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Abstract

We study unsupervised learning in a probabilistic generative model for occlusion.
The model uses two types of latent variables: one indicates which objects are
present in the image, and the other how they are ordered in depth. This depth
order then determines how the positions and appearances of the objects present,
specified in the model parameters, combine to form the image.We show that the
object parameters can be learnt from an unlabelled set of images in which objects
occlude one another. Exact maximum-likelihood learning isintractable. However,
we show that tractable approximations to Expectation Maximization (EM) can
be found if the training images each contain only a small number of objects on
average. In numerical experiments it is shown that these approximations recover
the correct set of object parameters. Experiments on a novelversion of the bars
test using colored bars, and experiments on more realistic data, show that the
algorithm performs well in extracting the generating causes. Experiments based
on the standard bars benchmark test for object learning showthat the algorithm
performs well in comparison to other recent component extraction approaches.
The model and the learning algorithm thus connect research on occlusion with the
research field of multiple-causes component extraction methods.

1 Introduction

Advances in Neural Information Processing Systems 22, p. 1069–1077, 2009

A long-standing goal of unsupervised learning on images is to be able to learn the shape and form of
objects from unlabelled scenes. Individual images usuallycontain only a small subset of all possible
objects. This observation has motivated the construction of algorithms—such as sparse coding (SC;
[1]) or non-negative matrix factorization (NMF; [2]) and its sparse variants—based on learning in
latent-variable models, where each possible object, or part of an object, is associated with a variable
controlling its presence or absence in a given image. Any individual “hidden cause” is rarely active,
corresponding to the small number of objects present in any one image. Despite this plausible
motivation, these algorithms make severe approximations.Perhaps the most crucial is that in the
underlying latent variable models, objects or parts thereof, combinelinearly to form the image. In
real images the combination of individual objects depends on their relative distance from the camera
or eye. If two objects occupy the same region in planar space,the nearer one occludes the other, i.e.,
the hidden causes non-linearly compete to determine the pixel values in the region of overlap.

In this paper we extend multiple-causes models such as SC or NMF to handle occlusion. The idea
of using many hidden “cause” variables to control the presence or absence of objects is retained,
but these variables are augmented by another set of latent variables which determine the relative
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depth of the objects, much as in the z-buffer employed by computer graphics. In turn, this enables
the simplistic linear combination rule to be replaced by onein which nearby objects occlude those
that are more distant. One of the consequences of moving to a richer, more complex model is that
inference and learning become correspondingly harder. Oneof the main contributions of this paper
is to show how to overcome these difficulties.

The problem of occlusion has been addressed in different contexts [3, 4, 5, 6]. Prominent probabilis-
tic approaches [3, 4] assign pixels in multiple images takenfrom the same scene to a fixed number
of image layers. The approach is most frequently applied to automatically remove foreground and
background objects. Those models are in many aspects more general than the approach discussed
here. However, they model, in contrast to our approach, datain which objects maintain a fixed
position in depth relative to the other objects.

2 A Generative Model for Occlusion

The occlusion model contains three important elements. Thefirst is a set of variables which controls
the presence or absence of objects in a particular image (this part will be analogous, e.g., to NMF).
The second is a variable which controls the relative depths of the objects that are present. The third
is the combination rule which describes how closer active objects occlude more distant ones.

To model the presence or absence of an object we useH binary hidden variabless1, . . . , sH . We
assume that the presence of one object is independent of the presence of the others and assume, for
simplicity, equal probabilitiesπ for objects to be present:

p(~s |π) =
∏H

h=1 Bernoulli(sh;π) =
∏H

h=1 πsh (1 − π)1−sh . (1)

Objects in a real image can be ordered by their depth and it is this ordering which determines
which of two overlapping objects occludes the other. The depth-ordering is captured in the model
by randomly and uniformly choosing a memberσ̂ of the setG(|~s|) which contains all permutation
functionsσ̂ : {1, . . . , |~s|} → {1, . . . , |~s|}, with |~s| =

∑

h sh. More formally, the probability of̂σ
given~s is defined by:

p(σ̂ |~s) = 1
|~s|! with σ̂ ∈ G(|~s|) . (2)

Note that we could have defined the order in depth independently of ~s, by choosing fromG(H) with
p(σ̂) = 1

H! . But then, because the depth of absent objects (sh = 0) is irrelevant, no more than|~s|!
distinct choices of̂σ would have resulted in different images.

   

  

object
permutation

image

objects
BA Figure 1: A Illustration of how two

object masks and features combine to
generate an image (generation without
noise).B Graphical model of the gener-
ation process with hidden permutation
variableσ̂.

The final stage of the generative model describes how to produce the image given a selection of
active causes and an ordering in relative depth of these causes. One approach would be to choose the
closest object and to set the image equal to the feature vector associated with this object. However,
this would mean that every image generated from the model would comprise just one object; the
closest. What is missing from this description is a notion of the extent of an object and the fact
that it might only contribute to a local selection of pixels in an image. For this reason, our model
contains two sets of parameters. One set of parameters,W ∈ RH×D, describes what contribution
an object makes to each pixel (D is the number of pixels). The vector(Wh1, . . . ,WhD) is therefore
described as themaskof objecth. If an object is highly localized, this vector will contain many zero
elements. The other set of paramenters,T ∈ RH×C , represent the features of the objects. A feature
vector ~Th ∈ RC describing objecth might, for instance, be the object’s rgb-color (C = 3 in that
case). Fig. 1A illustrates the combination of masks and features, and Fig. 1B shows the graphical
model of the generation process.

Let us formalize how an image is generated given the parametersΘ = (W,T ) and given the hidden
variablesS = (~s, σ̂). Before we consider observation noise, we define the generation of a noiseless
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image~T (S,Θ) to be given by:

~T d(S,Θ) = Whod
~Tho

where ho = argmaxh{τ(S, h)Whd} ,
τ(S, h) =











0 if sh = 0
3
2 if sh = 1 and|~s| = 1
σ̂(h)−1
|~s|−1 + 1 otherwise

(3)

In (3) the order in depth is represented by the mappingτ whose specific form will facilitate later
algebraic steps. To illustrate the combination rule (3) andthe mappingτ consider Fig. 1A and
Fig. 2. Let us assume that the mask valuesWhd are zero or one (although we will later also allow
for continuous values). As depicted in Fig. 1A an objecth with sh = 1 occupies all image pixels
with Whd = 1 and does not occupy pixels withWhd = 0. For all pixels withWhd = 1 the vector
~Th sets the pixels’ values to a specific feature, e.g., to a specific color. The functionτ maps all
causesh with sh = 0 to zero while all other causes are mapped to values within theinterval [1, 2]
(see Fig. 2).τ assigns a proximity valueτ(S, h) > 0 to each present object. For a given pixeld the

A B C
shh

τ(S, h)

τ

shh
τ(S, h)

τ

shh
τ(S, h)

τ

Figure 2: Visualization of
the mappingτ . A and B
show the two possible map-
pings for two causes, and
C shows one possible map-
ping for four causes.

combination rule (3) simply states that of all objects withWhd = 1, the most proximal is used to set
the pixel property. Given the latent variables and the noiseless image~T (S,Θ), we take the observed
variablesY = (~y1, . . . , ~yD) to be drawn independently from a Gaussian distribution (which is the
usual choice for component extraction systems):

p(Y |S,Θ) =
∏D

d=1 p(~yd | ~T d(S,Θ)), p(~y |~t) = N (~y;~t, σ21) . (4)

Equations (1) to (4) represent a generative model for occlusion.

3 Maximum Likelihood

One approach to learning the parametersΘ = (W,T ) of this model from dataY = {Y (n)}n=1,...,N

is to use Maximum Likelihood learning, that is,

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(

p(Y (1), . . . , Y (N) |Θ)
)

. (5)

However, as there is usually a large number of objects that can potentially be present in the train-
ing images, and as the likelihood involves summing over all combinations of objects and associ-
ated orderings, the computation of (5) is typically intractable. Moreover, even if it were tractably
computable, optimization of the likelihood is made problematic by an analytical intractability aris-
ing from the fact that the occlusion non-linearity is non-differentiable. The following section de-
scribes how to side-step the computational intractabilitywithin the standard Expectation Maximi-
sation (EM) formalism for maximum likelihood learning, using a truncated expansion of sums for
the sufficient statistics. Furthermore, as the M-Step of EM requires gradients to be computed, the
section also describes how to side-step the analytical intractability by an approximate version of the
model’s non-linearity.

To find the parametersΘ∗ at least approximately, we use the variational EM formalism(e.g., [7]) and
introduce the free-energy functionF(Θ, q) which is a function ofΘ and an unknown distribution
q(S(1), . . . , S(N)) over the hidden variables.F(Θ, q) is a lower bound of the likelihoodL(Θ).
Approximations introduced later on can be interpreted as choosing specific functionsq, although
(for brevity) we will not make this relation explicit. In themodel described above, in which each
image is drawn independently and identically,q(S(1), . . . , S(N)) =

∏

n qn(S(n),Θ′) which is taken
to be parameterized byΘ′. The free-energy can thus be written as:

F(Θ, q) =

N
∑

n=1

[

∑

S

qn(S ,Θ′)
[

log
(

p(Y (n) |S,Θ)
)

+ log
(

p(S |Θ)
)

]

]

+ H(q) , (6)
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where the functionH(q) = −
∑

n

∑

S qn(S ,Θ′) log(qn(S ,Θ′)) (the Shannon entropy) is inde-
pendent ofΘ. Note that

∑

S in (6) sums over all possible states ofS = (~s, σ̂), i.e., over all binary
vectors and all associated permutations in depth. This is the source of the computational intractabil-
ity. In the EM schemeF(Θ, q) is maximized alternately with respect to the distribution,q, in the
E-step (while the parameters,Θ, are kept fixed) and with respect to parameters,Θ, in the M-step
(while q is kept fixed). It can be shown that an EM iteration increases the likelihood or leaves it
unchanged. In practical applications EM is found to increase the likelihood to likelihood maxima,
although these can be local.

M-Step. The M-Step of EM, in which the free-energy,F , is optimized with respect to the parame-
ters, is canonically derived by taking derivatives ofF with respect to the parameters. Unfortunately,
this standard procedure is not directly applicable becauseof the non-linear nature of occlusion as
reflected by the combination rule (3). However, it is possible to approximate the combination rule
by the differentiable function,

~T ρ
d(S,Θ) :=

∑H
h=1(τ(S, h)Whd)

ρ Whd
~Th

∑H
h=1(τ(S, h)Whd)ρ

. (7)

Note that forρ → ∞ the function~T ρ
d(S,Θ) is equal to the combination rule in (3).~T ρ

d(S,Θ) is
differentiable w.r.t. the parametersWhd andT c

h (c ∈ {1, . . . , C}) and it applies for largeρ:

∂
∂Wid

~T ρ
d(S,Θ) ≈ Aρ

id(S,W ) ~Ti,

∂
∂T c

i

~T ρ
d(S,Θ) ≈ Aρ

id(S,W )Wid ~ec,
with

Aρ
id(S,W ) := (τ(S,i) Wid)ρ

P

H
h=1

(τ(S,h) Whd)ρ
,

Aid(S,W ) := lim
ρ→∞

Aρ
id(S,W ) ,

(8)

where~ec is a unit vector in feature space with entry1 at positionc and zero elsewhere (the ap-
proximations on the left-hand-side above become equalities for ρ → ∞). We can now compute
approximations to the derivatives ofF(Θ, q). For large values ofρ the following holds:

∂

∂Wid

F(Θ, q) ≈
N

∑

n=1

[

∑

S

qn(S ,Θ′)

(

∂

∂Wid

~T ρ
d(S,Θ)

)T

~f
(

~y (n), ~T ρ
d(S,Θ)

)

]

, (9)

∂

∂T c
i

F(Θ, q) ≈
N

∑

n=1

[

∑

S

qn(S ,Θ′)

D
∑

d=1

(

∂

∂T c
i

~T ρ
d(S,Θ)

)T

~f
(

~y (n), ~T ρ
d(S,Θ)

)

]

, (10)

where ~f(~y (n),~t ) :=
∂

∂~t
log

(

p(~y (n) |~t )
)

= −σ−2 (~y (n) − ~t ).

Setting the derivatives (9) and (10) to zero and inserting equations (8) yields the following necessary
conditions for a maximum of the free energy that hold in the limit ρ → ∞:

Wid =

∑

n

〈Aid(S,W )〉qn

~TT
i ~y

(n)
d

∑

n

〈Aid(S,W )〉qn

~TT
i

~Ti

, ~Ti =

∑

n

∑

d

〈Aid(S,W )〉qn
Wid ~y

(n)
d

∑

n

∑

d

〈Aid(S,W )〉qn
(Wid)

2
. (11)

Note that equations (11) are not straight-forward update rules. However, we can use them in the
fixed-point sense and approximate the parameters which appear on the right-hand-side of the equa-
tions using the values from the previous iteration.

Equations (11), together with the exact posteriorqn(S,Θ′) = p(S | ~y (n),Θ′), represent a maximum-
likelihood based learning algorithm for the generative model (1) to (4). Note, however, that due to
the multiplication of the weights and the mask,Whd

~Th in (3), there is degeneracy in the parameters:
givenh the combination~Td remains unchanged for the operation~Th → α~Th andWhd → Whd/α
with α 6= 0. To remove the degeneracy we set after each iteration:

W new
hd = Whd /Wh , ~T new

h = Wh
~Th , whereWh =

∑

d∈I

Whd with I = {d |Wid > 0.5}. (12)

For reasons that will briefly be discussed later, the use ofWh instead of, e.g.,Wmax
h = maxd{Whd}

is advantageous for some data, although for many other typesof dataWmax
h works equally well.
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E-Step. The crucial entities that have to be computed for update equations (11) are the sufficient
statistics〈Aid(S,W )〉qn

, i.e., the expectation of the functionAid(S,W ) in (8) over the distribution
of hidden statesS. In order to derive a computationally tractable learning algorithm the expectation
〈Aid(S,W )〉qn

is re-written and approximated as follows,

〈Aid(S,W )〉qn
=

∑

S

p(S, Y (n) |Θ′)Aid(S,W )

∑

S̃

p(S̃, Y (n) |Θ′)
≈

∑

S,(|~s|≤χ)

p(S, Y (n) |Θ′)Aid(S,W )

∑

S̃,(|~̃s|≤χ)

p(S̃, Y (n) |Θ′)
. (13)

That is, in order to approximate (13), the problematic sums in the numerator and denominator have
been truncated. We only sum over states~s with less or equalχ non-zero entries. Approximation (13)
replaces the intractable exact E-step by one whose computational cost scales only polynomially with
H (roughly cubically forχ = 3). As for other approximate EM approaches, there is no guarantee
that this approximation will always result in an increase ofthe data likelihood. For data points that
were generated by a small number of causes on average we can, however, expect the approximation
to match an exact E-step with increasing accuracy the closerwe get to the optimum. For reasons
highlighted earlier, such data will be typical in image modelling. A truncation approach similar to
(13) has successfully been used in the context of the maximalcauses generative model in [8]. Also
in the case of occlusion we will later see that in numerical experiments using approximation (13)
the true generating causes are indeed recovered.

4 Experiments

In order to evaluate the algorithm it has been applied to artificial data, where its performance can
be compared to ground truth, and to more realistic visual data. In all the experiments we use image
pixels as input variables~yd. The entries of the observed variables~yd are set by the pixels’ rgb-color
vector,~yd ∈ [0, 1]3. In all trials of all experiments the initial values of the mask parametersWhd and
the feature parametersT c

h were independently and uniformly drawn from the interval[0, 1].

Learning and annealing. The free-energy landscape traversed by EM algorithms is often multi-
modal. Therefore EM algorithms can converge to local optima. However, this problem can be
alleviated using deterministic annealing as described in [9, 10]. For the model under consideration
here annealing amounts to the substitutionsπ → πβ , (1 − π) → (1 − π)β , and(1/σ2) → (β/σ2),
with β = 1/T̂ in the E-step equations. During learning, the ‘temperature’ parameterT̂ is decreased
from an initial valueT̂ init to 1. To update the parametersW andT we applied the M-step equations
(11). For the sufficient statistics〈Aid(S,W )〉qn

we used approximation (13) withAρ
id(S,W ) in

(8) instead ofAid(S,W ) and withχ = 3 if not stated otherwise. The parameterρ was increased
during learning withρ = 1

1−β
(with a maximum ofρ = 20 to avoid numerical instabilities). In all

experiments we used100 EM iterations and decreased̂T linearly except for10 initial iterations at
T̂ = T̂ init and20 final iterations at̂T = 1. In addition to annealing, a small amount of independent
and identically distributed Gaussian noise (standard deviation0.01) was added to the masks and the
features,Whd andT c

d , to help escape local optima. This parameter noise was linearly decreased to
zero during the last20 iterations of each trial.

The colored bars test.The component extraction capabilities of the model were tested using the
colored bars test. This test is a generalization of the classical bars test [11] which has become a
popular benchmark task for non-linear component extraction. In the standard bars test withH = 8
bars the input data are 16-dimensional vectors, representing a4 × 4 grid of pixels, i.e.,D = 16.
The single bars appear at the 4 vertical and 4 horizontal positions. For the colored bars test, the bars
have colors~T gen

h which are independently and uniformly drawn from the rgb-color-cube [0, 1]3.
Once chosen, they remain fixed for the generation of the data set. For each image a bar appears
independently with a probabilityπ = 2

8 which results in two bars per image on average (the standard
value in the literature). For the bars active in an image, a ranking in depth is randomly and uniformly
chosen from the permutation group. The color of each pixel isdetermined by the least distant bar
and is black if the pixel is occupied by no bar.N = 500 images were generated for learning and
Fig. 3A shows a random selection of13 examples. The learning algorithms were applied to the
colored bars test withH = 8 hidden units andD = 16 input units. The observation noise was set
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Figure 3: Application to the colored bars test.A Selection of13 of theN = 500 data points used
for learning. B Changes of the parametersW andT for the algorithm withH = 8 hidden units.
Each row showsW andT for the specified EM iteration.C Feature vectors at the iterations inB
displayed as points in color space (for visualization we used the 2-D hue and saturation plane of the
HSV color space). Crosses are the real generating values, black circles the current model values~Th,
and grey circles those of the previous iterations.

to σ = 0.05 and learning was initialized witĥT init = 1
2D. The inferred approximate maximum-

likelihood parameters converged to values close to the generating parameters in44 of 50 trials. In
6 trials the algorithm represented7 of the 8 causes. Its success rate, orreliability, is thus88%.
Fig. 3B shows the time-course of a typical trial during learning. As can be observed, the mask value
W and the feature valuesT converged to values close to the generating ones. For data with added
Gaussian pixel noise (σgen=σ=0.05) the algorithms converges to values representing all causes in
48 of 50 trials (96% reliability). A higher average number of causesper input reduced reliability.
A maximum of three causes (on average) were used for the noiseless bars test. This is considered
a difficult task in the standard bars test. With otherwise thesame parameters our algorithm had a
reliability of 26% (50 trials) on this data. Performance seemed limited by the difficulty of the data
rather than by the limitations of the used approximation. Wecould not increase the reliability of the
algorithm when we increased the accuracy of (13) by settingχ = 4 (instead ofχ = 3). Reliability
seemed much more affected by changes to parameters for annealing and parameter noise, i.e., by
changes to those parameters that affect the additional mechanisms to avoid local optima.

The standard bars test.Instead of choosing the bar colors randomly as above, they can also be set
to specific values. In particular, if all bar colors are white, ~T = (1, 1, 1)T , the classical version of the
bars test is recovered. Note that the learning algorithms can be applied to this standard form without
modification. When the generating parameters were as above (eight bars, probability of a bar to be
present28 , N = 500), all bars were successfully extracted in42 of 50 trials (84% reliability). For
a bars test with ten bars,D = 5 × 5, a probability of 2

10 for each bar to be present, andN = 500
data points, the algorithm with model parameters as above extracted all bars in43 of 50 trials (86%
reliability; mean number of extracted bars 9.5). Reliability for this test increased when we increased
the number of training images. ForN = 1000 instead of500 reliability increased to 94% (50 trials;
mean number of extracted bars 9.9). The bars test with ten bars is probably the one most frequently
found in the literature. Linear and non-linear component extraction approaches are compared, e.g.,
in [12, 8] and usually achieve lower reliability values thanthe presented algorithm. Classical ICA
and PCA algorithms investigated in [13] never succeeded in extracting all bars. Relatively recent
approaches can achieve reliability values higher than90% but often only by introducing additional
constraints (compare R-MCA [8], or constrained forms of NMF[14]).

More realistic input. One possible criticism of the bars tests above is that the bars are relatively
simple objects. The purpose of this section is, therefore, to demonstrate the performance of the
algorithm when images contain more complicated objects. Sized objects were taken from the COIL-
100 dataset [15] with relatively uniform color distribution (objects 2, 4, 47, 78, 94, 97; all with zero
degree rotation). The images were scaled down to15 × 15 pixels and randomly placed on a black
background image of25 × 25 pixels. Downscaling introduced blurred object edges and toremove
this effect dark pixels were set to black. The training images were generated with each object being
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Figure 4: Application to images of cluttered objects.A Selection of14 of theN = 500 data points.
B Parameter change displayed as in Fig. 3.C Change of feature vectors displayed as in Fig. 3.

present with probability26 and at a random depth.N = 500 such images were generated. Example
images1 are given in Fig. 4A. We applied the learning algorithm withH = 6, an initial temperature
for annealing ofT̂ init = 1

4D, and parameters as above otherwise. Fig. 4B shows the development
of parameter values during learning. As can be observed, themask values converged to represent
the different objects, and the feature vectors converged tovalues representing the mean object color.
Note that the model is not matched to the dataset as each object has a fixed distribution of color
values which is a poor match to a Gaussian distribution with aconstant color mean. The model
reacted by assigning part of the real color distribution to the mask values which are responsible
for the 3-dimensional appearance of the masks (see Fig. 4B).Note that the normalization (12) was
motivated by this observation because it can better tolerate high mask value variances. We ran50
trials using different sets ofN = 500 images generated as above. In42 of the trials (84%) the
algorithm converged to values representing all six objectstogether with appropriate values for their
mean colors. In seven trials the algorithm converged to a local optima (average number of extracted
objects was5.8). In 50 trials with8 objects (we added objects36 and77 of the COIL-100 database)
an algorithm with same parameters butH = 8 extracted all objects in40 of the trials (reliability
80%, average number of extracted objects7.7).

5 Discussion

We have studied learning in the generative model of occlusion (1) to (4). Parameters can be op-
timized given a collection ofN images in which different sets of causes are present at different
positions in depth. As briefly discussed earlier, the problem of occlusion has been addressed by
other system before. E.g., the approach in [3, 4] uses a fixed number of layers, so calledsprites, to
model an order in depth. The approach assigns, to each pixel,probabilities that it has been generated
by a specific sprite. Typically, the algorithms are applied to data which consist of images that have a
small number of foreground objects (usually one or two) on a static or slowly changing background.
Typical applications of the approach are figure-ground separation and the automatic removal of the
background or foreground objects. The approach using sprites is in many aspects more general than
the model presented in this paper. It includes, for instance, variable estimation for illumination and,
importantly, addresses the problem of invariance by modeling object transformations. Regarding the
modelling of object arrangements, our approach is, however, more general. The additional hidden
variable used for object arrangements allows our model to beapplied to images of cluttered scenes.
The approach in [3, 4] assumes a fixed object arrangement, i.e., it assumes that each object has the
same depth position in all training images. Our approach therefore addresses an aspect of visual
data that is complementary to the aspects modeled in [3, 4]. Models that combine the advantages of

1Note that this appears much easier for a human observer because he/she can also make use of object
knowlege, e.g., of thegestaltlaw of proximity. The difficulty of the data would become obvious if all pixels in
each image of the data set were permuted by a fixed permutation map.
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both approaches thus promise interesting advancements, e.g., towards systems that can learn from
video data in which objects change their positions in depth.

Another interesting aspect of the model presented in this work is its close connection to component
extraction methods. Algorithms such as SC, NMF or maximal causes analysis (MCA; [8]) use super-
positions of elementary components to explain the data. ICAand SC have prominently been applied
to explain neural response properties, and NMF is a popular approach to learn components for visual
object recognition [e.g. 14, 16]. Our model follows these multiple-causes methods by assuming the
data to consist of independently generated components. It distinguishes itself, however, by the way
in which these components are assumed to combine. ICA, SC, NMF and many other models assume
linear superposition, MCA uses amax-function instead of the sum, and other systems use noisy-or
combinations. In the class of multiple-causes approaches our model is the first to generalize the
combination rule to one that models occlusion explicitly. This required an additional variable for
depth and the introduction of two sets of parameters: masks and features. Note that in the context of
multiple-causes models, masks have recently been introduced in conjunction with ICA [17] in order
to model local contrast correlation in image patches. For our model, the combination of masks and
vectorial feature parameters allow for applications to more general sets of data than those used for
classical component extraction. In numerical experimentswe have used color images for instance.
However, we can apply our algorithm also to grey-level data such as used for other algorithms. This
allows for a direct quantitative comparison of the novel algorithm with state-of-the-art component
extraction approaches. The reported results for the standard bars test show the competitiveness of
our approach despite its larger set of parameters [compare,e.g., 12, 8]. A limitation of the training
method used is its assumption of relatively sparsely activehidden causes. This limitation is to some
extent shared, e.g., with SC or sparse versions of NMF. Experiments with higherχ values in (13)
indicate, however, that the performance of the algorithm isnot so much limited by the accuracy of
the E-step, but rather by the more challenging likelihood landscape for less sparse data.

For applications to visual data, color is the most straight-forward feature to model. Possible alterna-
tives are, however, Gabor feature vectors which model object textures (see, e.g., [18] and references
therein), SWIFT features [19], or vectors using combinations of color and texture [e.g. 6]. Depend-
ing on the choice of feature vectors and the application domain, it might be necessary to generalize
the model. It is, for instance, straight-forward to introduce more complex feature vectors. Although
one feature, e.g. one color, per cause can represent a suitable model for many applications, it can for
other applications also make sense to use multiple feature vectors per cause. In the extreme case as
many feature vectors as pixels could be used, i.e.,~Th → ~Thd. The derivation of update rules for such
features would proceed along the same lines as the derivations for single features~Th. Furthermore,
individual prior parameters for the frequency of object appearances could be introduced. Such pa-
rameters could be trained with an approach similar to the onein [8]. Additional parameters could
also be introduced to model different prior probabilities for different arrangements in depth. An easy
alteration would be, for instance, to always map one specifichidden unit to the most distant position
in depth in order to model a background. Finally, the most interesting, but also most challenging
generalization direction would be the inclusion of invariance principles. In its current form the
model has, in common with state-of-the-art component extraction algorithms, the assumption that
the component locations are fixed. Especially for images of objects, changes in planar component
positions have to be addressed in general. Possible approaches that have been used in the literature
can, for instance, be found in [3, 4] in the context of occlusion modeling, in [20] in the context of
NMF, and in [18] in the context of object recognition. Potential future application domains for our
approach would, however, also include data sets for which component positions are fixed. E.g., in
many benchmark databases for face recognition, faces are already in a normalized position. For
component extraction, faces can be regarded as combinations of a background faces ‘occluded’ by
mouth, nose, and eye textures which can themselves be occluded by beards, sunglasses, or hats.

In summary, the studied occlusion model advances generative modeling approaches to visual data
by explicitly modeling object arrangements in depth. The approach complements established ap-
proaches of occlusion modeling in the literature by generalizing standard approaches to multiple-
causes component extraction.
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