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Abstract

We study unsupervised learning in a probabilistic genezatiodel for occlusion.
The model uses two types of latent variables: one indicat@shaobjects are
present in the image, and the other how they are ordered ith.ddhis depth
order then determines how the positions and appearancés objects present,
specified in the model parameters, combine to form the imégeshow that the
object parameters can be learnt from an unlabelled set afémi which objects
occlude one another. Exact maximum-likelihood learnirigtimctable. However,
we show that tractable approximations to Expectation M&ation (EM) can
be found if the training images each contain only a small remdf objects on
average. In numerical experiments it is shown that theseoappations recover
the correct set of object parameters. Experiments on a wvevsion of the bars
test using colored bars, and experiments on more realiati&, how that the
algorithm performs well in extracting the generating caudexperiments based
on the standard bars benchmark test for object learning shairthe algorithm
performs well in comparison to other recent component etitra approaches.
The model and the learning algorithm thus connect researdedusion with the
research field of multiple-causes component extractiomaouksst

1 Introduction

A long-standing goal of unsupervised learning on images igetable to learn the shape and form of
objects from unlabelled scenes. Individual images uswalhtain only a small subset of all possible
objects. This observation has motivated the constructi@agorithms—such as sparse coding (SC;
[1]) or non-negative matrix factorization (NMF; [2]) andg isparse variants—based on learning in
latent-variable models, where each possible object, drgban object, is associated with a variable
controlling its presence or absence in a given image. Aniyiiddal “hidden cause” is rarely active,
corresponding to the small number of objects present in argyimage. Despite this plausible
motivation, these algorithms make severe approximatiéteshaps the most crucial is that in the
underlying latent variable models, objects or parts tHer@mmbinelinearly to form the image. In
real images the combination of individual objects depemdheir relative distance from the camera
or eye. If two objects occupy the same region in planar sgheaearer one occludes the other, i.e.,
the hidden causes non-linearly compete to determine thed yakues in the region of overlap.

In this paper we extend multiple-causes models such as S@/6rtN handle occlusion. The idea
of using many hidden “cause” variables to control the presesr absence of objects is retained,
but these variables are augmented by another set of latéables which determine the relative



depth of the objects, much as in the z-buffer employed by egergraphics. In turn, this enables
the simplistic linear combination rule to be replaced by on@hich nearby objects occlude those
that are more distant. One of the consequences of movingitherrmore complex model is that
inference and learning become correspondingly harder.ddtie main contributions of this paper
is to show how to overcome these difficulties.

The problem of occlusion has been addressed in differenéxtsi3, 4, 5, 6]. Prominent probabilis-
tic approaches [3, 4] assign pixels in multiple images tgkem the same scene to a fixed number
of image layers. The approach is most frequently applieditoraatically remove foreground and
background objects. Those models are in many aspects moeeagi¢han the approach discussed
here. However, they model, in contrast to our approach, igatehich objects maintain a fixed
position in depth relative to the other objects.

2 A Generative Model for Occlusion

The occlusion model contains three important elements fifdtes a set of variables which controls
the presence or absence of objects in a particular imagegént will be analogous, e.g., to NMF).
The second is a variable which controls the relative depittiseoobjects that are present. The third
is the combination rule which describes how closer actijeaib occlude more distant ones.

To model the presence or absence of an object weub@ary hidden variables, ..., sg. We
assume that the presence of one object is independent ofekenee of the others and assume, for
simplicity, equal probabilities for objects to be present:

p(8|7) = HhH:1 Bernoulli(sp;m) = HhH:1 wsh (1 — m)t=sn, @)

Objects in a real image can be ordered by their depth and hissardering which determines
which of two overlapping objects occludes the other. Thetldepdering is captured in the model
by randomly and uniformly choosing a memigeof the setG(|s]) which contains all permutation
functionss : {1,...,[5]} — {1,...,]5]}, with [5] = ", s5. More formally, the probability ofr
givens'is defined by:

p(&]%) = with &€ G(3). @

Note that we could have defined the order in depth indepelydeig, by choosing fronG (H ) with
p(o) = % But then, because the depth of absent objegts=( 0) is irrelevant, no more thajs]!
distinct choices of would have resulted in different images.

A sk Featue vk Feure g OIS permlicion Figure 1: A lllustration of how two
.] _ 5 . Gr—(o) object masks and features combine to
generate an image (generation without
\ Image / noise).B Graphical model of the gener-
ation process with hidden permutation
(¥) image variables.

The final stage of the generative model describes how to peothe image given a selection of
active causes and an ordering in relative depth of thesesa@ne approach would be to choose the
closest object and to set the image equal to the featurenassociated with this object. However,
this would mean that every image generated from the modeldrmamprise just one object; the
closest. What is missing from this description is a notionhaf éxtent of an object and the fact
that it might only contribute to a local selection of pixefsan image. For this reason, our model
contains two sets of parameters. One set of paraméiérs, R %P, describes what contribution
an object makes to each pixéD (s the number of pixels). The vecto;,1, ..., Wyp) is therefore
described as thmaskof objecth. If an object is highly localized, this vector will contairamy zero
elements. The other set of parament@rs; R7 <, represent the features of the objects. A feature
vectorT, € RC describing object might, for instance, be the object’s rgb-coldr & 3 in that
case). Fig. 1A illustrates the combination of masks andufeat and Fig. 1B shows the graphical
model of the generation process.

Let us formalize how an image is generated given the parasf@te- (1, T') and given the hidden
variablesS = (s, ). Before we consider observation noise, we define the geoeratta noiseless



image7 (S, ©) to be given by:

- N 0 if Sp = 0
Ta S,0) = Wh,od Tho i

(5,0) (S, h) = 3 if sp=1and[s]=1 (3)
where h, = argmax, {7(S,h) Wpa} ‘}‘(g’ﬁf +1 otherwise

In (3) the order in depth is represented by the mappinghose specific form will facilitate later
algebraic steps. To illustrate the combination rule (3) #y mappingr consider Fig. 1A and
Fig. 2. Let us assume that the mask valliég; are zero or one (although we will later also allow
for continuous values). As depicted in Fig. 1A an objeatith s, = 1 occupies all image pixels
with W},; = 1 and does not occupy pixels witl',; = 0. For all pixels withiV;,4, = 1 the vector
T, sets the pixels’ values to a specific feature, e.g., to a Spexlor. The functionr maps all
causesh with s, = 0 to zero while all other causes are mapped to values withiintieeval [1, 2|
(see Fig. 2)r assigns a proximity value(S, h) > 0 to each present object. For a given pidehe

hisn A (S, h) h isn B 7(S,h) hisn ¢ +(s,ny  Figure 2: Visualization of
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combination rule (3) simply states that of all objects with,; = 1, the most proximal is used to set
the pixel property. Given the latent variables and the riesseimage? (S, ©), we take the observed

variablesY” = (i1, ...,yp) to be drawn independently from a Gaussian distribution ¢iié the
usual choice for component extraction systems):
p(Y'15,0) = Tl (| Ta(S,0)), p(i|?) = N(Fi0%1). @)

Equations (1) to (4) represent a generative model for omoius

3 Maximum Likelihood

One approach to learning the parameters: (W, T') of this model from datd’ = {Y(”)}nzle
is to use Maximum Likelihood learning, that is,

0" = argmaxg{L(©)} with £(©) = log (p(Y",....Y™)|@)). (5)
However, as there is usually a large number of objects thapogentially be present in the train-
ing images, and as the likelihood involves summing over athlsinations of objects and associ-
ated orderings, the computation of (5) is typically intedate. Moreover, even if it were tractably
computable, optimization of the likelihood is made probddimby an analytical intractability aris-
ing from the fact that the occlusion non-linearity is nofffetientiable. The following section de-
scribes how to side-step the computational intractabiliyin the standard Expectation Maximi-
sation (EM) formalism for maximum likelihood learning, ngia truncated expansion of sums for
the sufficient statistics. Furthermore, as the M-Step of Eluires gradients to be computed, the
section also describes how to side-step the analyticalgtebility by an approximate version of the
model’s non-linearity.

To find the parametei®@* at least approximately, we use the variational EM formalisrg., [7]) and
introduce the free-energy functigh(©, ¢) which is a function of® and an unknown distribution
q(SW, ..., S over the hidden variablesF (0, q) is a lower bound of the likelihood(©).
Approximations introduced later on can be interpreted amsimg specific functions, although
(for brevity) we will not make this relation explicit. In thodel described above, in which each
image is drawn independently and identicadigs ), ..., S™)) =[] ¢,(S™, ©’) which is taken
to be parameterized ’. The free-energy can thus be written as:

FO = 3|3 als.0) [los (v 15,0) + 1o (51 0)] | + 7). 0
n=1 S

3



where the functiond (¢) = — > > ¢ qn(S,0")log(g.(S,0")) (the Shannon entropy) is inde-
pendent of0. Note that) ¢ in (6) sums over all possible states®f= (5,5), i.e., over all binary
vectors and all associated permutations in depth. Thigisdlirce of the computational intractabil-
ity. In the EM schemeF(©, ¢) is maximized alternately with respect to the distributignin the
E-step (while the parameter®, are kept fixed) and with respect to parametérsjn the M-step
(while ¢ is kept fixed). It can be shown that an EM iteration increakeslikelihood or leaves it
unchanged. In practical applications EM is found to inceetlie likelihood to likelihood maxima,
although these can be local.

M-Step. The M-Step of EM, in which the free-energ¥, is optimized with respect to the parame-
ters, is canonically derived by taking derivativesfofvith respect to the parameters. Unfortunately,
this standard procedure is not directly applicable becafisee non-linear nature of occlusion as
reflected by the combination rule (3). However, it is possiiol approximate the combination rule
by the differentiable function,

pd(S @) — Zi] ( (S h) th)p thTh
’ S (7(8, 1) Wia)?

Note that forp — oo the functionZ” (S, ©) is equal to the combination rule in (3J.4(S, ©) is
differentiable w.r.t. the paramete¥s,; and7 (c € {1,...,C}) and it applies for large:

(@)

mig TS0 = AUSWIT, L AW = G
ar=17a(S,0) = AL(S, W) Wiqée., Aia(S,W) = lim. AP (S, W),

wheree, is a unit vector in feature space with entryat positionc and zero elsewhere (the ap-
proximations on the left-hand-side above become equalitep — o). We can now compute
approximations to the derivatives (O, ¢). For large values of the following holds:

E)V?/Z_dﬁf(@,q) ~ i{; 4 (S5,0") (81?/“17 a(S, e))Tf’(g*")j"Pd(S,e))}, )
0 Fe.q ~ ZN: [Z (S e’)i( O Fos, @))Tf(gw T74(S @))} (10)
ore” | & ore’ ’ ’ ’

7 =(n) 1 0 —(n) | — =(n e
where f(5"),f) := - log (p(y( )It)) = —o (g™ - 1)

Setting the derivatives (9) and (10) to zero and insertingagqgns (8) yields the following necessary
conditions for a maximum of the free energy that hold in thatlp — oo:

S (Aa(S. W), T g3 ZZ Aia(S, W), Wig G
Wiqg = —= — ., T, = . 11
! > (Aia(S, W), T T ZZ Aia(S, W), (Wig)? ()

Note that equations (11) are not straight-forward updalesruHowever, we can use them in the
fixed-point sense and approximate the parameters whictaappethe right-hand-side of the equa-
tions using the values from the previous iteration.

1

Equations (11), together with the exact postegigiS, ©') = p(S | 7™, ©’), represent a maximum-
likelihood based learning algorithm for the generative gidd) to (4). Note, however, that due to
the multiplication of the Welghts and the mask,,; 7, in (3), thereiis degeneracy in the parameters:

givenh the combmauoan remains unchanged for the operat[b“m — aTh andWyy — Wha/a
with o £ 0. To remove the degeneracy we set after each iteration:

Wnew Wha /Wh, ff;ew = Wh fh ,WhereWh = Z Wha with 7 = {d | Wiq > 0.5}. (12)
deT

For reasons that will briefly be discussed later, the us& piinstead of, e.gW;*®* = maxq{ W4}
is advantageous for some data, although for many other tfestali’;"** works equally well.



E-Step. The crucial entities that have to be computed for updatetemsa(11) are the sufficient
statistics(A;q(S, W)),, . i.e., the expectation of the functiof;,(S, W) in (8) over the distribution
of hidden states'. In order to derive a computationally tractable learnirgpathm the expectation
(Aia(S, W), is re-written and approximated as follows,

S (S, Y [0') Al S, W) > p(S, Y 0) Aia(S, W)
S.(171<x)
(Ai(S W), = -2 . ~ _ . (13)
’ " S p(S, Y™ e R CALICD
g 5,(151<x)

That is, in order to approximate (13), the problematic sumthé numerator and denominator have
been truncated. We only sum over stat@gth less or equal non-zero entries. Approximation (13)
replaces the intractable exact E-step by one whose congnabtost scales only polynomially with
H (roughly cubically fory = 3). As for other approximate EM approaches, there is no gteean
that this approximation will always result in an increasehaf data likelihood. For data points that
were generated by a small number of causes on average weovaydr, expect the approximation
to match an exact E-step with increasing accuracy the clesgget to the optimum. For reasons
highlighted earlier, such data will be typical in image mitidg. A truncation approach similar to
(13) has successfully been used in the context of the maxiewdes generative model in [8]. Also
in the case of occlusion we will later see that in numericglegiments using approximation (13)
the true generating causes are indeed recovered.

4 Experiments

In order to evaluate the algorithm it has been applied tdicei data, where its performance can
be compared to ground truth, and to more realistic visual.datall the experiments we use image
pixels as input variableg,;. The entries of the observed variabjgsare set by the pixels’ rgb-color
vector,ij; € [0,1]3. In all trials of all experiments the initial values of the skaparameter#/;,; and
the feature parametefy were independently and uniformly drawn from the interfgall|.

Learning and annealing. The free-energy landscape traversed by EM algorithms enafiulti-
modal. Therefore EM algorithms can converge to local optiribwever, this problem can be
alleviated using deterministic annealing as describe®,ii(]. For the model under consideration
here annealing amounts to the substitutiens: 7°, (1 — 7) — (1 — 7)%, and(1/02) — (8/0?),
with § = 1/T in the E-step equations. During learning, the ‘temperapaeametef]’ is decreased
from an initial valueZ ™ to 1. To update the parameteiis and7’ we applied the M-step equations
(11). For the sufficient statistics4;q(S, W)), we used approximation (13) witd,(S, W) in
(8) instead ofA4,,(S, W) and withx = 3 if not stated otherwise. The parametewas increased
during learning withp = ﬁ (with a maximum ofp = 20 to avoid numerical instabilities). In all

experiments we uset)0 EM iterations and decreasédlinearly except forl0 initial iterations at

T = T'it and20 final iterations afl’ = 1. In addition to annealing, a small amount of independent
and identically distributed Gaussian noise (standardadievi0.01) was added to the masks and the
features}V;,q andTy, to help escape local optima. This parameter noise wasrljndecreased to
zero during the las0 iterations of each trial.

The colored bars test. The component extraction capabilities of the model wertetessing the
colored bars test. This test is a generalization of the idalsbars test [11] which has become a
popular benchmark task for non-linear component extractio the standard bars test with = 8
bars the input data are 16-dimensional vectors, represpati x 4 grid of pixels, i.e.,.D = 16.
The single bars appear at the 4 vertical and 4 horizontatiposi For the colored bars test, the bars

have colorsf,%e“ which are independently and uniformly drawn from the rghecaube [0, 1]°.
Once chosen, they remain fixed for the generation of the ddtaFor each image a bar appears
independently with a probability = % which results in two bars per image on average (the standard
value in the literature). For the bars active in an imagen&irey in depth is randomly and uniformly
chosen from the permutation group. The color of each pixdeigrmined by the least distant bar
and is black if the pixel is occupied by no ba¥. = 500 images were generated for learning and
Fig. 3A shows a random selection o8 examples. The learning algorithms were applied to the
colored bars test witlif = 8 hidden units and> = 16 input units. The observation noise was set
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Figure 3: Application to the colored bars test.Selection ofl3 of the N = 500 data points used
for learning. B Changes of the parametdiis and7" for the algorithm withH = 8 hidden units.
Each row shows$?” andT for the specified EM iterationC Feature vectors at the iterationsBn
displayed as points in color space (for visualization wedike 2-D hue and saturation plane of the
HSV color space). Crosses are the real generating valuas bircles the current model valués,
and grey circles those of the previous iterations.

to o = 0.05 and learning was initialized witd it = %D. The inferred approximate maximum-
likelihood parameters converged to values close to thergéng parameters id4 of 50 trials. In

6 trials the algorithm representédof the 8 causes. Its success rate,reliability, is thus88%.
Fig. 3B shows the time-course of a typical trial during léagn As can be observed, the mask value
W and the feature valuek converged to values close to the generating ones. For ddisadded
Gaussian pixel noiser¢*=0=0.05) the algorithms converges to values representing all cainse
48 of 50 trials (96% reliability). A higher average number of caupes input reduced reliability.
A maximum of three causes (on average) were used for thelessskars test. This is considered
a difficult task in the standard bars test. With otherwisestime parameters our algorithm had a
reliability of 26% (50 trials) on this data. Performancersed limited by the difficulty of the data
rather than by the limitations of the used approximation.cdéd not increase the reliability of the
algorithm when we increased the accuracy of (13) by seftirg 4 (instead ofy = 3). Reliability
seemed much more affected by changes to parameters forliagn@ad parameter noise, i.e., by
changes to those parameters that affect the additionalanehs to avoid local optima.

The standard bars test.Instead of choosing the bar colors randomly as above, theglsa be set

to specific values. In particular, if all bar colors are whife= (1,1,1)T, the classical version of the
bars test is recovered. Note that the learning algorithmdeaapplied to this standard form without
modification. When the generating parameters were as abige tars, probability of a bar to be
presentZ, N = 500), all bars were successfully extracteddid of 50 trials (84% reliability). For

a bars test with ten bard) = 5 x 5, a probability 01‘1—2O for each bar to be present, and = 500
data points, the algorithm with model parameters as abavaatzd all bars in3 of 50 trials (86%
reliability; mean number of extracted bars 9.5). Religpfior this test increased when we increased
the number of training images. Fof = 1000 instead oH00 reliability increased to 94% (50 trials;
mean number of extracted bars 9.9). The bars test with tenidarobably the one most frequently
found in the literature. Linear and non-linear componetitaetion approaches are compared, e.g.,
in [12, 8] and usually achieve lower reliability values ththe presented algorithm. Classical ICA
and PCA algorithms investigated in [13] never succeededctiraeting all bars. Relatively recent
approaches can achieve reliability values higher #t8i but often only by introducing additional
constraints (compare R-MCA [8], or constrained forms of NNI&]).

More realistic input. One possible criticism of the bars tests above is that the d@r relatively
simple objects. The purpose of this section is, therefaraleimonstrate the performance of the
algorithm when images contain more complicated objectedobjects were taken from the COIL-
100 dataset [15] with relatively uniform color distributigobjects 2, 4, 47, 78, 94, 97; all with zero
degree rotation). The images were scaled dowibte 15 pixels and randomly placed on a black
background image df5 x 25 pixels. Downscaling introduced blurred object edges angntoove
this effect dark pixels were set to black. The training insgere generated with each object being
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Figure 4: Application to images of cluttered objeds.Selection ofl4 of the N = 500 data points.
B Parameter change displayed as in FigC3Thange of feature vectors displayed as in Fig. 3.

present with probabilityg— and at a random deptlv = 500 such images were generated. Example
image$ are given in Fig. 4A. We applied the learning algorithm with= 6, an initial temperature
for annealing of["»it = iD, and parameters as above otherwise. Fig.4B shows the gevefd

of parameter values during learning. As can be observedntsk values converged to represent
the different objects, and the feature vectors convergedltes representing the mean object color.
Note that the model is not matched to the dataset as eacht tlgjg@ fixed distribution of color
values which is a poor match to a Gaussian distribution witorstant color mean. The model
reacted by assigning part of the real color distributionh® imask values which are responsible
for the 3-dimensional appearance of the masks (see FigNiBg that the normalization (12) was
motivated by this observation because it can better t@drith mask value variances. We rah
trials using different sets aV = 500 images generated as above. 4thof the trials (84%) the
algorithm converged to values representing all six objegsther with appropriate values for their
mean colors. In seven trials the algorithm converged to @ loptima (average number of extracted
objects wa$.8). In 50 trials with 8 objects (we added objects and77 of the COIL-100 database)
an algorithm with same parameters lilit= 8 extracted all objects id0 of the trials (reliability
80%, average number of extracted objec®.

5 Discussion

We have studied learning in the generative model of ocalugld to (4). Parameters can be op-
timized given a collection ofV images in which different sets of causes are present atreliffe
positions in depth. As briefly discussed earlier, the pnobtd occlusion has been addressed by
other system before. E.g., the approach in [3, 4] uses a fixgthar of layers, so callesprites to
model an order in depth. The approach assigns, to each pdlabilities that it has been generated
by a specific sprite. Typically, the algorithms are appliedata which consist of images that have a
small number of foreground objects (usually one or two) otaticsor slowly changing background.
Typical applications of the approach are figure-ground isgjmam and the automatic removal of the
background or foreground objects. The approach usingesgstin many aspects more general than
the model presented in this paper. It includes, for instaveméable estimation for illumination and,
importantly, addresses the problem of invariance by modeadbject transformations. Regarding the
modelling of object arrangements, our approach is, howenere general. The additional hidden
variable used for object arrangements allows our model tpipdied to images of cluttered scenes.
The approach in [3, 4] assumes a fixed object arrangementf essumes that each object has the
same depth position in all training images. Our approachetbee addresses an aspect of visual
data that is complementary to the aspects modeled in [3, d§iel$ that combine the advantages of

INote that this appears much easier for a human observer becauke barfsalso make use of object
knowlege, e.g., of thgestaltlaw of proximity. The difficulty of the data would become obvious if all pixels in
each image of the data set were permuted by a fixed permutation map.



both approaches thus promise interesting advancemegtstavards systems that can learn from
video data in which objects change their positions in depth.

Another interesting aspect of the model presented in thik vedts close connection to component
extraction methods. Algorithms such as SC, NMF or maximasea analysis (MCA; [8]) use super-
positions of elementary components to explain the data.d@ASC have prominently been applied
to explain neural response properties, and NMF is a poppfaoach to learn components for visual
object recognition [e.g. 14, 16]. Our model follows thesdtiple-causes methods by assuming the
data to consist of independently generated componentsstitiguishes itself, however, by the way
in which these components are assumed to combine. ICA, SE, &tld many other models assume
linear superposition, MCA usesmaax-function instead of the sum, and other systems use noisy-or
combinations. In the class of multiple-causes approachesnodel is the first to generalize the
combination rule to one that models occlusion explicithhisTrequired an additional variable for
depth and the introduction of two sets of parameters: mast$emtures. Note that in the context of
multiple-causes models, masks have recently been inteatincconjunction with ICA [17] in order
to model local contrast correlation in image patches. Fomoadel, the combination of masks and
vectorial feature parameters allow for applications to engeneral sets of data than those used for
classical component extraction. In numerical experimam$ave used color images for instance.
However, we can apply our algorithm also to grey-level datdhsas used for other algorithms. This
allows for a direct quantitative comparison of the novelalidpm with state-of-the-art component
extraction approaches. The reported results for the stdrmas test show the competitiveness of
our approach despite its larger set of parameters [compaye,12, 8]. A limitation of the training
method used is its assumption of relatively sparsely atiidgden causes. This limitation is to some
extent shared, e.g., with SC or sparse versions of NMF. Exeeits with highery values in (13)
indicate, however, that the performance of the algorithmoisso much limited by the accuracy of
the E-step, but rather by the more challenging likelihooditecape for less sparse data.

For applications to visual data, color is the most strafghivard feature to model. Possible alterna-
tives are, however, Gabor feature vectors which model obgatures (see, e.g., [18] and references
therein), SWIFT features [19], or vectors using combinatiohcolor and texture [e.g. 6]. Depend-
ing on the choice of feature vectors and the application donitamight be necessary to generalize
the model. Itis, for instance, straight-forward to intreadunore complex feature vectors. Although
one feature, e.g. one color, per cause can represent alsurtaliel for many applications, it can for
other applications also make sense to use multiple feakans per cause. In the extreme case as

many feature vectors as pixels could be used,die Th,q. The derivation of update rules for such

features would proceed along the same lines as the dengditio single feature),. Furthermore,
individual prior parameters for the frequency of objectegmances could be introduced. Such pa-
rameters could be trained with an approach similar to theifi@]. Additional parameters could
also be introduced to model different prior probabilitiesdifferent arrangements in depth. An easy
alteration would be, for instance, to always map one spduididen unit to the most distant position
in depth in order to model a background. Finally, the mosriggting, but also most challenging
generalization direction would be the inclusion of invada principles. In its current form the
model has, in common with state-of-the-art component etitna algorithms, the assumption that
the component locations are fixed. Especially for images@ats, changes in planar component
positions have to be addressed in general. Possible apm®#tat have been used in the literature
can, for instance, be found in [3, 4] in the context of ocausinodeling, in [20] in the context of
NMF, and in [18] in the context of object recognition. Potehfuture application domains for our
approach would, however, also include data sets for whichpoment positions are fixed. E.g., in
many benchmark databases for face recognition, faces @@&dglin a normalized position. For
component extraction, faces can be regarded as combisaifanbackground faces ‘occluded’ by
mouth, nose, and eye textures which can themselves be edchydbeards, sunglasses, or hats.

In summary, the studied occlusion model advances genenatddeling approaches to visual data
by explicitly modeling object arrangements in depth. Thprapch complements established ap-
proaches of occlusion modeling in the literature by geindrg standard approaches to multiple-
causes component extraction.
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