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Abstract

An increasing number of experimental studies indicate that perception encodes a
posterior probability distribution over possible causes of sensory stimuli, which
is used to act close to optimally in the environment. One outstanding difficulty
with this hypothesis is that the exact posterior will in general be too complex to
be represented directly, and thus neurons will have to represent an approximation
of this distribution. Two influential proposals of efficient posterior representation
by neural populations are: 1) neural activity represents samples of the underly-
ing distribution, or 2) they represent a parametric representation of a variational
approximation of the posterior. We show that these approaches can be combined
for an inference scheme that retains the advantages of both: it is able to represent
multiple modes and arbitrary correlations, a feature of sampling methods, and it
reduces the represented space to regions of high probability mass, a strength of
variational approximations. Neurally, the combined method can be interpreted as
a feed-forward preselection of the relevant state space, followed by a neural dy-
namics implementation of Markov Chain Monte Carlo (MCMC) to approximate
the posterior over the relevant states. We demonstrate the effectiveness and effi-
ciency of this approach on a sparse coding model. In numerical experiments on
artificial data and image patches, we compare the performance of the algorithms
to that of exact EM, variational state space selection alone, MCMC alone, and
the combined select and sample approach. The select and sample approach inte-
grates the advantages of the sampling and variational approximations, and forms
a robust, neurally plausible, and very efficient model of processing and learning
in cortical networks. For sparse coding we show applications easily exceeding a
thousand observed and a thousand hidden dimensions.

1 Introduction

According to the recently quite influential statistical approach to perception, our brain represents
not only the most likely interpretation of a stimulus, but also its corresponding uncertainty. In
other words, ideally the brain would represent the full posterior distribution over all possible in-
terpretations of the stimulus, which is statistically optimal for inference and learning [1, 2, 3] – a
hypothesis supported by an increasing number of psychophysical and electrophysiological results
[4, 5, 6, 7, 8, 9].
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Although it is generally accepted that humans indeed maintain a complex posterior representation,
one outstanding difficulty with this approach is that the full posterior distribution is in general very
complex, as it may be highly correlated (due to explaining away effects), multimodal (multiple
possible interpretations), and very high-dimensional. One approach to address this problem in neural
circuits is to let neuronal activity represent the parameters of a variational approximation of the real
posterior [10, 11]. Although this approach can approximate the full posterior, the number of neurons
explodes with the number of variables – for example, approximation via a Gaussian distribution
requires N2 parameters to represent the covariance matrix over N variables. Another approach
is to identify neurons with variables and interpret neural activity as samples from their posterior
[12, 13, 3]. This interpretation is consistent with a range of experimental observations, including
neural variability (which would result from the uncertainty in the posterior) and spontaneous activity
(corresponding to samples from the prior in the absence of a stimulus) [3, 9]. The advantage of
using sampling is that the number of neurons scales linearly with the number of variables, and
it can represent arbitrarily complex posterior distributons given enough samples. The latter part
is the issue: collecting a sufficient number of samples to form such a complex, high-dimensional
representation is quite time-costly. Modeling studies have shown that a small number of samples
are sufficient to perform well on low-dimensional tasks (intuitively, this is because taking a low-
dimensional marginal of the posterior accumulates samples over all dimensions) [14, 15]. However,
most sensory data is inherently very high-dimensional. As such, in order to faithfully represent
visual scenes containing potentially many objects and object parts, one requires a high-dimensional
latent space to represent the high number of potential causes, which returns to the problem sampling
approaches face in high dimensions.

The goal of the line of research pursued here is to address the following questions: 1) can we find
a sophisticated representation of the posterior for very high-dimensional hidden spaces? 2) as this
goal is believed to be shared by the brain, can we find a biologically plausible solution reaching it?
In this paper we propose a novel approach to approximate inference and learning that addresses the
drawbacks of sampling as a neural processing model, yet maintains its beneficial posterior repre-
sentation and neural plausibility. We show that sampling can be combined with a preselection of
candidate units. Such a selection connects sampling to the influential models of neural processing
that emphasize feed-forward processing ([16, 17] and many more), and is consistent with the popu-
lar view of neural processing and learning as an interplay between feed-forward and recurrent stages
of processing [18, 19, 20, 21, 12]. Our combined approach emerges naturally by interpreting feed-
forward selection and sampling as approximations to exact inference in a probabilistic framework
for perception.

2 A Select and Sample Approach to Approximate Inference
Inference and learning in neural circuits can be regarded as the task of inferring the true hidden
causes of a stimulus. An example is inferring the objects in a visual scene based on the image
projected on the retina. We will refer to the sensory stimulus (the image) as a data point, ~y =
(y1, . . . , yD), and we will refer to the hidden causes (the objects) as ~s = (s1, . . . , sH) with sh
denoting hidden variable or hidden unit h. The data distribution can then be modeled by a generative
data model: p(~y |Θ) =

∑
~s p(~y |~s,Θ) p(~s |Θ) with Θ denoting the parameters of the model1. If we

assume that the data distribution can be optimally modeled by the generative distribution for optimal
parameters Θ∗, then the posterior probability p(~s | ~y,Θ∗) represents optimal inference given a data
point ~y. The parameters Θ∗ given a set of N data points Y = {~y1, . . . , ~yN} are given by the
maximum likelihood parameters Θ∗ = argmaxΘ{p(Y |Θ)}.
A standard procedure to find the maximum likelihood solution is expectation maximization (EM).
EM iteratively optimizes a lower bound of the data likelihood by inferring the posterior distribution
over hidden variables given the current parameters (the E-step), and then adjusting the parameters to
maximize the likelihood of the data averaged over this posterior (the M-step). The M-step updates
typically depend only on a small number of expectation values of the posterior as given by

〈g(~s)〉p(~s | ~y (n),Θ) =
∑
~s p(~s | ~y (n),Θ) g(~s) , (1)

where g(~s) is usually an elementary function of the hidden variables (e.g., g(~s) = ~s or g(~s) = ~s~sT

in the case of standard sparse coding). For any non-trivial generative model, the computation of

1In the case of continuous variables the sum is replaced by an integral. For a hierarchical model, the prior
distribution p(~s |Θ) may be subdivided hierarchically into different sets of variables.
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expectation values (1) is the computationally demanding part of EM optimization. Their exact com-
putation is often intractable and many well-known algorithms (e.g., [22, 23]) rely on estimations.
The EM iterations can be associated with neural processing by the assumption that neural activ-
ity represents the posterior over hidden variables (E-step), and that synaptic plasticity implements
changes to model parameters (M-step). Here we will consider two prominent models of neural pro-
cessing on the ground of approximations to the expectation values (1) and show how they can be
combined.

Selection. Feed-forward processing has frequently been discussed as an important component of
neural processing [16, 24, 17, 25]. One perspective on this early component of neural activity is
as a preselection of candidate units or hypotheses for a given sensory stimulus ([18, 21, 26, 19]
and many more), with the goal of reducing the computational demand of an otherwise too complex
computation. In the context of probabilistic approaches, it has recently been shown that preselection
can be formulated as a variational approximation to exact inference [27]. The variational distribution
in this case is given by a truncated sum over possible hidden states:

p(~s | ~y (n),Θ) ≈ qn(~s; Θ) =
p(~s | ~y (n),Θ)∑

~s ′∈Kn

p(~s ′ | ~y (n),Θ)
δ(~s ∈ Kn) =

p(~s, ~y (n) |Θ)∑
~s ′∈Kn

p(~s ′, ~y (n) |Θ)
δ(~s ∈ Kn) (2)

where δ(~s ∈ Kn) = 1 if ~s ∈ Kn and zero otherwise. The subset Kn represents the preselected
latent states. Given a data point ~y (n), Eqn. 2 results in good approximations to the posterior if Kn
contains most posterior mass. Since for many applications the posterior mass is concentrated in
small volumes of the state space, the approximation quality can stay high even for relatively small
setsKn. This approximation can be used to compute efficiently the expectation values needed in the
M-step (1):

〈g(~s)〉p(~s | ~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) =

∑
~s∈Kn

p(~s, ~y (n) |Θ) g(~s)∑
~s ′∈Kn

p(~s ′, ~y (n) |Θ)
. (3)

Eqn. 3 represents a reduction in required computational resources as it involves only summations (or
integrations) over the smaller state spaceKn. The requirement is that the setKn needs to be selected
prior to the computation of expectation values, and the final improvement in efficiency relies on such
selections being efficiently computable. As such, a selection function Sh(~y,Θ) needs to be carefully
chosen in order to define Kn; Sh(~y,Θ) efficiently selects the candidate units sh that are most likely
to have contributed to a data point ~y (n). Kn can then be defined by:

Kn = {~s | for all h 6∈ I : sh = 0} , (4)

where I contains the H ′ indices h with the highest values of Sh(~y,Θ) (compare Fig. 1). For sparse
coding models, for instance, we can exploit that the posterior mass lies close to low dimensional
subspaces to define the sets Kn [27, 28], and appropriate Sh(~y,Θ), can be found by deriving ef-
ficiently computable upper-bounds for probabilities p(sh = 1 | ~y (n),Θ) [27, 28] or by derivations
based on taking limits for no data noise [27, 29]. For more complex models, see [27] (Sec. 5.3-4)
for a discussion of suitable selection functions. Often the precise form of Sh(~y,Θ) has limited in-
fluence on the final approximation accuracy because a) its values are not used for the approximation
(3) itself and b) the size of sets Kn can often be chosen generously to easily contain the regions with
large posterior mass. The larger Kn the less precise the selection has to be. For Kn equal to the
entire state space, no selection is required and the approximations (2) and (3) fall back to the case of
exact inference.

Sampling. An alternative way to approximate the expectation values in eq. 1 is by sampling from
the posterior distribution, and using the samples to compute the average:

〈g(~s)〉p(~s | ~y (n),Θ) ≈ 1
M

∑M
m=1 g(~s(m)) with ~s(m) ∼ p(~s | ~y,Θ). (5)

The challenging aspect of this approach is to efficiently draw samples from the posterior. In a
high-dimensional sample space, this is mostly done by Markov Chain Monte Carlo (MCMC). This
class of methods draws samples from the posterior distribution such that each subsequent sample is
drawn relative to the current state, and the resulting sequence of samples form a Markov chain. In
the limit of a large number of samples, Monte Carlo methods are theoretically able to represent any
probability distribution. However, the number of samples required in high-dimensional spaces can
be very large (Fig. 1A, sampling).
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Figure 1: A Simplified illustration of the posterior mass and the respective regions each approxi-
mation approach uses to compute the expectation values. B Graphical model showing each con-
nection Wdh between the observed variables ~y and hidden variables ~s, and how H ′ = 2 hidden
variables/units are selected to form a set Kn. C Graphical model resulting from the selection of
hidden variables and associated weights Wdh (black).

Select and Sample. Although preselection is a deterministic approach very different than the
stochastic nature of sampling, its formulation as approximation to expectation values (3) allows for
a straight-forward combination of both approaches: given a data point, ~y(n), we first approximate
the expectation value (3) using the variational distribution qn(~s; Θ) as defined by preselection (2).
Second, we approximate the expectations w.r.t. qn(~s; Θ) using sampling. The combined approach
is thus given by:

〈g(~s)〉p(~s | ~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) ≈ 1
M

∑M
m=1 g(~s(m)) with ~s(m) ∼ qn(~s; Θ), (6)

where ~s(m) denote samples from the truncated distribution qn. Instead of drawing from a distribution
over the entire state space, approximation (6) requires only samples from a potentially very small
subspace Kn (Fig. 1). In the subspace Kn, most of the original probability mass is concentrated in a
smaller volume, thus MCMC algorithms perform more efficiently, which results in a smaller space
to explore, shorter burn-in times, and a reduced number of required samples. Compared to selection
alone, the select and sample approach will represent an increase in efficiency as soon as the number
of samples required for a good approximation is less then the number of states in Kn.

3 Sparse Coding: An Example Application
We systematically investigate the computational efficiency, performance, and biological plausibility
of the select and sample approach in comparison with selection and sampling alone using a sparse
coding model of images. The choice of a sparse coding model has numerous advantages. First, it
is a non-trivial model that has been extremely well-studied in machine learning research, and for
which efficient algorithms exist (e.g., [23, 30]). Second, it has become a standard (albeit somewhat
simplistic) model of the organization of receptive fields in primary visual cortex [22, 31, 32]. Here
we consider a discrete variant of this model known as Binary Sparse Coding (BSC; [29, 27], also
compare [33]), which has binary hidden variables but otherwise the same features as standard sparse
coding versions. The generative model for BSC is expressed by

p(~s|π) =
∏H
h=1 π

sh
(
1− π

)1−sh , p(~y|~s,W, σ) = N (~y;W~s, σ21) , (7)

where W ∈ RD×H denotes the basis vectors and π parameterizes the sparsity (~s and ~y as above).
The M-step updates of the BSC learning algorithm (see e.g. [27]) are given by:

W new =
(∑N

n=1 ~y
(n) 〈~s 〉Tqn

) (∑N
n=1

〈
~s~sT

〉
qn

)−1
, (8)

(σ2)new = 1
ND

∑
n

〈 ∣∣∣∣~y(n) −W ~s
∣∣∣∣2 〉

qn
, πnew = 1

N

∑
n | < ~s >qn |, where |~x| = 1

H

∑
h xh. (9)

The only expectation values needed for the M-step are thus 〈~s〉qn and
〈
~s~sT

〉
qn

. We will compare
learning and inference between the following algorithms:
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BSCexact. An EM algorithm without approximations is obtained if we use the exact posterior for
the expectations: qn = p(~s | ~y (n),Θ). We will refer to this exact algorithm as BSCexact. Although
directly computable, the expectation values for BSCexact require sums over the entire state space,
i.e., over 2H terms. For large numbers of latent dimensions, BSCexact is thus intractable.

BSCselect. An algorithm that more efficiently scales with the number of hidden dimensions is
obtained by applying preselection. For the BSC model we use qn as given in (3) and Kn =
{~s | (for all h 6∈ I : sh = 0) or

∑
h sh = 1}. Note that in addition to states as in (4) we in-

clude all states with one non-zero unit (all singletons). Including them avoids EM iterations in the
initial phases of learning that leave some basis functions unmodified (see [27]). As selection func-
tion Sh(~y (n)) to define Kn we use:

Sh(~y (n)) = ( ~WT
h / || ~Wh||) ~y (n), with || ~Wh|| =

√∑D
d=1(Wdh)2 . (10)

A large value of Sh(~y (n)) strongly indicates that ~y (n) contains the basis function ~Wh as a component
(see Fig. 1C). Note that (10) can be related to a deterministic ICA-like selection of a hidden state
~s(n) in the limit case of no noise (compare [27]). Further restrictions of the state space are possible
but require modified M-step equations (see [27, 29]), which will not be considered here.

BSCsample. An alternative non-deterministic approach can be derived using Gibbs sampling. Gibbs
sampling is an MCMC algorithm which systematically explores the sample space by repeatedly
drawing samples from the conditional distributions of the individual hidden dimensions. In other
words, the transition probability from the current sample to a new candidate sample is given by
p(snew

h |~s current
\h ). In our case of a binary sample space, this equates to selecting one random axis

h ∈ {1, . . . ,H} and toggling its bit value (thereby changing the binary state in that dimension),
leaving the remaining axes unchanged. Specifically, the posterior probability computed for each
candidate sample is expressed by:

p(sh = 1 |~s\h, ~y) =
p(sh = 1, ~s\h, ~y)β

p(sh = 0, ~s\h, ~y)β + p(sh = 1, ~s\h, ~y)β
, (11)

where we have introduced a parameter β that allows for smoothing of the posterior distribution.
To ensure an appropriate mixing behavior of the MCMC chains over a wide range of σ (note that
σ is a model parameter that changes with learning), we define β = T

σ2 , where T is a temperature
parameter that is set manually and selected such that good mixing is achieved. The samples drawn
in this manner can then be used to approximate the expectation values in (8) to (9) using (5).

BSCs+s. The EM learning algorithm given by combining selection and sampling is obtained by
applying (6). First note that inserting the BSC generative model into (2) results in:

qn(~s; Θ) =
N (~y;W~s, σ21) BernoulliKn(~s;π)∑

~s ′∈Kn
N (~y;W~s ′, σ21) BernoulliKn

(~s ′;π)
δ(~s ∈ Kn) (12)

where BernoulliKn(~s;π) =
∏
h∈I π

sh (1 − π)1−sh . The remainder of the Bernoulli distribution
cancels out. If we define ~̃s to be the binary vector consisting of all entries of ~s of the selected
dimensions, and if W̃ ∈ RD×H′

contains all basis functions of those selected, we observe that the
distribution is equal to the posterior w.r.t. a BSC model with H ′ instead of H hidden dimensions:

p(~̃s | ~y,Θ) =
N (~y; W̃~̃s, σ21H′) Bernoulli(~̃s;π)∑
~̃s ′ N (~y; W̃~̃s ′, σ21H′) Bernoulli(~̃s ′;π)

Instead of drawing samples from qn(~s; Θ) we can thus draw samples from the exact posterior w.r.t.
the BSC generative model with H ′ dimensions. The sampling procedure for BSCsamplecan thus
be applied simply by ignoring the non-selected dimensions and their associated parameters. For
different data points, different latent dimensions will be selected such that averaging over data points
can update all model parameters. For selection we again use Sh(~y,Θ) (10), defining Kn as in (4),
where I now contains the H ′–2 indices h with the highest values of Sh(~y,Θ) and two randomly
selected dimensions (drawn from a uniform distribution over all non-selected dimensions). The
two randomly selected dimensions fulfill the same purpose as the inclusion of singleton states for
BSCselect. Preselection and Gibbs sampling on the selected dimensions define an approximation to
the required expectation values (3) and result in an EM algorithm referred to as BSCs+s.
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Complexity. Collecting the number of operations necessary to compute the expectation values for
all four BSC cases, we arrive at

O
(
NS( D︸︷︷︸

p(~s,~y)

+ 1︸︷︷︸
〈~s〉

+ H︸︷︷︸
〈~s~sT 〉

)
)

(13)

where S denotes the number of hidden states that contribute to the calculation of the expectation
values. For the approaches with preselection (BSCselect, BSCs+s), all the calculations of the expec-
tation values can be performed on the reduced latent space; therefore the H is replaced by H ′. For
BSCexactthis number scales exponentially in H: Sexact = 2H , and in in the BSCselectcase, it scales
exponentially in the number of preselected hidden variables: Sselect = 2H

′
. However, for the sam-

pling based approaches (BSCsampleand BSCs+s), the number S directly corresponds to the number
of samples to be evaluated and is obtained empirically. As we will show later, Ss+s = 200×H ′ is
a reasonable choice for the interval of H ′ that we investigate in this paper (1 ≤ H ′ ≤ 40).

4 Numerical Experiments
We compare the select and sample approach with selection and sampling applied individually on
different data sets: artifical images and natural image patches. For all experiments using the two
sampling approaches, we draw 20 independent chains that are initialized at random states in order to
increase the mixing of the samples. Also, of the samples drawn per chain, 1

3 were used to as burn-in
samples, and 2

3 were retained samples.

Artificial data. Our first set of experiments investigate the select and sample approach’s conver-
gence properties on artificial data sets where ground truth is available. As the following experiments
were run on a small scale problem, we can compute the exact data likelihood for each EM step in all
four algorithms (BSCexact, BSCselect, BSCsampleand BSCs+s) to compare convergence on ground
truth likelihood.

A B

C

1 50EM step

L
(Θ

) BSCexact BSCselect BSCsample BSCs+s

1 50EM step 1 50EM step 1 50EM step

Figure 2: Experiments using artificial bars data with H = 12, D = 6× 6. Dotted line indicates the
ground truth log-likelihood value. A Random selection of the N = 2000 training data points ~y (n).
B Learned basis functions Wdh after a successful training run. C Development of the log-likelihood
over a period of 50 EM steps for all 4 investigated algorithms.

Data for these experiments consisted of images generated by creating H = 12 basis functions ~W gt
h

in the form of horizontal and vertical bars on a D = 6× 6 = 36 pixel grid. Each bar was randomly
assigned to be either positive (W gt

dh ∈ {0.0, 10.0}) or negative (W gt
h′d ∈ {−10.0, 0.0}). N = 2000

data points ~y (n) were generated by linearly combining these basis functions (see e.g., [34]). Using
a sparseness value of πgt = 2

H resulted in, on average, two active bars per data point. According to
the model, we added Gaussian noise (σgt = 2.0) to the data (Fig. 2A).

We applied all algorithms to the same dataset and monitored the exact likelihood over a period of 50
EM steps (Fig. 2C). Although the calculation of the exact likelihood requiresO(N2H(D+H)) op-
erations, this is feasible for such a small scale problem. For models using preselection (BSCselectand
BSCs+s), we set H ′ to 6, effectively halving the number of hidden variables participating in the
calculation of the expectation values. For BSCsampleand BSCs+swe drew 200 samples from the
posterior p(~s | ~y (n)) of each data point, as such the number of states evaluated totaled Ssample =
200 × H = 2400 and Ss+s = 200 × H ′ = 1200, respectively. To ensure an appropriate mixing
behavior annealing temperature was set to T = 50. In each experiment the basis functions were
initialized at the data mean plus Gaussian noise, the prior probability to πinit = 1

H and the data
noise to the variance of the data. All algorithms recover the correct set of bases functions in > 50%
of the trials, and the sparseness prior π and the data noise σ with high accuracy. Comparing the
computational costs of algorithms shows the benefits of preselection already for this small scale
problem: while BSCexactevaluates the expectation values using the full set of 2H = 4096 hidden

6
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states, BSCselectonly considers 2H
′
+ (H −H ′) = 70 states. The pure sampling based approaches

performs 2400 evaluations while BSCs+srequires 1200 evaluations.

Image patches. We test the select and sample approach on natural image data at a more challeng-
ing scale, to include biological plausibility in the demonstration of its applicability to larger scale
problems. We extracted N = 40, 000 patches of size D = 26 × 26 = 676 pixels from the van
Hateren image database [31] 2, and preprocessed them using a Difference of Gaussians (DoG) filter,
which approximates the sensitivity of center-on and center-off neurons found in the early stages of
the mammalian visual processing. Filter parameters where chosen as in [35, 28]. For the following
experiments we ran 100 EM iterations to ensure proper convergence. The annealing temperature
was set to T = 20.

C

L
(Θ

)
# of states

400 × H′100 × H′

A B
S = 200 × H′

-5.47e7

-5.53e7

B
SC
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le
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B
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s+

s

×40

107

106

105

104

103

#
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at
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D

-5.51e7

-5.49e7

Figure 3: Experiments on D = 26 × 26 image patches. A Random selection of used patches (after
DoG preprocessing). B Random selection of learned basis functions (H = 800, H ′ = 20 and
number of samples set to 200×H ′). C Approximate log-likelihood vs. number of samples per data
point. D Number of states that have to be evaluated for the different approaches.

The first series of experiments investigate the effect of the number of drawn samples on the perfor-
mance of the algorithm (as measured by the approximate data likelihood) across the entire range
of H ′ values between 12 and 36. We observe with BSCs+sthat 200 samples per hidden dimension
(total states = 200 ×H ′) are sufficient: the final value of the likelihood after 100 EM steps begins
to saturate. Particularly, increasing the number of samples does not increase the likelihood by more
than 1%. In Fig. 3C we report the curve for H ′ = 20, but the same trend is observed for all other
values of H ′. In another set of experiments, we used this number of samples (200×H) in the pure
sampling case (BSCsample) in order to monitor the likelihood behavior. We observed two consistent
trends: 1) the algorithm was never observed to converge to a high-likelihood solution, and 2) even
when initialized at solutions with high likelihood, the likelihood always decreases. This example
demonstrates the gains of using select and sample above pure sampling: while BSCs+sonly needs
200 × 20 = 4, 000 samples to robustly reach a high-likelihood solutions, by following the same
regime with BSCsample, not only did the algorithm poorly converge on a high-likelihood solution,
but it used 200× 800 = 160, 000 samples to do so (Fig. 3D).

Large scale experiment on image patches. Comparison of the above results shows that the most
efficient algorithm is obtained by a combination of preselection and sampling, our select and sam-
ple approach (BSCs+s), with no or only minimal effect on the performance of the algorithm – as
depicted in Fig. 2 and 3. This efficiency allows for applications to much larger scale problems
than would be possible by individual approximation approaches. To demonstrate the efficiency of
the combined approach we applied BSCs+sto the same image dataset, but with a very high num-
ber of observed and hidden dimensions. We extracted from the database N = 500, 000 patches of
size D = 40 × 40 = 1, 600 pixels. BSCs+swas applied with the number of hidden units set to
H = 1, 600 and with H ′ = 34. Using the same conditions as in the previous experiments (notably
S = 200 × H ′ = 64, 000 samples and 100 EM iterations) we again obtain a set of Gabor-like
basis functions (see Fig. 4A) with relatively very few necessary states (Fig. 4B). To our knowledge,
the presented results illustrate the largest application of sparse coding with a reasonably complete
representation of the posterior.

5 Discussion
We have introduced a novel and efficient method for unsupervised learning in probabalistic mod-
els – one which maintains a complex representation of the posterior for problems consistent with

2We restricted the set of images to 900 images without man-made structures (see Fig 3A). The brightest 2%
of the pixels were clamped to the max value of the remaining 98% (reducing influences of light-reflections)
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Figure 4: A Large-scale application of BSCs+swithH ′ = 34 to image patches (D = 40×40 = 1600
pixels and H = 1600 hidden dimensions). A random selection of the inferred basis functions is
shown (see Suppl for all basis functions and model parameters). B Comparison the of computational
complexity: BSCselectscales exponentially with H ′ whereas BSCs+sscales linearly. Note the large
difference at H ′ = 34 as used in A.

real-world scales. Furthermore, our approach is biologically plausible and models how the brain
can make sense of its environment for large-scale sensory inputs. Specifically, the method could
be implemented in neural networks using two mechanisms, both of which have been independently
suggested in the context of a statistical framework for perception: feed-forward preselection [27],
and sampling [12, 13, 3]. We showed that the two seemingly contrasting approaches can be com-
bined based on their interpretation as approximate inference methods, resulting in a considerable
increase in computational efficiency (e.g., Figs. 3-4).

We used a sparse coding model of natural images – a standard model for neural response properties
in V1 [22, 31] – in order to investigate, both numerically and analytically, the applicability and effi-
ciency of the method. Comparisons of our approach with exact inference, selection alone, and sam-
pling alone showed a very favorable scaling with the number of observed and hidden dimensions. To
the best of our knowledge, the only other sparse coding implementation that reached a comparable
problem size (D = 20×20, H = 2 000) assumed a Laplace prior and used a MAP estimation of the
posterior [23]. However, with MAP estimations, basis functions have to be rescaled (compare [22])
and data noise or prior parameters cannot be inferred (instead a regularizer is hand-set). Our method
does not require any of these artificial mechanisms because of its rich posterior representation. Such
representations are, furthermore, crucial for inferring all parameters such as data noise and sparsity
(learned in all of our experiments), and to correctly act when faced with uncertain input [2, 8, 3].
Concretely, we used a sparse coding model with binary latent variables. This allowed for a system-
atic comparison with exact EM for low-dimensional problems, but extension to the continuous case
should be straight-forward. In the model, the selection step results in a simple, local and neurally
plausible integration of input data, given by (10). We used this in combination with Gibbs sampling,
which is also neurally plausible because neurons can individually sample their next state based on
the current state of the other neurons, as transmitted through recurrent connections [15]. The idea
of combining sampling with feed-forward mechanisms has previously been explored, but in other
contexts and with different goals. Work by Beal [36] used variational approximations as proposal
distributions within importance sampling, and Zhu et al. [37] guided a Metropolis-Hastings algo-
rithm by a data-driven proposal distribution. Both approaches are different from selecting subspaces
prior to sampling and are more difficult to link to neural feed-forward sweeps [18, 21].

We expect the select and sample strategy to be widely applicable to machine learning models when-
ever the posterior probability masses can be expected to be concentrated in a small sub-space of the
whole latent space. Using more sophisticated preselection mechanisms and sampling schemes could
lead to a further reduction in computational efforts, although the details will depend in general on
the particular model and input data.
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