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Abstract. We describe a neural network able to rapidly establish cor-
respondence between neural fields. The network is based on a cortical
columnar model described earlier. It realizes dynamic links with the help
of specialized columns that evaluate similarities between the activity dis-
tributions of local feature cell populations, are subject to a topology con-
straint, and gate the transfer of feature information between the neural
fields. Correspondence finding requires little time (estimated to 10-40 ms
in physiological terms) and is robust to noise in feature signals.

1 Introduction

For various purposes it is necessary for the brain to find point-to-point corre-
spondences between structured neural arrays. Among these is stereo vision and
visual motion extraction. There are good reasons to assume that the brain also
performs correspondence-based invariant object recognition [1]. In the technical
domain, this represents state-of-the-art object and face recognition technology
[2, 3].

Objects can be recognized in less then 100ms, see e.g. [4], and after each
saccade a new system of correspondences needs to be established, making it
clear that the mechanism must be very fast. A previous neural model of cor-
respondence-based recognition [5] had problems with the evaluation of feature
similarity and with speed. The model [6] is fast but did not attempt to cope
with different feature types.

2 Columnar Network Model

The central element of our model is the cortical column. As discussed in [7] our
column corresponds approximately to what in neuroscience is called a hypercol-
umn or macrocolumn and in primary visual cortex comprises all neurons that
are activated from one point in visual space. A column contains sub-units called
minicolumns or simply units that comprise on the order of one hundred neurons
which are connected by mutual excitation. The activity of a unit is described
collectively by a variable p, and the units of one column mutually inhibit each



other. The coupling coefficient ν of this inhibition is cyclically driven (ν-cycle),
such that when ν is low all units are on, and when ν approaches a critical value
some units switch off in sequence, thus reflecting the relative strengths of their
afferent input. The dynamics of columns is described in the next section.

A simple model setting for the process of correspondence finding (see Fig. 1B)
consists of an input domain I, left column of large shaded ellipses, and a model
domain M, right column. Both domains consist of neural sheets that represent
images by the activity distribution of fields of local feature detectors. (Corre-
spondingly they should be two-dimensional, but for simplicity we limit ourselves
here to one-dimensional chains. And the model domain should contain many
such sheets to represent objects in memory, but for the time being we focus on
just one.)

In each point of the two domains there are two columns, one to represent
local features (horizontal ellipses within the shaded regions of Fig. 1B) and one
to control links between the two domains (vertical ellipses). This double column
(shaded ellipse in Fig. 1B) is called a node. Feature columns represent, with their
activity, the local texture of the image or model, usually represented by units that
are excited by different local spatial frequencies and orientations of the image’s
gray-level distribution. Typical feature distributions as used on our simulations
are shown in Fig. 1A, where each row corresponds to one feature column, index
i, and each column to one feature type, index α.

The domains communicate through links, which connect feature columns by
as many fibers as there are feature types. In a link control column each unit
stands for one link entering the node and does three things. One, it compares
the activity distributions of the feature columns at the two ends of the link,
two, it tries to be consistent with activities of units controlling parallel links,
and three, by its activity it keeps open its link. The situation is shown in more
detail in Fig. 2. At the end of a ν-cycle, when only one control unit is left active,
all but one of the links into the node are switched off. This unit or link is
selected by a combination of two criteria. One is feature similarity, the other is a
topology constraint. The latter is to favor those link arrangements that connect
neighbors in one domain with neighbors in the other domain, and is implemented
by connections between control units in neighboring nodes (symbolized at the
extreme right of Fig. 1B).

3 System Dynamics

The dynamics of the system is described by a set of coupled stochastic dif-
ferential equations. We first introduce some notation. Let L ∈ {I,M} and
L′ ∈ {I,M}\{L} be indices for the two domains, i.e., (L,L′) = (I,M) or
(M, I). Further, let pLi

α stand for the activity of the feature unit α in node i of
domain L. We assume α runs from 1 to k and i from 1 to N . Let us designate by
WLi,L′j the activity of the control unit with index j in node i of domain L (each
control column must contain as many control units as there are nodes in the
other domain, in order to control as many links). As introduced and discussed
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Fig. 1. A A collection of feature vectors (rows) with k = 20 entries. Model feature vec-
tors on the right-hand-side are iid and uniformly distributed in [0, 1]. The input feature
vectors on the lhs are noisy copies of the vectors on the rhs. B Network of columns for
correspondence finding. The network consists of an input domain and a model domain
with nodes I1 to I3 and M1 to M3, respectively. Each node consists of a feature
column with k = 4 minicolumns and of a control column with N = 3 minicolumns.
Each node in the input layer receives input from each node in the model layer, and
vice versa. The inputs to a node are modulated by its control column according to the
interconnectivity as displayed in Fig. 2. The control columns receive input from the
units of feature columns of both layers and from neighboring control columns.
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Fig. 2. Detailed connectivity of one node. On the input side three feature columns
I1, I2 and I3 are shown, which by their activity distribution represent three input
feature vectors. On the model side, one node Mi consisting of feature and control
column is shown. For one control unit, WMi,Ij , the connection details are indicated
by bold lines. On its input side, the unit evaluates the similarity of feature vectors
in terms of their scalar product (multiplicative interactions indicated by arrowheads
touching connecting fibers) and with its output gates the incoming link it stands for.
Connectivity with neighboring control columns is not shown. Small circles represent
neurons which by their inhibition subtract the mean of incoming feature vectors.

in [7], the dynamics of the feature columns is then described by

d

dt
pLi

α = f(pLi
α , ν max

β=1,...,k
{pLi

β }) + κELi
α , (1)

where ELi
α is input to the unit, controlled in its strength by parameter κ, and

where

f(p, h) = a p (p − h − p2) + σηt (2)

is a control function in the form of a polynomial of third degree, including the
Gaussian noise term σηt with variance σ2. The inhibition is determined by the
most active unit in the column, modulated by the inhibitory coefficient ν, which,



as stated above, is controlled cyclically:

ν(t) =

{

0 if t̃ < Tinit

(νmax − νmin)
t̃−Tinit

T−Tinit
+ νmin if t̃ ≥ Tinit

, (3)

where t̃ = t mod T , which is t − nT , with n the greatest integer satisfying
t − nT ≥ 0.

To specify the input ELi
α in (1) we first have to define a few quantities. The

feature input to feature unit α in node Li is designated as
J̃ Li

α = J Li
α − 1

k

∑k

β=1 J
Li
β , where the mean is subtracted from the raw fea-

ture inputs. The momentary coupling strength from node j in domain L′ to
node i in domain L is set equal to the mean-free activity of the control unit of
that link, W̃Li,L′j = WLi,L′j − 1

N

∑N

l=1 WLi,L′l. We then define the input into
feature unit pLαi in (1) as

ELi
α = CE J̃ Li

α + (1 − CE)

N∑

j=1

k∑

β=1

W̃Li,L′j R
Li,L′j
αβ p

L
′j

β , (4)

where the parameter CE ∈ [0, 1] controls the relative strength of the two sources

of input. The matrix R
Li,L′j
αβ defines feature-preserving interconnections between

feature columns in the two domains: R
Li,L′j
αβ = δαβ − 1

k
. Here finally are the

dynamic equations of the control units:

d

dt
WLi,L′j = f(WLi,L′j , ν max

l=1,...,N
{WLi,L′l}) + κ ILi,L′j , (5)

ILi,L′j = CI

k∑

α,β=1

pLi
α R

Li,L′j
αβ p

L
′j

β +

topology term
︷ ︸︸ ︷

(1 − CI)

N∑

a,b=1

T
Li,L′j
ab W̃La,L′b, (6)

where CI ∈ [0, 1] controls the relative influence of the two terms in (6). The first
term evaluates feature similarity. It resembles a scalar product with Euclidean
metric between the activity vectors p

Li and p
L

′j (other choices of RLi,L′j would
correspond to other metrics). However, the situation is somewhat more compli-
cated, as the activities of feature units do reflect feature values more in terms of
the timing of their switching off in the course of the ν-cycle (later for stronger
values) than by their firing strength at any moment.

The topology term in (6) implements link-to-link interactions. With vanish-
ing topology term, CI = 1, dynamics (1) to (6) would converge to a one-to-one
connectivity that connected the most similar feature vectors in the model and
input domains. Unfortunately it turns out that if there are non-trivial differences
between model and image of the same object many nodes find their most similar
feature vector in non-corresponding points of the other domain [8]. To remedy
this problem, system dynamics should favor link arrangements that preserve



neighborhood relationships. Accordingly, we structure the intra-layer connec-

tions (TLi,L′j
ab ) such that parallel links excite each other:

T
Li,L′j
ab =

L∑

c,d=−L

Ac,d δa,i+c δb,i+d − 1
N

,

(Ac,d) =
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(7)

Here, all empty entries are meant to be zero. To understand the interactions
of control columns consider the simpler limiting case Ac,d = δc,d − δc,0δd,0 and

N = ∞. If we inserted the resulting (TLi,L′j
ab ) into (6), the topology term would

take the form (1−CI)
∑L

c=−L

c 6=0

W̃L(i+c),L′(j+c) , and only exactly parallel links in

the range [−L, +L] would excite each other. We use instead (7) in the following
because we want links to excite each other also if they are only approximately

parallel. For the two-dimensional case, (TLi,L′j
ab ) will have to be generalized ap-

propriately.

4 Simulations

For numerical simulations of the differential equations we use the Euler method
with time steps ∆t = 1

100ms. As domains we use chains of N = 30 nodes and
cyclic boundary conditions, so that the last and the first nodes of the one-
dimensional chain are neighbors. We choose the parameters κ = 1.0 ms−1 and
σno. = 0.01 ms−1. The parameter a of the function f in (5) is chosen as in [9],
a = 200 ms−1. The system is operated with oscillating inhibition coefficient ν,
cf. (3), with period length T = 25 ms, Tinit = 2 ms, νmin = 0.4 and νmax = 0.52
(a value slightly above the critical value νc = 0.5, see [7]).

The influence of the topology term in (6) is best studied by setting CI to zero,
which lets the system ignore feature similarities and consider only the topology
interactions within each layer. This results in decoupling the feature column
dynamics, (1) and (4), from that of the link control columns, (5) and (6), which
therefore can be simulated in isolation. A typical time course of the minicolumn
activities (WLi,L′j) during a ν-cycle is shown in Fig. 3. As can be seen, the
system converges to a shifted diagonal connectivity matrix (WLi,L′j), i.e., to
a neighborhood-preserving one-to-one connectivity pattern. To which diagonal
the system converges is decided by spontaneous symmetry breaking induced by
noise when ν approaches a critical value.

If we choose an intermediate value for CI , link dynamics is influenced by both
neighborhood relationships and feature similarities. Both influences are essential
to find the right correspondences and their relative strengths can be chosen using
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Fig. 3. Time course of network activities (WLi,L′j) during a ν-cycle for CI = 0. In a
ν-cycle, ν increases from 0.4 to 0.52 in about 25ms. In the beginning all minicolumns
(WLi,L′j) of all columns are equally active (light grey). A For 0.45 < ν ≤ 0.47 mini-

columns start to be deactivated. B Because of the special choice of (TLi,L′j

ab
), diagonally

arranged minicolumns are exciting each other and survive the increasing inhibition
longer. Note that diagonals in (WLi,L′j) correspond to neighborhood-preserving con-
nectivity patterns between input and model domain. C Finally just one minicolumn
per control column survives and the connectivity matrix (WLi,L′j) is a shifted diagonal.

CI . We simulate dynamics (1) to (7) with CE = 0.6, so that feature columns
are slightly more sensitive to their own feature vector than to input from the
other layer, and with CI = 0.5, giving equal weight to feature similarities and
neighborhood relationships in the control of links. As input and model we use
feature vectors (J Ii) and (J Mi) as given in Fig. 1A. The input feature vectors
are noisy versions of the model feature vectors5. In Fig. 4 the result of a sim-
ulation with these feature vectors and parameters is shown for one ν-cycle. As
can be observed, the dynamics converges to a symmetric one-to-one connectiv-
ity pattern between input and model layer. For visualization purposes we have
chosen input feature vectors that were not translated w.r.t. the model feature
vectors. For translated input feature vectors (J ′Ii) = (J I(i+const)) (respecting
the cyclic boundary conditions) the system converges the corresponding shifted
diagonal. For input generated as above the system reliably finds the right cor-
respondences for noise levels up to about σ = 0.6 which shows a remarkably
high noise tolerance. For k > 20 results improve and for k < 20 the error rate

5 We use N = 30 model and N = 30 feature vectors, each with k = 20 entries.
Correspondingly, the numbers of nodes per layer is N and the number of minicolumns
per feature column is k. The model feature vectors consist of randomly ordered
copies of 10 different feature vectors whose entries contain equally, identically, and
independently distributed random values between zero and one. An input feature
vector (J Ii) is generated from the model vector by adding Gaussian white noise with
σ = 0.6 to the values (J Mi). Subsequently, the set of all values (J Ii) is rescaled
such that all feature vector entries lie in the interval [0, 1] again. The resulting
image (J Ii) has on average smaller component deviations from the mean, due to
the rescaling after adding noise.
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Fig. 4. Time course of the dynamical variables of the system displayed in Fig. 1B if
feature vectors Fig. 1A are used. During a ν-cycle, ν increases from 0.4 to 0.52 in about
25ms. In the beginning of the ν-cycle all minicolumns are active (high gray values) and
start deactivating at about ν = 0.45 (see A). Note that the feature columns start
first to deactivate their minicolumns because the input they get from their feature
vectors is patterned. Feature vectors on the model side have inputs of higher variance
and deactivate their minicolumns earlier. B-C Minicolumns of the control columns are
deactivated according to similarities in feature columns and activities of other control
columns. D Finally, control minicolumns remain active that correspond to diagonals
in (W Ii,Mj) and (WMi,Ij). The system has found the right correspondences as a
neighborhood preserving mapping between similar features.



increases. Note in this context that in our technical applications feature vectors
typically have k ≥ 40 entries [2, 3] and that cortical columns in primary sensory
areas are estimated to contain about k = 80 minicolumns [10].

On the basis of feature similarities alone, CI = 1, a system with otherwise the
same parameters and noise level σ = 0.6 converges to one-to-one connectivities
which are not neighborhood preserving and in which 80 − 90% of the surviving
links connect non-corresponding points.

5 Conclusion

Finding homomorphic, that is, structure-preserving, mappings between neural
fields —the correspondence problem— is a capability of fundamental importance
for the brain, not only for the visual system (stereo matching, motion field ex-
traction) or perceptual systems in general (invariant pattern recognition), but
more fundamentally for the application of abstract schemas to concrete situa-
tions and analogical thinking, and thus for intelligence on all levels. By its very
nature, correspondence requires for its establishment and expression neural im-
plementation media for the formulation of structural relationships and for the
expression of dynamic links.

Both roles are played in our system by control columns, whose implementa-
tion turned out to be possible with fairly standard neurons. Our model describes
minicolumn activity by abstract continuous variables, but as shown in previous
work [9] this is capturing the essential properties of a more direct modeling of a
system of spiking neurons [11]. Our model makes essential use of sigma-pi neu-
rons, requiring sums of products of signals, cf. the second term in (4) and the
first term in (6). Both cases involve control neurons, on the input side in one
case, the output side in the other.

The activity of control columns and of feature columns is described here by
the same type of stochastic differential equation (equations 1 and 5), but feature
neurons and control neurons are probably of a different nature, the two types of
columns playing very different roles. Control columns evaluate the similarity of
local structure expressed by feature columns (this similarity being defined by the
R-matrices in equations 4 and 6) and define, by interactions with each other, the
homomorphy aspect of the correspondence (topology term). Feature columns, on
the other hand, express local structure and are able to transmit it over distance.
The handling of feature columns as integrated entity in the evaluation of similar-
ities makes it possible to represent whole feature spaces, instead of single sample
points in such spaces, as are represented by the combination-coding neurons that
are conventionally used to represent higher features.

Our system solves several problems with previous models. One of them is
the evaluation of feature similarities, which was a problem for [1], [6] and [5].
Another is excessive time requirement in [5]. As we demonstrate here, neural
correspondence finding is possible in time-scales well below 100 ms because of
the use of population rates. In fact, our simulations show that convergence to
the right correspondences is possible within a critical period of a single ν-cycle of



a few tens of ms (25 ms for our simulations) which would correspond to gamma
range oscillations. During the critical phase (see Fig. 4) neurons typically spike
only few times (<10) as discussed in [11]. In the limit of short period lengths
with still reliable convergences (≈10 ms) neurons have time to spike only 1 to 2
times in this period.

There are some challenges ahead of us. A full visual object recognition sys-
tem will need a two-dimensional version and a model domain with many dozens
of thousands of models. This threatens to require excessive numbers of control
units. However, by using the maplet idea [1] and intermediate layers between
the image domain and the model domain [6] this dragon could likely be tamed.
Another, more formidable challenge concerns the ontogenetic development of the
highly specific network structures involved in our model.
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