biobehavioral Reviews xx (2005) 1–214

DTD 5 ARTICLE IN PRESS
entity. In order to address this issue, data-driven approaches

have been used to delineate homogenous subgroups based

on symptoms (Khanna and Mukherjee, 1992; Khanna et al.,

1990; Calamari et al., 1999). Such approaches fail to address

the ubiquitous issue in psychiatry that a given symptom may

be attributable to various underlying neurocognitive or

affective substrates. For example, it is unclear whether a

given compulsion is best thought of as due to behavioural

perseveration, motivational issues, or a host of other

alternative explanations. Classic behavioural approaches

towards OCD view anxiety as a core psychological

component of the disorder (Rachman and Hodgson, 1980),

and indeed OCD is categorised as an anxiety disorder in

DSM-IV, though the role of anxiety in mediating symptoms

is far from clear. Modern psychological approaches towards

understanding the top-level symptoms in OCD include the

thought-action-fusion (TAF) model (e.g. see Amir et al.

(2001)). This model holds that people with OCD interpret

thoughts differently to normal in that they believe thinking

about a particular negative event makes it more likely to

happen in reality, and thinking about a catastrophic event is

on some level morally equivalent to letting the event take

place in reality. It may in future be possible to investigate

cognitive neurobiological mechanisms in OCD within

psychological frameworks (such as TAF).

Adding to the inherent difficulty in attempting to study

OCD is the finding that co-morbidities are common. Motor

tics (including Tourette’s syndrome), trichotillomania

(compulsive hair pulling), body dysmorphic disorder, and

mood and anxiety disorders are frequently reported (Nestadt

et al., 2001; Diniz et al., 2004). It is likely that the high

frequency of co-morbidities can in some cases be explained

in terms of overlapping aetiology, especially so with tic

disorders (Diniz et al., 2004; Pitman et al., 1987; Leonard

et al., 1992a,b; Leckman et al., 1994; Como, 1995). In

exploring the neural substrates and cognitive dysfunctions

central to OCD, studies have often failed to screen for and

take into consideration the contribution of these co-

morbidities (e.g. see Kuelz et al. (2004) for review in the

context of cognitive findings)—a significant failing given

that primary mood disorders for example are associated with

broad and substantial cognitive deficits (Chamberlain et al.,

2004; Elliott et al., 1996; Beats et al., 1996; Purcell et al.,

1997; Sweeney et al., 2000). This frequent lack of screening

for co-morbidities is unfortunate given that effective and

well-validated clinical instruments are available for screen-

ing purposes, including the structured clinical interview for

DSM-IV (SCID; Spitzer et al., 1996) or more rapid mini-

international neuropsychiatric interview (MINI; Sheehan

et al., 1998).
3. The genetics of OCD

Rutter and Silberg (2002) have argued that rapid

progress has been made in the identification of genetic
traits underlying monogenic mendelian disorders like

cystic fibrosis, but that only limited progress has been

made in complex psychiatric diseases which demand a

sophisticated multi-tiered approach. Concordance rates for

OCD symptoms are significantly higher for monozygotic

versus dizygotic twins (Carey and Gottesman, 1981;

Rasmussen and Tsuang, 1986), and the disorder is often

demonstrably familial (Nestadt et al., 2000a; Jonnal et al.,

2000; Bellodi et al., 1992; Pauls et al., 1995), with risk to

first-degree relatives estimated at 3–12 times greater than

for the wider population (Grados et al., 2003). Segregation

analysis, in which mathematical modelling is used to

accept or reject genetic models of inheritance, is suggestive

of a major gene locus for OCD inheritance of greater

importance in females than males (Alsobrook et al., 1999;

Cavallini et al., 1999; Nestadt et al., 2000b). Researchers

have investigated whether allelic variations in genes coding

for enzymes, receptors, and reuptake transporters might

contribute to the aetiology of OCD (see Grados et al.

(2003) for review). However, these approaches are entirely

dependent on the selection of candidate genes by

researchers on the basis of our pre-existing understanding

of the disorder, as genome wide scans have yet to be

completed. For example, DSM-IV considers OCD to be an

anxiety spectrum disorder, and there is evidence that a

polymorphism in the promoter region for the serotoniner-

gic reuptake transporter (5-HTTLPR promoter region)

(Heils et al., 1995, 1996) accounts for a significant

proportion of the variation in anxiety-related personality

traits in the healthy background population (Lesch et al.,

1996). Knock-out of this gene in mice causes abnormal

behavioural phenotypes consistent with increased anxiety

and reduced aggression (Holmes et al., 2003a,b). It is

logical to question whether this polymorphism might

contribute to the aetiology of OCD, especially given that

selective serotoninergic reuptake inhibitors (SSRIs) rep-

resent a first-line pharmacological treatment (see later).

Though McDougle et al. (1998) found preliminary

evidence for a linkage disequilibrium between the long

(l) allele of 5-HTTPLR and OCD in a familial study, and

Bengel et al. (1999) found further evidence using a

population based study, the findings from other studies

are negative (Camarena et al., 2001; Chabane et al., 2004;

Meira-Lima et al., 2004). Some studies have examined

polymorphisms in serotonin receptor subtypes (Meira-

Lima et al., 2004; Walitza et al., 2002; Di Bella et al.,

2002; Mundo et al., 2002; Tot et al., 2003), leading

Camarena et al. (2004) to the recent discovery that

polymorphisms in the 5-HT-1D-beta receptor gene might

contribute to disease severity. Other transmitter system

components (e.g. Monoamine Oxidase A, Catechol-O-

methyl transferase, and DRD4 dopamine gene mutations)

have also been investigated, but positive results are seldom

replicated between studies. This paucity of robust findings

is probably largely attributable to the heterogenous nature

of the condition, serving to highlight the need for the more
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careful selection of research participants, on the basis of

measures that are closer to the underlying pathology than

overt symptomatology.
4. Pharmacological treatment approaches

Psychological treatment in the form of behaviour

therapy (exposure and response prevention) has been

used with success for some time in the treatment of OCD

(Rasmussen and Eisen, 1997; Jenike, 2001). The use of

pharmacological agents has also been explored, and

serotonin reuptake inhibitors (SRIs) are now the first

line pharmacological treatment at most centres (e.g. see

Fineberg and Gale (2004); Fig. 2). The neurochemistry of

OCD is nonetheless not well characterised (Graybiel and

Rauch, 2000), and importantly 40–60% of OCD sufferers

do not respond to appropriate courses of SRI treatment

(Kaplan and Hollander, 2003; Davidson and Bjorgvinsson,

2003). This inevitably leads to speculation about whether

pharmacological agents acting on other transmitter

systems might have a role to play in the treatment of

the disorder. Dopamine blockade via neuroleptic medi-

cation is a potential pharmacological augmentation

strategy in treatment resistant forms of the disorder

(Goodman et al., 1990; Zohar and Fineberg, 2001), and

there is evidence for reduced dopamine receptor binding
Fig. 2. Pharmacological
in left caudate nucleus in OCD patients (Denys et al.,

2004)—a region implicated in the neurobiology of OCD

(see later). Given that the alpha-2 adrenergic agonist

clonidine has been shown to reduce symptom severity in

OCD (Knesevich, 1982; Hollander et al., 1991), noradren-

ergic dysfunction may also be important, though there is a

lack of evidence that noradrenergic selective reuptake

inhibitors are effective at ameliorating symptoms. A

greater understanding of the neurobiological basis of

OCD and the differential role of ascending modulatory

transmitter systems in mediating symptoms, and in

determining treatment response, may eventually contribute

to the development of more effective pharmacological

treatment algorithms.
5. Brain imaging techniques: identification of OCD
neurobiology
5.1. Structural studies

Structural brain abnormalities, indexed by altered

volumes in selected neural regions from magnetic resonance

imaging (MRI) data, are frequently reported in people with

OCD. For example, though some studies have reported

normal caudate nucleus volume in OCD (Kellner et al.,

1991; Aylward et al., 1996), other studies find altered
treatment of OCD.
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volume status (Scarone et al., 1992; Calabrese et al., 1993;

Robinson et al., 1995). On the basis of studies using ‘whole

brain’ approaches, rather than just focusing on specific

regions, there is a broad consensus for widely distributed

(albeit inconsistent) structural abnormalities involving

frontostriatal circuits (e.g. see Jenike et al. (1996) and

Pujol et al. (2004)). Some have tentatively suggested, based

on the finding that streptococcal infection in susceptible

children appears capable of causing OCD-like symptoms to

develop (see later discussion), that volume abnormalities in

these regions might be suggestive of immune mediated

pathological processes. However, there is a lack of direct

evidence for this hypothesis at the present time. In a review

of the anatomical MRI findings in mood and anxiety

disorders, Brambilla et al. (2002) concluded that orbito-

frontal and basal ganglia regions are frequently reported to

be anatomically abnormal in OCD, and represent distinct

structural abnormalities to those reported in other anxiety

disorders such as panic disorder and post-traumatic stress

disorder.

5.2. Resting state functional studies

Functional imaging studies using positron emission

tomography (PET) and single photon emission tomography

(SPECT) techniques have revealed glucose metabolism and

regional cerebral blood flow (rCBF) abnormalities in people

with OCD at rest. Multiple studies have identified such

abnormalities in the basal ganglia (especially caudate),

cingulate cortex, and orbitofrontal cortex (Edmonstone

et al., 1994; Lucey et al., 1997; Crespo-Facorro et al., 1999;

Busatto et al., 2000; Saxena et al., 2001a, 2004; Lacerda et

al., 2003), and several of these studies included groups with

different psychiatric disorders as well as healthy controls.

Lucey et al. (1997) utilised SPECT and identified reduced

caudate rCBF in OCD not only when compared to healthy

controls, but also when compared to controls with panic

disorder. Edmonstone et al. (1994) also using SPECT, found

evidence for abnormal basal ganglia metabolism (in terms

of reduced tracer uptake) in OCD that was absent in a group

of clinically depressed controls matched for medication.

Saxena et al. (2001a) were able to contrast baseline

metabolic activity using PET in patients with OCD alone,

major depressive disorder (MDD) alone, and OCD with co-

morbid MDD. On the basis of the results, the authors argued

that depressive episodes in OCD sufferers might have a

different neurobiological basis to mainstream depression. A

key limitation of these comparative neuroimaging studies is

that the degree of neural dysfunction might be anticipated to

be dependent on disease severity, yet it is difficult to see

how groups with different psychiatric conditions can be

matched on this basis. Additionally, it is foreseeable that

chronic disease course and co-morbidities might signifi-

cantly contribute to the findings. Collectively therefore,

resting state studies are of limited utility in differentiating

the neural underpinnings of OCD versus other anxiety
disorders and mood disorders. One potentially useful

approach would be to examine resting state function in

young medication-naı̈ve adults with new onset OCD, and

contrast the findings with data from studies using ‘first

episode’ matched subjects with other conditions. However,

this presents serious practical issues, as good community

level screening for OCD is not routinely found.

5.3. Symptom provocation and stimulus exposure studies

It is possible to employ functional brain imaging

techniques during the presentation of different types of

stimuli, facilitating an examination of neural activity during

symptom provocation in individuals with OCD. Rauch et al.

(1994) utilised repeated PET to track rCBF in individuals

with OCD both at rest (during exposure to innocuous

stimuli), and during symptom provocation (exposure to

individually tailored provocative stimuli). Increases in

rCBF in right caudate, left anterior cingulate, and bilateral

orbitofrontal cortex, were identified during symptom

provocation compared to the baseline condition. Breiter

et al. (1996) also employed a symptom provocation

paradigm, this time in conjunction with fMRI, and

replicated the finding of involvement of these—and

other—neural regions (Breiter and Rauch, 1996). It has

been suggested that brain reactivity to symptom provocation

might be predictive of therapeutic outcome, and Hendler

et al. (2003) employed SPECT to examine brain perfusion

during symptom provocation before six months of sertraline

treatment. They found that those who responded success-

fully to treatment had significantly lower perfusion during

symptom provocation prior to treatment in the right caudate,

compared to non-responders. More recently, there has been

an upsurge in research into whether there might be distinct

neural correlates associated with different symptom dimen-

sions. Recently, Mataix-Cols et al. (2004) have reported

some very exciting findings using a symptom provocation

paradigm and volunteers with different OCD symptom

clusters in conjunction with healthy controls. Volunteers

were scanned while observing blocks of emotional (wash-

ing-related, checking-related, hoarding-related, or aversive,

symptom-unrelated) and neutral pictures. Increased acti-

vation compared to controls was identified in bilateral

ventromedial prefrontal regions and right caudate nucleus in

OCD volunteers with washing fixations; putamen/globus

pallidus, thalamus, and dorsal cortical areas in OCD

volunteers with checking fixations; and left pre-central

gyrus and right orbitofrontal cortex in OCD volunteers with

hoarding fixations. This seminal work highlights that

different neural circuitry may be implicated in the

manifestation of different symptom dimensions, and that it

is necessary to consider OCD as a non-unitary entity.

An up-and-coming area of research involves the use of

neuroimaging techniques to explore the role of ‘disgust’ in

OCD. Stein et al. (2001) have reviewed the literature to

identify core neural regions that are implicated in disgust



S.R. Chamberlain et al. / Neuroscience and Biobehavioral Reviews xx (2005) 1–21 7

DTD 5 ARTICLE IN PRESS
processing, and have argued that these processing regions

share significant overlap with those cortico-subcortical

circuits known to function abnormally in OCD. Phillips

and Mataix-Cols (2004) explored the neural response to

disgusting pictures in volunteers with OCD who had

washing fixations or checking fixations, versus matched

control volunteers. They found that exposure to normally

disgusting pictures in OCD sufferers with checking

concerns activated fronto-striatal regions—the same regions

that have been implicated in the urge to perform rituals.

Shapira et al. (2003) have investigated disgust-processing in

OCD volunteers with contamination-fixations using a

functional imaging paradigm. They found that the pattern

of neural activation during threat-inducing stimulus

exposure was similar between OCD volunteers and controls,

whereas the pattern of activation during disgust-inducing

stimulus exposure was different with greater increases in the

right insula, parahippocampal region, and inferior frontal

sites in OCD. Clearly, this is an area of study that merits

further research.

5.4. Treatment response studies

It is interesting to consider whether the demonstrable

functional abnormalities in neural regions including orbito-

frontal cortex, anterior cingulate cortex, and caudate can be

ameliorated by pharmacological intervention in people with

OCD. One of the first studies to address this issue found that

treatment with the tricyclic clomipramine led to a relative

decrease in cerebral glucose metabolic rate in orbitofrontal

cortex and left caudate, and increases in areas of the basal

ganglia (Benkelfat et al., 1990). This ‘normalisation’ of

orbitofrontal cortex dysfunction by clomipramine has been

confirmed in another study using PET scanning in child-

hood-onset OCD patients (Swedo et al., 1992). In a key

study, Saxena et al. (1999) examined whether pre-treatment

metabolic activity in orbitofrontal cortex was predictive of

treatment response to the SSRI paroxetine (in terms of a

reduction in symptom severity). They found that in patients

who responded to 8–12 weeks of paroxetine treatment, there

was a significant decrease in glucose metabolism in right

anterolateral orbitofrontal cortex and right caudate nucleus.

Further, lower pre-treatment metabolic activity in both left

and right orbitofrontal cortex was found to be predictive of

greater treatment response. Rauch et al. confirmed this

finding using PET in contamination concerned people with

OCD who underwent 12 weeks of fluvoxamine treatment

(Rauch et al., 2002). Given the finding in major depression

that successful psychological treatment may lead to the

normalisation of dysfunctional neural circuitry akin to those

changes seen in response to successful pharmacological

intervention (Goldapple et al., 2004), it is interesting to

question whether this might also be the case in the treatment

of OCD. Nakatani et al. (2003) examined rCBF changes

during successful treatment with behaviour therapy in OCD,

and identified a reduction in right caudate rCBF that tended
to correlate with clinical improvement in symptomatology.

These studies support the future utility of functional imaging

techniques as a means of predicting likely response not only

to pharmacological treatment, but also perhaps other

forms of psychotherapeutic intervention. However, it is

unclear whether the reported metabolic changes occurring

over the course of successful treatment are simply a

reflection of symptom reduction, or bear some more direct

relationship to the correction of underlying brain pathology

(for example, in terms of ascending monoaminergic

transmitter systems).

5.5. Integration: orbitofrontal loop dysfunction

On the basis of earlier work by Alexander et al. (1986)

supporting the idea that brain circuits connecting cortex to

subcortical neural regions can be considered to be relatively

functionally specialised, Graybiel and Rauch have argued

that the cortico-subcortical circuits involved in OCD might

be characterised in terms of abnormal habit forming

mechanisms (see Graybiel and Rauch (2000) and Graybiel

(1997) for further details). In this approach, the pathological

obsessions and compulsions in OCD can be viewed as

abnormal or maladaptive habits over which sufferers are

unable to exert sufficient ‘high level’ control. The orbito-

frontal cortex, anterior cingulate cortex, and caudate nucleus

are integral to a ‘lateral orbitofrontal loop’, and it is useful to

contrast this neural circuit to others such as a motor loop

involving different structures (see Fig. 3). We therefore

propose that the neurobiology of OCD might be usefully

conceptualised in terms of lateral orbitofrontal loop

dysfunction. Saxena et al. (1998) have argued that the

manifestation of OCD symptoms might be best characterised

by hyperactivation in cortico-subcortical circuits involving

the orbitofrontal cortex, as evidenced by the symptom

provocation and treatment response studies. Though this

hyperactivation may represent a relatively disease-specific

finding, abnormalities in structures within the lateral

orbitofrontal loop have been reported in other psychiatric

disorders with notably different symptomatology—includ-

ing mood disorders, other anxiety disorders, and basal

ganglia disorders. There is a growing body of evidence that

obsessive-compulsive symptoms are found with unexpect-

edly high frequency in Tourette’s syndrome (Como, 1995),

Huntington’s disease (De Marchi and Mennella, 2000),

and perhaps also Parkinson’s disease (see Alegret et al.

(2001) and Maia et al. (2003)). Cortico-subcortical neural

loops are not completely functionally segregated, and

overlapping neurobiology may account for this overlap in

symptoms. Therefore, though the concept of lateral orbito-

frontal loop dysfunction represents a useful starting point,

further research is needed to characterise the precise nature

of the underlying neuropathologies between diseases.

There are several tiers of evidence beyond the brain

imaging data already discussed implicating lateral orbito-

frontal loop circuitry in the manifestation of OCD
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symptoms. Firstly, Graybiel and Rauch have cited

evidence from animal studies that components of the

orbitofrontal and anterior cingulate cortices have links to

the striosomal system in the head of the caudate (Eblen

and Graybiel, 1995), a structure that appears to be

differentially active when animals perform repetitive

stereotyped behaviour after dopamine receptor agonist

administration (Graybiel and Rauch, 2000). Secondly,

traumatic brain injury to local regions of neural tissue can

cause OCD to develop in adults with no prior history of

symptoms (Berthier et al., 2001; Hiott and Labbate, 2002;

Stengler-Wenzke et al., 2003), and in severe cases focal

contusions can be visualised within lateral orbitofrontal

loop structures (Berthier, 2000; Berthier et al., 1996,

2001). Thirdly, SSRIs are able to alleviate symptom

severity, and this may relate to normalisation of dysfunc-

tional regions including orbitofrontal cortex, most likely

via modulation of ascending neurotransmitter pathways

(especially serotoninergic). Lastly, in paediatric auto-

immune neuropsychiatric disorders associated with strep-

tococcal infections (PANDAS) there is reasonable

evidence for a causal pathway between streptococcal

infection in susceptible children, autoimmune mediated

damage to basal ganglia structures, and the development

of OCD-like symptomatology (Swedo et al., 1992, 1994;

Giedd et al., 2000; Swedo, 2002; Snider and Swedo, 2003;

Pavone et al., 2004). However, the wider relevance of
these findings to mainstream OCD is far from clear.

Several human leukocyte antigen (HLA) types have been

established to be associated with autoimmune disorders

(see Ebringer and Wilson (2000) and Wilson et al.

(2000)), and it may be that research can identify certain

HLA or other genetic markers for PANDAS susceptibility

in children, facilitating preventative intervention.

In all, the available evidence suggests that the neurobiol-

ogy of OCD may be characterised by abnormal processing

within cortico-subcortical neural networks, including the

lateral orbitofrontal loop. Further work is needed to

characterise the nature of this abnormal processing, and

the relationship to different ascending monoaminergic

transmitter systems.
6. Cognitive functioning

Given the structural and functional abnormalities in

orbitofrontal cortex, anterior cingulate gyrus, and the basal

ganglia (especially caudate) (Saxena et al., 2001a,b;

Saxena and Rauch, 2000), it is logical to hypothesise

that OCD patients would show impaired performance on

neurocognitive tasks sub-served by these brain regions.

Contemporary clinical models of OCD emphasise the

central role of ‘idiosyncrasies’ in cognition (Salkovskis,

1985, 1989, 1999; Salkovskis et al., 1998, 2000;
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Salkovskis and Westbrook, 1989), and the everyday

behaviour of people with OCD is suggestive of cognitive

dysfunction. The development of advanced computerised

cognitive testing batteries, such as cambridge neuropsy-

chological test automated battery (CANTAB) has facili-

tated the profiling of abnormalities in a diverse array of

psychiatric and neurological disorders. Modern cognitive

tests allow for hypothesis-driven dissection of different

domains of cognition, and can be utilised in patients with

focal neurosurgical lesions and in conjunction with brain

imaging techniques, facilitating the identification of neural

substrates of task performance. These approaches hold

advantages over more traditional ‘pen and paper’

methods, in that they can be more readily administered

between study sites, and can enable more automated and

accurate data collection. Kuelz et al., in a comprehensive

review of cognitive functioning in OCD (Kuelz et al.,

2004), found evidence for frequent but inconsistent

deficits across several cognitive domains. They argued

that failures to control for co-morbidities probably

accounted for many of the inconsistencies in the OCD

neurocognitive findings. Here, we focus on some key

findings in the available literature.

6.1. Memory

There is a substantial body of evidence to suggest that

OCD patients show impaired performance on a number of

different memory tasks. Additionally, aspects of the

behaviour seen in people with OCD might be argued to be

suggestive of memory problems. For example, many patients

engage in repetitive checking behaviour—e.g. that the gas

stove is off—arguably suggestive of attentional problems or a

failure to appropriately encode memories for self-actions.

However, studies indexing reality monitoring and memory

for self-actions in OCD patients fail to find evidence of

impairments in these areas (McNally and Kohlbeck, 1993;

Constans et al., 1995; Hermans et al., 2003). Non-verbal

memory has been assessed by the Rey complex figure test

(RCFT; Osterrieth, 1944) and Benton visual retention test

(BVRT; Benton, 1974). In the RCFT, subjects copy a

complex line diagram from a stimulus card and later re-draw

it from memory, and in the BVRT (version A), a series of

cards with simple geometric designs are exposed for ten

seconds and the subject must then draw the designs one at a

time immediately after each has been covered up. There is

broad agreement that an impairment exists in recall

performance on these tasks in OCD, but many have argued

that this impairment is due to failures in the employment of

appropriate organisational strategies (Kuelz et al., 2004;

Martinot et al., 1990; Savage et al., 1999; Savage and Rauch,

2000; Deckersbach et al., 2000; Kim et al., 2002). The

suggestion that performance deficits occur in situations

where strategy is important is also supported by the finding

that verbal memory is generally unimpaired in OCD patients

(Christensen et al., 1992; Martin et al., 1995; Mataix-Cols
et al., 1999), except in tasks requiring stimuli to be

semantically clustered (Savage and Rauch, 2000; Cabrera

et al., 2001). The CANTAB testing battery (CANTAB)

includes the pattern recognition memory (PRM), spatial

recognition memory (SRM), and spatial working memory

(SWM) tasks (see Fig. 4 for descriptions). Purcell et al.

(1998) identified SWM and SRM impairments in OCD but

not PRM impairment. Barnett et al. (1999) confirmed SRM

deficits in another study using OCD patients. Nielen and Den

Boer (2003) replicated the finding of SRM impairment and

no PRM impairment, but in contrast to the findings of Purcell

et al. their results indicated no statistically significant SWM

impairment. In an fMRI study using a different spatial

working memory task, medication-free individuals with

OCD were found to perform worse than controls at harder

levels of difficulty and demonstrated heightened activation in

anterior cingulate cortex (compared to controls) at multiple

levels of task difficulty (van der Wee et al., 2003). The

authors concluded that their findings were suggestive of

executive dysfunction rather than a deficit in spatial working

memory system per se. Given that SWM is strategy-

dependent, and that we believe many subjects utilise strategy

on the SRM task, studies to date suggest that performance on

spatial recognition and spatial working memory tasks may be

impaired in individuals with OCD consequential to strategy

failures. Further decomposition of the component cognitive

processes of task performance will help to refine our

understanding of the basis for the apparent mnemonic

failures.

6.2. Planning

The original Tower of London (CANTAB) (TOL)

cognitive task (e.g. see Purcell et al. (1998b)) requires

subjects to rearrange a set of snooker balls in pockets on a

computer screen to match the appearance of another set

determined by the computer, within the confines of the game

rules. The aim is to solve each problem in the minimum

possible number of moves (indicated by a number on the

screen). The outcome measures from this task include

‘number of perfect solutions’, and latency data for reaction

and thinking times. To our knowledge, four OCD studies

have been conducted with the TOL task, and ability to meet

the minimum number of moves requirement was found to be

impaired in one (Nielen and Den Boer, 2003) but not the

other studies (Purcell et al., 1998a; Veale et al., 1996;

Watkins et al., in press). Watkins et al. (in press) have

argued that cognitive planning, as indexed by the CANTAB

TOL, appears generally unimpaired in people with OCD.

They contrast this with the finding from multiple studies that

people with depression tend to be impaired on CANTAB

TOL planning measures.

Collectively, though the studies utilising CANTAB

TOL in OCD find limited support for pure planning

deficits, there is strong evidence for abnormal psycho-

motor slowing (as indexed by lengthened latency/thinking
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times compared to controls) in at least a subset of

sufferers. However, further research is needed to delineate

the cognitive underpinnings of this slowing phenomenon,

as the nature of this slowing has been found to be

inconsistent between studies (e.g. see Purcell et al. (1998)

for discussion). It may be that lengthened latency times

on the TOL task are consequential to strategy failures,

attentional problems, and/or chronic doubting in situ-

ations where the subject is informed via computer

feedback that they have just made an error (negative

feedback).
6.3. Decision-making

The ability to make reasoned judgements on the basis of

available information is integral to everyday living. It has
been suggested that the compulsive behaviours in OCD may

be conceptualised as failures in decision-making (Cavedini

et al., 2002). The Iowa Gambling Task (Bechara et al.,

1994) mimics real life decision-making, has been employed

in the investigation of many neuropsychiatric conditions

(Bechara et al., 1994, 1999; Wilder et al., 1998; Schmitt

et al., 1999), and is sensitive to ventromedial prefrontal

cortical damage (Bechara et al., 1999, 2000). In this task,

there are several decks of cards and the goal is to maximise

profit by making a series of card selections. The examiner

schedules rewards and punishments such that decision-

making can be objectively quantified by examining the

tendency of the subject to select advantageous versus

disadvantageous card decks overall. The available studies

utilising this task in individuals with OCD provide mixed

findings (Cavedini et al., 2002; Nielen et al., 2002), and

http://www.camcog.com
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there is some evidence that decision-making impairments

on this task may represent a marker for treatment resistant

forms of the disorder (Cavedini et al., 2002). Watkins et al.

(in press) utilised a different decision-making task (see

Rogers et al. (1999) for task description), and replicated the

finding of intact decision-making in OCD. More research

using a variety of decision-making tasks, in conjunction

with an understanding of neural correlates of performance

derived from functional imaging studies, is likely to be of

value.

6.4. Set-shifting

Set-shifting represents the ability to switch attention

from one aspect of a stimulus to another in an ongoing task,

in accordance with changing reinforcement contingencies.

Given the perseveration and repetition demonstrable in the

clinical behaviour, set-shifting impairments might be

expected to represent a core feature of the neurocognitive

profile of OCD. There are several cognitive tasks that can

be used in the exploration of set-shifting (see Fig. 5 for

overview). The Wisconsin Card Sorting Task (WCST; Berg,

1948) is known to be sensitive to brain lesions, and

performance has been found to be particularly dependent on

dorsolateral prefrontal cortical integrity (Lombardi et al.,

1999). Some studies have identified set-shifting deficits in

OCD using the WCST (Hymas et al., 1991; Okasha et al.,

2000), but others have not identified such deficits

(Abbruzzese et al., 1995, 1997; Moritz et al., 2001, 2002).

The object alternation test (OAT; Freedman, 1990) and

delayed alternation test (DAT; Freedman and Oscar-Ber-

man, 1986) measure a distinct aspect of set-shifting:

behavioural reversal, in which a rule is learnt and then

subsequently needs to be inhibited and reversed in order

to maintain good performance. These tasks appear to be

more dependent on orbitofrontal rather than dorsolateral

prefrontal cortical function (Freedman et al., 1998; Zald

et al., 2002). Set-shifting performance (in terms of

behavioural reversal) in OCD sufferers has been found to

be impaired on both of these tasks (Abbruzzese et al., 1997;

Aycicegi et al., 2003). The intra-dimensional/extra-dimen-

sional (IDED) set-shifting task (CANTAB) is an automated

computerised task, utilising conceptually distinct stages

such as the intra-dimensional shift (examining rule

generalisation when there are novel stimuli) and extra-

dimensional shift (in which the relevant stimulus dimension

alters). Veale et al. (1996) found that individuals with OCD

recruited mainly from inpatient settings made more errors

than controls on multiple stages of this task. In contrast,

Watkins et al. (in press) identified selective deficits at the

ED stage (using people with OCD recruited from outpatient

settings) that were not found in patients with Tourette’s

syndrome and have not been found in separate studies

involving patients with Depression. A feasible explanation

for the broader IDED set-shifting deficits found in Veale et

al.’s study is that these volunteers are likely to have had
more clinically severe psychopathology given their inpa-

tient status. While Purcell et al. (1998) failed to report

statistically significant deficits in OCD on this task, it is

worth noting that their OCD and control groups differed in

terms of the ED stage trials to criterion measure, but that this

did not meet a priori significance criteria (pZ0.04). Nielen

and Den Boer (2003) failed to identify statistically

significant set-shifting deficits using this task in another

group of OCD patients, both before and after a course of

pharmacological treatment. It may be that the expression of

set-shifting deficits in OCD is related to clinical disease

severity or disease progression, highlighting the potential

usefulness of set-shifting tasks as candidate markers for

different manifestations of the condition. Clearly further

studies are required, with larger sample sizes, careful patient

selection, monitoring of co-morbidities, disease severity,

and medications. Switching tasks, in which subjects

undertake two or more tasks that run alternately in a rapid

fashion, may help to clarify the nature of deficits in

cognitive flexibility in OCD.
6.5. Response inhibition

The term ‘response inhibition’ (RI) refers to cognitive

processes enabling executive control over pre-potent motor

responses in accordance with changing situational demands

(e.g. see Logan et al. (1984) and Aron et al. (2003)). Initial

evidence for RI deficits in OCD came from studies using

oculomotor tasks that required the suppression of eye

movements. Failures of inhibition were identified in

treatment naı̈ve children and adults with OCD (Rosenberg

et al., 1997a,b). In Go/No-Go tasks, subjects have to make a

simple motor response (such as pressing a button) as quickly

as possible when target stimuli are presented, and withhold

the motor response when non-target stimuli are presented.

Bannon et al. (2002) found that OCD patients made

significantly more commission errors than matched panic

disorder control subjects in a computerised task necessitat-

ing the inhibition of responses on a proportion of trials—

OCD patients tended to make inappropriate motor responses

to non-target stimuli. Aycicegi et al. (2003) utilised a

computerised task with different stimuli, and identified

impaired performance on conflict blocks compared to

healthy matched controls, consistent with Bannon et al.’s

findings. Similar deficits have been identified in Tourette’s

syndrome complicated by co-morbid OCD (Muller et al.,

2003). Recently, Watkins et al. (in press) utilised a

computerised Go/No-Go task in which response contingen-

cies were reversed on some blocks of trials. This enabled the

quantification of switching cost, in terms of reduction in

correct responding on reversal blocks. They found that the

OCD group had an abnormally high switching cost

compared to both matched healthy controls and volunteers

with Tourette’s syndrome. Tasks that examine switching

performance may be useful not only in examining response



Fig. 5. Set-shifting tasks of use in exploring OCD.
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inhibition failures but also set-shifting, as per our previous

suggestion.

In a recent pilot study using seven adults with OCD

recruited from the community (rather than from outpatient

clinics), RI was examined using a stop-signal task in

which subjects had to make a motor response to a green ‘x’

on-screen but withhold motor response if this green ‘x’
changed to red (the stop signal) (Krikorian et al., 2004).

Contrary to expectations, the authors report superior

inhibitory control in their OCD sample compared to

controls. However, the length of the stimulus display

intervals, and the proportion of ‘stop’ compared to ‘go’

trials, are important in determining the physiological

validity and sensitivity of such tasks. We would argue that
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a neurocognitive task such as the stop signal reaction time

(SSRT) task originally developed by Logan et al. (1984) that

uses stepwise tracking algorithms to determine measures of

inhibitory control, represents a technically superior model

of this aspect of cognitive functioning (e.g. see Aron et al.

(2003)). The development of different neurocognitive tasks

that model pre-potent inhibition processes will be of use in

further exploring cognitive deficits in OCD.

6.6. Attentional bias and vigilance

Attentional and information processing biases are

commonly reported in affective (Chamberlain et al.,

2004; Tavares et al., 2003) and anxiety disorders

(Summerfeldt and Endler, 1998)—both of which are

frequent co-morbidities in OCD (Diniz et al., 2004). The

clinical symptoms of OCD are suggestive of processing

biases, such as fixations with potential contamination

sources or stimuli that would not normally evoke

emotional responses. It is important to consider whether

processing bias can be indexed by cognitive tasks, given

the finding of abnormal neural activity in lateral

orbitofrontal loop structures in OCD during symptom

provocation. The Stroop task is a classic measure of

attentional processing and executive control, in which

subjects are asked to name the ink colour of printed words

that have an interfering semantic content—for example,

the word ‘RED’ written in green ink (or equivalent on a

computer screen). By examining average reaction times in

different conditions, the ‘cognitive’ cost of interfering

semantic content can be quantified. Though an abnormal

interference cost has been identified in at least one study

using OCD patients (Hartston and Swerdlow, 1999), other

studies report no abnormalities (Martinot et al., 1990;

Schmidtke et al., 1998). Modified versions of the Stroop

using emotionally relevant words have been utilised to

seek out attentional biases, but it is not easy to quantify

and control for the variable relevance of stimulus words to

individual patients’ obsessive and compulsive foci. This

perhaps accounts for the lack of evidence for common

attentional biases in OCD using this type of task (Lavy et

al., 1994; Kampman et al., 2002; Moritz et al., 2004). In

dot probe paradigms, word pairs are typically presented

on a computer screen in a vertical arrangement, and then

both words disappear and a ‘dot’ appears in place of one

of the words. The aim of each ‘dot probe’ trial is to give

an appropriate motor response corresponding with whether

the dot is in the top or bottom position. By recording the

average response times when the dot probe is preceded by

different classes of words, attentional vigilance to

particular types of stimuli can be recorded. Tata et al.

(1996) employed a version of the dot probe task using

social anxiety threat, contamination threat, and neutral

words, in OCD patients with contamination fixations.

They found increased vigilance towards contamination

threat words in the OCD patients, increased vigilance
towards social threat words in high anxiety healthy

controls, and a lack of such heightened vigilance in low

anxiety healthy controls. The findings are consistent with

selective attentional bias and increased vigilance towards

contamination related words in this subtype of OCD

patient not simply attributable to a state of anxiety. Tata

et al. have argued that the dot probe paradigm has fewer

interpretative problems than the Stroop, and therefore

further studies using this paradigm would be of interest.

In directed forgetting (DF) tasks, subjects typically view

a series of words presented sequentially on a computer

screen. Immediately after each word presentation they

receive an instruction to remember or forget that particular

word. Subjects then undergo free recall and recognition tests

for all words irrespective of the original instructions they

received. Wilhelm et al. (1996) used negatively valenced

(sad), positively valenced (happy), and neutral words in

OCD patients and matched controls. They found that the

OCD group had difficulty forgetting information when it

was negative: they recognised more negative words they

were instructed to forget than other types of words

compared to controls. The results were interpreted in

terms of OCD patients inappropriately encoding negatively

valenced stimuli. However, it is noteworthy that the authors

reported 25% of their OCD group to suffer from co-morbid

Major Depressive Disorder (whereas controls were free of

any DSM-IV axis-I psychiatric condition). On this basis, we

would argue that the abnormal encoding of negative words

reported in this study might have been consequential to

depressive mood status rather than OCD per se. Tolin et al.

(2002) utilised a similar approach to explore directed

forgetting in the case of OCD related stimuli, by asking each

OCD subject to generate their own word lists at least 24 h

prior to the experiment proper. By providing OCD

participants with forms containing blank spaces, and a list

of sample words, idiographic stimulus selection was made

for four categories: OCD relevant positive (happy) words,

OCD relevant negative (unpleasant) words, OCD non-

relevant positive words, and OCD non-relevant negative

words. Those with OCD were found to be impaired in their

ability to forget words that were relevant to their OCD state

(whether negative or positive), but had no impairments in

forgetting other types of words (whether negative or

positive). By yoking to anxious and non-anxious healthy

control groups, the effects were again found to be OCD

specific rather than attributable to a state of anxiety per se.

The lack of apparent bias towards negative or positive

words, irrespective of OCD relevance, supports our

contention that Wilhelm et al.’s finding may have been

attributable to depressive mood rather than OCD. In

summary, there is evidence for abnormal processing bias

towards OCD relevant stimuli on paradigms such as dot-

probe and directed forgetting. However, it is evident that the

ability to demonstrate these processing biases is highly

dependent on the relevance of task stimuli to individual

OCD concerns.
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7. The importance of failures in cognitive and

behavioural inhibition processes

The top-level symptoms seen in OCD are strongly

suggestive of inhibitory failures. OCD is characterised by

intrusive, troubling thoughts that are perceived as the

product of one’s own mind and/or repetitive, compulsive

behaviours or mental rituals. The content of intrusive

thoughts experienced by healthy people shares significant

overlap with the content of obsessions in OCD patients

(Rachman and de Silva, 1978; Salkovskis and Harrison,

1984), and ritual-like behaviours are commonly found in the

background population (Muris et al., 1997). The differences

between ‘normal’ and ‘OCD’ cognitions are that the latter

are more frequent, more intense, and elicit more resistance

and subjective discomfort, such that they may impair

activities of daily living and quality of life (see DSM-IV

criteria, Fig. 1). OCD cognitions might be best characterised

in terms of failures to inhibit, or shift attention from, these

ongoing thoughts or motoric activities towards other more

pleasant, or less distressing, cognitions. Tolin et al. (2002)

have argued that cognitive behavioural psychological
Fig. 6. The importance of inhi
models of OCD are suggestive of such inhibitory failures.

Given that inhibitory failures appear integral to aspects of

the symptoms and psychology of OCD, it is necessary to ask

whether inhibitory failures might also underlie the reported

cognitive deficits, and whether the abnormal neural circuitry

implicated in OCD is involved in physiological (normal)

inhibitory functions. We propose that it may be useful to

differentiate between two types of inhibition processes: (a)

cognitive inhibition, representing control over internal

cognitions (e.g. intrusive thoughts, mental rituals, or

inappropriate strategies); and (b) behavioural inhibition,

representing control over externally manifested motoric

activities (e.g. ritualistic checking behaviour; Fig. 6).

Though this may represent a useful conceptual distinction,

common cognitive and neural processes may of course be

implicated in both thoughts and actions. As discussed

earlier, Mataix-Cols et al. (2004) have recently reported in a

seminal study that different symptom dimensions in OCD

have distinct neural correlates. Bilateral ventromedial

prefrontal regions and right caudate nucleus were impli-

cated in washing symptoms; putamen/globus pallidus,

thalamus, and dorsal cortical areas in checking; and left
bitory failures in OCD.
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pre-central gyrus and right orbitofrontal cortex in hoarding.

Given that different types of inhibitory failure may underlie

different symptoms, it follows that neurocognitive indices of

such inhibitory failures may ultimately be useful in sub-

grouping patients.

Various neurocognitive deficits have been identified

across several domains in OCD, including memory, set-

shifting, response inhibition, and attentional processing.

There is direct evidence for response inhibition failures as

indexed by Go/No-Go and oculomotor tasks, in which there

is a need to inhibit pre-potent motor responses (Aycicegi

et al., 2003; Rosenberg et al., 1997b; Bannon et al., 2002;

Muller et al., 2003). As Aron et al. report (Aron et al., 2004),

inhibition as a cognitive function has been associated with

neural substrates including the dorsolateral prefrontal

cortex, inferior frontal cortex, and orbitofrontal cortex.

Horn et al. (2003) for example, found inhibition to be

associated with activation of multiple regions on a Go/No-

Go task in healthy volunteers, including orbitofrontal cortex,

superior temporal gyrus, cingulate gyrus, and inferior

parietal lobule. Bokura et al. (2001) used event-related

potentials to indicate increased orbitofrontal cortex activity

during inhibition of responses in the ‘no go’ condition.

Therefore, the inhibitory failures demonstrated by individ-

uals with OCD on these neurocognitive tasks are consistent

with lateral orbitofrontal loop dysfunction, particularly in

orbitofrontal cortex. Set-shifting is classically regarded as a

distinct cognitive function to inhibition, and some have

argued that dorsolateral prefrontal cortex is important in set-

shifting whereas orbitofrontal cortex is more important in

response inhibition. At first sight the finding of set-shifting

deficits in OCD patients from multiple neurocognitive

studies (Veale et al., 1996; Watkins et al., in press;

Abbruzzese et al., 1997) in the absence of imaging evidence

for dorsolateral prefrontal cortical dysfunction might

be surprising. However, as Evans et al. (2004) have argued,

set-shifting not only requires the ability to adopt a new rule

or attend to a different stimulus dimension, but also the

inhibition of responding to the previously acquired rule.

Human patients with focal lesions to the orbitofrontal cortex

are impaired on a probabilistic behavioural reversal learning

task, which shares cognitive requirements in common

with the behavioural reversals necessary on some of these

set-shifting tasks (Berlin et al., 2004). Additionally, lesions

to orbitofrontal cortex in animals have been shown to lead to

abnormal perseveration on equivalent animal tests (de Bruin

et al., 1983; Rolls, 1996; Chudasama and Robbins, 2003).

Therefore, inhibitory failures arising from dysfunction in the

orbitofrontal cortex are likely to be important in mediating

the set-shifting deficits reported in OCD patients.

Greisberg and McKay (2003) were amongst the first

researchers to suggest that cognitive deficits in people with

OCD are most consistently found on tests requiring the use

of organisational strategies in conjunction with short and

long term memory. It is possible that most, if not all, of the

memory deficits reported in OCD could be accounted for by
non-mnemonic processing failures, in particular the rigid

implementation of inappropriate strategies (Kuelz et al.,

2004; Martinot et al., 1990; Savage et al., 1999; Savage and

Rauch, 2000; Deckersbach et al., 2000; Kim et al., 2002).

Savage et al. (1999) and Savage and Rauch (2000) have

argued that the orbitofrontal cortex is implicated in the

initialisation of effective behavioural strategies in novel or

ambiguous situations (such as when undertaking a memory

task for the first time). It will be important for future

research to examine whether failures in the inhibition of

response strategies could account for these apparent deficits

on strategy and memory tasks. In particular, it will be useful

to investigate whether people with OCD have difficulty

inhibiting inappropriate strategies when novel (more

effective) strategies are suggested on neurocognitive tasks.
8. Future research directions

In reviewing the available data, we have identified

several significant limitations in our current understanding

of OCD: specific genetic contributions have not been

identified, current treatment algorithms fail to help a

significant proportion of sufferers, studies have frequently

failed to control for co-morbidities, and cognitive deficits,

though frequently reported, are highly variable. We have

proposed that lateral orbitofrontal loop dysfunction is

important in understanding the neurobiology of OCD,

though clearly further work is needed to explore the nature

of any underlying pathology. We have built on the work of

other researchers by suggesting not only that the symptoms

seen in OCD are strongly suggestive of failures in cognitive

and behavioural inhibitory functions, but also that many of

the cognitive deficits seen in the available literature are

suggestive of such failures (Fig. 6). These failures are

consistent with what is known of the role of lateral

orbitofrontal loop circuitry in cognition.

At the present time, the diagnosis of OCD, sub-typing of

patients, and tracking of treatment response, are facilitated

by top-level clinical measures such as DSM-IV diagnostic

criteria (DSM-IV, 1994) and the Yale–Brown obsessive

compulsive scale (Goodman et al., 1989a,b). In the field of

psychiatry, it is becoming increasingly evident that

approaching psychiatric entities only in terms of top-level

overt symptoms is unsatisfactory (Gottesman and Gould,

2003). Many have proposed that endophenotypes may be

useful in this regard. Central to this search is the idea that

intermediate measures of disease (termed endophenotypes),

grounded in the neurosciences, are by definition closer than

the underlying pathology of a given psychiatric condition

than the top-level symptoms (see Gottesman and Gould

(2003) for discussion). The endophenotype concept may be

of significant utility in overcoming the limitations that we

have identified in our current understanding.

The available literature is suggestive of future research

directions in the search for candidate endophenotypes.
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As discussed previously, Mataix cols et al. have recently

identified specific neural substrates underlying different

symptom dimensions in OCD (Mataix-Cols et al., 2004;

Phillips and Mataix-Cols, 2004)—ventromedial prefrontal

regions and right caudate nucleus are implicated in washing,

putamen/globus pallidus, thalamus, and dorsal cortical areas

in checking, and left pre-central gyrus and right orbito-

frontal cortex in hoarding. These regions are implicated in

physiological cognitive and behavioural inhibitory pro-

cesses, as indexed by neurocognitive tasks (see earlier

discussion). We propose that neurocognitive tasks designed

to tap these cognitive and behavioural inhibitory processes

therefore represent a useful heuristic in the search for

candidate endophenotypic markers, especially when

coupled with functional imaging techniques.

It will be interesting to compare neurobiological markers

of inhibitory functions between OCD and other conditions

that have been suggested to constitute an obsessive-

compulsive spectrum of conditions, including ADHD,

Tourette’s syndrome, and trichotillomania (compulsive

hair pulling). These disorders share co-morbid overlap

with OCD—especially when symptoms are conceptualised

in terms of failures in impulse control (e.g. see Phillips

(2002) and Richter et al. (2003) for discussion). Gilbert et al.

(2004) have argued that OCD, ADHD, and Tourette’s

syndrome may be considered as hyperkinetic disorders

involving excess excitatory output from basal ganglia to

cortical regions. It is noteworthy that failures in pre-potent

inhibitory functions have been implicated in the neurocog-

nitive and symptomatological findings in all of these

conditions (see earlier discussion; also see Castellanos and

Tannock (2002) and Muller et al. (2003)) though of course

pre-potent motor inhibition represents just one aspect of

inhibitory function. The development of neurocognitive

tasks capable of tapping different cognitive and behavioural

inhibitory processes is likely to have relevance not only to

our neurocognitive understanding, but also to the nosology

of these complex psychiatric conditions.
9. Conclusions

Research into OCD has been hindered by the hetero-

genous nature of the symptoms as indexed by clinical

measures including DSM-IV and Y–BOCS, and by the high

frequency of co-morbidities. Robust genetic contributions

to the aetiology have not been identified, and significant

limitations in current treatment algorithms are evident. In

reviewing the neural, cognitive, and clinical findings in

OCD, we find that failures in cognitive and behavioural

inhibition processes appear integral to the neuropsycho-

pathology of the disorder. Additionally, a heuristic expla-

nation in these terms is consistent with the neurobiology of

OCD, as structures within the lateral orbitofrontal loop

appear to be important in the physiological control of

inhibition processes, as evidenced by lesion and functional
imaging studies. We propose further that the identification,

validation, and refinement of neurocognitive endophenoty-

pic OCD markers may be of utility in assessing the efficacy

of existing and novel pharmacological interventions,

optimising diagnosis, assessing disease severity, and isolat-

ing the genetic contributions of this severely debilitating

and prevalent disorder. An approach founded in terms of

inhibitory failures is likely to represent a useful starting

point for these developments, particularly as failures in

inhibitory control are collectively implicated in the putative

obsessive-compulsive spectrum of conditions, including

OCD, Tourette’s syndrome, and ADHD.
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