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Abstract

The maximization of the data likelihood un-
der a given probabilistic generative model
is the essential goal of many algorithms for
unsupervised learning. If expectation max-
imization is used for optimization, a lower
bound on the data likelihood, the free-energy,
is optimized. The parameter-dependent part
of the free-energy (the difference between
free-energy and posterior entropy) is the es-
sential entity in the derivation of learning al-
gorithms. Here we show that for many com-
mon generative models the optimal values of
the parameter-dependent part can be derived
in closed-form. These closed-form expres-
sions are hereby given as sums of the neg-
ative (differential) entropies of the individual
model distributions. We apply our theoreti-
cal results to derive such closed-form expres-
sions for a number of common and recent
models, including probabilistic PCA, factor
analysis, different versions of sparse coding,
and Linear Dynamical Systems. The main
contribution of this work is theoretical but
we show how the derived results can be used
to efficiently compute free-energies, and how
they can be used for consistency checks of
learning algorithms.

1 Introduction

A standard way to derive algorithms for unsupervised
learning is based on probabilistic generative models.
They represent parameterized models of the data gen-
eration process. Learning algorithms derived from
generative models seek those parameters of the model
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that best match the distribution of a given set of data
points. A very common criteria for the quality of such
a match is the likelihood of the data under the genera-
tive model. To derive maximum likelihood algorithms,
expectation maximization (EM) is one of the most
widely used approaches. Instead of maximizing the
likelihood directly, EM iteratively maximizes a lower
bound, the free-energy. In this way parameter update
equations can conveniently be derived, and approxima-
tions, e.g., in the form of variational EM (Jordan et al.,
1999; Jaakkola, 2000), can be introduced. The cru-
cial function for the derivation of parameter update-
rules is hereby the parameter-dependent part of the
free-energy. Prominent learning algorithms based on
generative models using EM include probabilistic PCA
(p-PCA; Roweis, 1998; Tipping and Bishop, 1999) and
factor analysis (FA; see, e.g. Everitt, 1984), differ-
ent versions of sparse coding (SC; e.g. Olshausen and
Field, 1996) or Linear Dynamical Systems (LDS; see,
e.g., Bishop, 2006). The goal of all these algorithms
is the maximization of the data likelihood. Unfortu-
nately, it is in general not possible to know the opti-
mally achievable likelihood values for a given model.
The same applies for optimal values of the free-energy.
In this work, we show, however, that for many com-
mon models it is possible to analytically derive closed-
form expressions for the parameter dependent part of
the free-energy. These expressions will still not allow
to compute the optimal possible likelihood values but
they can be used as a tool to check for model consis-
tencies and to efficiently compute free-energies.

We will first show how closed-form expressions are ob-
tained in the limit of large sample sizes and at global
optima, and we will list formulas for a number of com-
mon models. For a large class of models, we will then
show that the same expressions provide the conver-
gence values also for finite sample sizes, at local op-
tima, model/data mismatches, and for approximate
posterior distributions. Finally, we give examples for
the concrete applicability of the results.
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2 Maximum Likelihood and EM

Let us consider N data points, {~y (n)}n=1,...,N , inde-
pendently drawn from the same underlying distribu-
tion p(~y). A generative model of the data is given
by a parameterized distribution p(~y | Θ) with Θ as
the set of parameters. Elementary generative mod-
els usually take the form of latent variable models
with distributions p(~y | Θ) consisting of a prior distri-
bution over latent variables p(~z | Θ) and a distribution
over observed variables given the latents p(~y |~z ,Θ):
p(~y | Θ) =

∫
p(~y |~z, Θ) p(~z | Θ) d~z. By repeating this

step for the latent variable distribution p(~z | Θ) itself,
more complex hierarchical models can be obtained.

Many learning algorithms seek parameters Θ† that
maximize the data likelihood L(Θ) under a given
generative model, Θ† = argmaxΘ{L(Θ)} (1)

where L(Θ) =
1

N

N∑

n=1

log
(
p(~y(n) | Θ)

)
. (2)

Note that we use the data likelihood normalized by the
number of data points. Maximizing this form of the
likelihood is equivalent to maximizing NL(Θ), which
is usually used.

To find the parameters Θ† at least approximately, a
wide range of algorithms rely on the EM formalism as
it appears, e.g., in (Neal and Hinton, 1998). That is,
instead of maximizing L(Θ) directly, a lower-bound,
the so-called free-energy F(Θ′,Θ), is optimized:

L(Θ) ≥ F(Θ′,Θ)=Q(Θ′,Θ) + 1
N

N∑

n=1

H(p(~z | ~y (n),Θ′)),

where Q(Θ′,Θ)= 1
N

∑N
n=1

∫
p(~z | ~y (n), Θ′)

× log
(
p(~y (n), ~z | Θ)

)
d~z , (3)

H(p)=−
∫
p(~x) log(p(~x)) d~x . (4)

where H(p) is the (differential) entropy of a distribu-
tion p. Note that, more generally, the free-energy de-
pends on a distribution q and parameters Θ, F(q,Θ)
(see, e.g., Neal and Hinton, 1998). This allows for the
introduction of approximate EM, and we will come
back to this formulation later on.

The dependency on two sets of parameters, Θ′ and Θ,
distinguishes the free-energy from the likelihood. It al-
lows for an iterative optimization with respect to the
different sets, which facilitates the derivation of pa-
rameter update rules. A resulting algorithm for likeli-
hood optimization can formally be stated as:

Θ′ = Θnew and Θnew = argmaxΘ{F(Θ′,Θ)} (5)

The first step merely consists of setting the old pa-
rameters to the new ones and the second maximizes

the free-energy with respect to its second argument.
The entropy term in the free-energy does not depend
on the parameters that are optimized, however. The
function important for the optimization is thus given
by Q(Θ′,Θ) in (3), which we will refer to here (in
analogy to ‘free-energy’) as the inner-energy. Further-
more, we define by Q(Θ) = Q(Θ,Θ) the inner-energy
with equal arguments—an expression that will be of
convenience later on. Using the inner-energy (3) we
can now simplify algorithm (5) which becomes:

Θ′ = Θnew and Θnew = argmaxΘ{Q(Θ′,Θ)} (6)

Algorithm (6) guarantees that the free-energy as well
as the likelihood is never decreased. In practice, it in-
creases the data likelihood at least to a local optimum.
An optimum is hereby reached when the parameters
Θ have converged (in practice this means after the
changes of the parameters in any further EM iteration
are negligible: Θ ≈ Θ′).

3 Entropy Limits of the Inner-Energy

Algorithm (6) shows that the inner-energy Q(Θ′,Θ)
emerges as the crucial function to derive learning al-
gorithms. By executing an EM-based learning algo-
rithm, Q(Θ′,Θ) will change until it converges to a limit
value. For most generative models the maximization
of the likelihood is a non-convex problem and the con-
vergence point of the parameters Θ may represent a
local optimum. The best possible outcome of the al-
gorithm is thus Θ = Θ†, where Θ† are the global max-
imum likelihood parameters in (1). The parameters
Θ† are optimal, given a sample of the underlying data
distribution. For a finite number of data points N ,
the parameters Θ† depend on the sample. However, in
the limit of infinitely many data points, Θ† becomes
independent of the sample. We will refer to the global
maximum likelihood parameters in the limit N → ∞
as Θ∗ (note that there may be multiple solutions).

Our first observation is that in the limit we can de-
rive formulas for the value Q(Θ′,Θ) converges to if
the parameters converge to a maximum likelihood so-
lution Θ∗. That is, given a generative model, we can
derive an analytical expression that provides the con-
vergence value of Q(Θ′,Θ) if the algorithm reaches its
goal. While such limits of convergence can formally be
stated for all generative models, a main result of this
work is that we can obtain closed-form formulas for
these limit values. For specific models such as sparse
coding, we will further see that the convergence values
will only depend on a subset of model parameters for
many models. For standard sparse coding they are,
e.g., independent of the basis functions.

To obtain closed-form expressions, an important obser-
vation is that many standard generative models have
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a specific structure: the entropy of their noise distri-
butions is independent of the values of the latent vari-
ables. As example consider the standard sparse coding
model given by:

p(~z | Θ) =
∏H

h=1
1
2γ exp

(
− 1

γ |zh|
)

(7)

p(~y |~z,Θ) = N (~y;W~z, σ2 1) (8)

The model (with γ = 1) has famously been applied
to patches of images in (Olshausen and Field, 1996).
By considering the entropy of the noise model (8), we
can instantly observe that it is independent of the la-
tent vector ~z. Other well-known models that satisfy
this property are p-PCA (Roweis, 1998; Tipping and
Bishop, 1999) or factor analysis and a large set of fur-
ther models including almost all sparse coding vari-
ants. Using this property, we can re-express the values
of Q(Θ) = Q(Θ,Θ) in the likelihood optimum and in
the limit N → ∞ by the (differential) entropies of the
constituting distributions:

Proposition 1
Consider a generative model with prior p(~z | Θ) and
noise distribution p(~y |~z,Θ). For this model let
Q(Θ′,Θ) be the function defined by (3), and let
{~y (n)}n=1,...,N be the data sample to which the model
is applied.

If there exist parameters Θ such that the underlying
data distribution p(~y) can exactly be matched by the
generative distribution p(~y | Θ), and if H

(
p(~y |~z,Θ)

)
is

independent of ~z, it applies in the limit of N→∞ that

Q(Θ∗) = −H
(
p(~y |~z, Θ∗)

)
− H

(
p(~z | Θ∗)

)
(9)

for any global maximum likelihood parameters Θ∗.

Proof
Let us first reiterate the standard procedure of taking
the limit of infinitely many data points (also compare
alternative proof, see Supplement): If the data points
~y (n) are identically and independently drawn from the
distribution p(~y), we get:

limN→∞ 1
N

∑N
n=1 f(~y (n)) =

∫
p(~y) f(~y) d~y , (10)

for any well-behaved function f(~y). We first show that
parameters Θ satisfying p(~y | Θ) = p(~y) (at least in
the distribution sense) represent maximum likelihood
solutions in the limit of N → ∞. By applying the
well-known formula (10) we can (in the limit N → ∞)
rewrite the likelihood (2) as:

L(Θ) = −KL(p(~y), p(~y | Θ)) − H(p(~y)), (11)

which is also a standard result. The maximum of (11)
is given by the minimum of KL(p(~y), p(~y |Θ)) ≥ 0.
The KL-divergence is zero, however, if and only if

p(~y | Θ) = p(~y). The existence of parameters satisfy-
ing p(~y | Θ) = p(~y) thus implies that for any maximum
likelihood solution Θ∗ in (1) applies p(~y | Θ∗) = p(~y).

For the inner-energy Q it then follows for Θ∗:

Q(Θ∗)
= lim

N→∞
1
N

∑N
n=1

∫
p(~z | ~y (n),Θ∗) log

(
p(~y (n), ~z |Θ∗)

)
d~z

=
∫ ∫

p(~y) p(~z | ~y,Θ∗) log
(
p(~y, ~z | Θ∗)

)
d~z d~y

=
∫ ∫

p(~y | Θ∗) p(~z | ~y,Θ∗) log
(
p(~y, ~z | Θ∗)

)
d~z d~y

=
∫ ∫

p(~y, ~z | Θ∗) log
(
p(~y, ~z | Θ∗)

)
d~z d~y

= −H(p(~y, ~z | Θ∗)). (12)

Inserting prior and noise distributions into this for-
mula, we obtain1:

Q(Θ∗) =
∫ ∫

p(~y, ~z | Θ∗) log
(
p(~y, ~z | Θ∗)

)
d~z d~y

=
∫
p(~z | Θ∗)

(
− H

(
p(~y |~z,Θ∗)

))
d~z − H

(
p(~z | Θ∗)

)

= −H
(
p(~y |~z,Θ∗)

)
− H

(
p(~z | Θ∗)

)
,

where we have used the assumed property that the en-
tropy of the noise distribution is independent of ~z.
�
The main content of Proposition 1 should not be con-
fused with the well-know result of equality of likeli-
hood and negative entropy in the limit of infinitely
many data points (compare alternative proof of Prop. 1
which actually starts with this fact, see Supplement).
The main point is the relatively straight-forward ob-
servation that the inner-energy at the optimum is a
simple sum of two (negative) entropies if the entropy
of the observed variables is independent of the hidden
variables (Eqn.9). If the entropy of the observed vari-
ables does depend on the hidden variables (e.g., for a
Bernoulli noise model), Eqn. 9 does not apply. How-
ever, for many models it does. In this case note that
the entropies of the individual model distributions are
often given in closed-form. It thus follows that closed-
form expressions for the limits of Q can be derived in
many cases while closed-form solutions for the likeli-
hood and the free-energy at the same time both do not
exist. An example will be discussed later.

4 Generalization to Graphical Models

Many standard generative models take the form of
a single prior and a single noise distribution. Many
others, however, show more complex dependencies
amongst observed and hidden variables. This raises
the question of whether the result of Proposition 1
can be generalized. For this, first consider the
directed acyclic graph G in Fig. 1A which is an

1Note that we can alternatively derive this result via
the data likelihood (see Supplement).
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Figure 1: Bayesian networks. A Network with com-
plex dependencies between hidden and observed units.
Numbering outside the nodes reflects partial order of
the graph. B Network for p-PCA, FA, and SC. C Net-
work for LDS.

example of such a more complex generative model.
Let ~Y = (~y1, . . . , ~yD) denote the observed variables of

the model and let ~Z = (~z1, . . . , ~zH) denote the hidden
variables. The joint distribution of the generative
model can then be written as

p(~Y, ~Z | Θ)=(

D∏

d=1

p(~yd |pad,Θ))(

H∏

h=1

p(~zh | pah,Θ)),(13)

where pak denote the parents of node k according to
the graph G. The data generation process is fully de-
fined if the conditional probabilities in (13) are given.
Let us denote the data that is generated by the model

by {~Y (n)}n=1,...,N where ~Y (n) = (~y
(n)
1 , . . . , ~y

(n)
D ) is a

generated data point. Note that the set of models
given by (13) and directed acyclic graphs contains as
a subset hierarchical models with layers of latents and
one layer of observed variables.

Like for the elementary generative models considered
in Sec. 3, we can define data likelihood, free-energy,
and inner-energy for the models defined by (13). The

definitions are simply given by replacing ~y by ~Y and
~z by ~Z in equations (2) to (3), respectively. Typical
learning algorithms based on the generalized models
again seek parameters Θ that maximize the data like-
lihood.

To obtain closed-form entropy limits of the inner-
energy (3), we would like to express the limits in
terms of entropies of their constituting distributions
p(~yd | pad,Θ)) and p(~zh |pah,Θ)) for which closed-form
expressions may be known. Such expressions again re-
quire a specific structure similar to the structure of
models Proposition 1 is applicable to: For the gener-
alized models we have to assume that the entropies
of the nodes’ distributions remain unaltered by chang-
ing the values of the corresponding parent nodes. If a
model fulfills this assumption, the limit of the inner-
energy is given by the negative sum of the entropies of

the model’s constituting distributions:

Proposition 2

Consider a generative model with D observed vari-
ables ~Y = (~y1, . . . , ~yD)T and H hidden variables ~Z =

(~z1, . . . , ~zH)T , and let {~Y (n)}n=1,...,N be the data sam-
ple the model is applied to. For the model, let there
exist a Bayesian network representation G with joint
probability (13) such that the entropies of the con-
stituting distributions p(~yd | pad,Θ) and p(~zh | pah,Θ)
are independent of the values of the corresponding par-
ents.

If there now exist parameters Θ such that the under-
lying data distribution p(~Y ) can exactly be matched

by the generative distribution p(~Y | Θ), the following
applies in the limit of N → ∞ and at any global max-
imum likelihood solution Θ = Θ∗:

Q(Θ∗) = Q(Θ∗) where (14)

Q(Θ) = −
D∑

d=1

H
(
p(~yd| pad,Θ)

)
−

H∑

h=1

H
(
p(~zh| pah,Θ)

)
.

Proof
First note that for the proof of Proposition 1 we have
only used the specific dependency structure of a given
generative model for the last steps (after Eqn. 12).
Thus, Eqn. 12 also applies for the general case. By
inserting the joint (13) given by the Bayesian network
G, we have to evaluate:

Q(Θ∗,Θ∗)

= −H
(( D∏

d=1

p(~yd | pad,Θ
∗)

) ( H∏

h=1

p(~zh |pah,Θ
∗)

))
(15)

The details of the further steps are given in the ap-
pendix. In brief, we redefine indices and variables to
take the structures of a graphical model into account
(compare Fig. 1A). We can then show that the product
in the argument of the entropy in (15) results in a sum
of individual entropies. By back-inserting the origi-
nal indices and variable notations, we obtain Proposi-
tion 2.
�
In order to find a closed-form entropy limit for a given
generative model, we would first write down a suit-
able Bayesian network representation of the model.
We can then apply Proposition 2 if there exist closed-
form entropy expressions of all network nodes and if
the parents of each node do not change these entropies.
Note that for a given generative model some Bayesian
network representations may fulfill these requirements
while others may not. For a generative model there
may, of course, not exist a suitable Bayesian network
representation at all but if it does, its entropy limit is
given by Eqn. 14.
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5 Application to Generative Models

As an application for the theoretical results in Propo-
sitions 1 and 2, let us derive closed-form expressions
for entropy limits for a number of well-known and for
recent generative models.

Probabilistic PCA and Factor Analysis. Con-
sider the generative model for p-PCA given by

p(~z |Θ) = N (~z;~0, 1) (16)

p(~y |~z,Θ) = N (~y;W~z + ~µ, σ2 1) (17)

where N denotes a Gaussian distribution. The dif-
ferential entropy of the Gaussian is easily derivable
and well-known. For the prior (16) it is given by
H

(
p(~z | Θ∗)

)
= H

2 log(2eπ), for the noise distribution

(17) it is given by D
2 log(2πeσ2), where H is the num-

ber of hidden variables, D the number of observed vari-
ables, and where e is the Euler number (introduced to
abbreviate the expressions). By applying Proposition
1 to the model in (16) and (17) the entropy limit of
p-PCA is given by:

Q(Θ) = − D
2 log(2πeσ2) − H

2 log(2πe). (18)

Note that the limit can also be obtained by apply-
ing Proposition 2 to the p-PCA graphical model with
nodes containing scalar variables (compare Fig. 1B). In
that case we only require the entropy of a scalar Gaus-
sian given by 1

2 log(2eπσ2). Using Proposition 2 it is
also straight-forward to obtain the entropy limit for
factor analysis (FA). FA only differs from p-PCA by
having different noise variances per observed dimen-
sion (see, e.g., Bishop, 2006, for further references).
The entropy limit for FA is given in Tab. 1.

Considering (18) observe that the limit for p-PCA only
depends on a single parameter of the generative model:
the noise variance σ2. It is independent of the basis
functions W and of the offset vector ~µ. Thus, for a
given level of data noise, the value Q(Θ) converges to
is independent of the parameters defining position, ori-
entation and parameterization of the hyperplane (the
same applies for FA).

The p-PCA case is instructive because the underlying
generative model is simple enough to also allow for
analytical expressions for the inner-energy Q(Θ).
Using definition (16) and (17) we can show that:

Q(Θ)=−D
2 log(2πσ2) −H

2 log(2πe) −1
2Tr(C−1S), (19)

where S is the data covariance matrix S =
1
N

∑
n(~y (n) − ~µ)(~y (n) − ~µ)T and where C is a func-

tion of the weights W and the noise variance σ2.
C = W WT + σ21. Two things can be observed con-
sidering expression (19): First, Q(Θ) does depend on
W through the matrix C. Second, if N goes to in-
finity, the data covariance matrix S converges to the

covariance matrix of the true underlying distribution.
If the data is indeed distributed according to the p-
PCA generative model, this covariance matrix is given
by C = (W ∗) (W ∗)T + (σ∗)21 (see, e.g. Tipping and
Bishop, 1999) whereW ∗ and σ∗ are the maximum like-
lihood parameters. Thus, if Θ converges to Θ∗, expres-
sion (19) converges for N → ∞ to the entropy limit
Q(Θ∗) in (18) because Tr(C−1S) = Tr(C−1C) = D
(note the Euler number “e” in Eqn. 18).

In the case of p-PCA we have in this way confirmed
Proposition 1 and 2 by deriving the result in an alter-
native way. Note however, that first this derivation is
much less straight forward (involving lengthy matrix
algebra manipulations to obtain Eqn. 19), and second,
it is only possible due to the simplicity of the p-PCA
generative model that has closed-from posteriors. For
the sparse coding models discussed below, Q(Θ) can
not be obtained in closed-form anymore while closed-
form entropy limits Q(Θ) still exist.

Sparse Coding. As an example of a more com-
plex model consider again the sparse coding generative
model (7) and (8). As already mentioned earlier the
(differential) entropy of the noise distribution is inde-
pendent of ~z and given by D

2 log(2πeσ2) as for p-PCA.
The entropy H

(
p(~z | Θ)

)
is the entropy of the Laplace

distribution given by H
(
p(~z | Θ)

)
= H log(2eγ), where

H is the number of hidden dimensions and where γ pa-
rameterizes sparseness in the prior (7). By applying
Proposition 1 (or Proposition 2) to the model (7) and
(8), the entropy limit is given by:

Q(Θ) = − D
2 log(2πeσ2) − H log(2eγ) . (20)

Observe that the limit now depends on two parame-
ters, the variance of the generative model, σ2, and the
prior parameter γ. Again, the entropy limit is inde-
pendent of the weight matrix W , however.

Because of its popularity in Computational Neuro-
science and Machine Learning, many different versions
of sparse coding exist. In particular, different priors
were investigated. Recent choices have, for instance,
been the Student-t distribution (Osindero et al., 2006;
Berkes et al., 2008),

p(~z | Θ) =
∏H

h=1
Γ( ν+1

2 )√
νπΓ( ν

2 )

(
1 +

z2
h

ν

)− ν+1
2

, (21)

and the Bernoulli prior for binary hidden units (Haft
et al., 2004; Henniges et al., 2010),

p(~z |Θ) =
∏H

h=1

(
λzh

(
1 − λ

)1−zh
)
. (22)

While the entropy of the Bernoulli distribution is
well-known, (−(1 − λ) log(1 − λ) − λ log(λ)), the
entropy of the Student-t distribution is more intricate.
However, it has been derived earlier, e.g., in (Lazo
and Rathie, 1978), and is (in scalar form) given by:
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Tab. 1: Entropy Limits Q(Θ)

p-PCA − D
2 log(2πeσ2) − H

2 log(2πe) Roweis, 1998
Tipping&Bishop, 1999

Factor Analysis − 1
2

∑D
d=1 log(2πeσ2

d) − H
2 log(2πe) e.g., Everitt, 1984

SCCauchy − D
2 log(2πeσ2) − H log(4πγ) Olshausen&Field, 1996

SCLaplace − D
2 log(2πeσ2) − H log(2eγ) Olshausen&Field, 1996

SCstudent−t −D
2 log(2πeσ2) −H ν+1

2

(
ψ

(
ν+1
2

)
− ψ

(
ν
2

))
−H log

(√
νB(ν

2 ,
1
2 )

)
Osindero et al., 2006
Berkes et al., 2008

Binary SC −D
2 log(2πeσ2) +H(1 − λ) log(1 − λ) +Hλ log(λ) Haft et al., 2004

Henniges et al., 2010

MCA −D
2 log(2πeσ2) +H(1 − λ) log(1 − λ) +Hλ log(λ) Lücke&Eggert, 2010

LDS − 1
2 log(|2πeV |) − K−1

2 log(|2πeΣ|) − K
2 log(|2πeΛ|) Bishop, 2006 for refs

H
(
p(zh | Θ)

)
= ν+1

2

(
ψ

(
ν+1
2

)
− ψ

(
ν
2

))

+ log
(√

νB(ν
2 ,

1
2 )

)
, (23)

where ψ is the digamma function and B the beta func-
tion. By applying Proposition 2 to the graphical model
representation of SC in Fig. 1B, we can thus obtain the
entropy limits for both of these sparse coding versions.
The obtained expressions for Q(Θ) are listed in Tab. 1.
For the BSC limit, note that the same limit is also ob-
tained for a recently studied model of non-linear sparse
coding (MCA; Lücke and Eggert, 2010). This shows
that two different models can have the same entropy
limit.

LDS. Finally, let us consider Linear Dynamical
Systems (LDS) as an example for a generative model
with dependent hidden variables. An LDS model
generates data sequences ~Y = (~y1, . . . , ~yK)T . Its
graphical model representation is shown in Fig. 1C,
with the conditional distributions given by:

p(~z1 |Θ) = N (~z1;~r, V ) (24)

p(~zk |~zk−1,Θ) = N (~zk;A~zk−1 + ~a,Σ) (25)

p(~yk |~zk,Θ) = N (~yk;C~zk + ~c,Λ) (26)

These distributions and the graphical model fully
describe the data generation process. Considering
the nodes of the Bayesian network representation in
Fig. 1C, we observe that the entropy of each node is
independent of the values of the parent nodes. This
can instantly be seen by noting that each variable only
changes the means of the childs’ distributions. The as-
sumptions of Proposition 2 are thus fulfilled. Further-
more, the entropies of the constituting distributions
are known. By applying Proposition 2 we thus obtain
a closed-form entropy limit Q(Θ) given by:

−1
2 log(|2πeV |) − K−1

2 log(|2πeΣ|) − K
2 log(|2πeΛ|).

Note for this example that we have to apply Proposi-
tion 2 because of the dependencies between the latents
~zk. Also note that the Bayesian network representa-
tion Fig. 1C is a kind of minimal graphical model for

which the assumptions of Proposition 2 are still ful-
filled. Introducing more nodes by substituting ~zk or ~yk

by graphs with nodes of their scalar entries would re-
sult in a Bayesian network violating the assumptions.

Tab. 1 summarizes the results obtained in this section
and lists some more results not explicitly mentioned.
The most frequent distribution used for our models
is the Gaussian. In fact, all used noise distributions
are Gaussian. However, the existence of closed-form
entropy limits is not exclusive to this type of noise dis-
tribution. Any other distribution for which the parent
variables do not change the entropy have closed-form
entropy limits. An example would be the Laplace dis-
tribution (Eqn. 7). All models of Tab. 1 would still
have closed-form entropy limits simply given by re-
placing 1

2 log(2πeσ2) with log(2eγ) (the entropy of the
Laplace distribution).

6 Entropy Limits for Finite Data Sets,
Local Optima, and ApproximateEM

Once the existence of closed-form entropy limits of
the inner-energy has been observed, convergence
results under milder assumptions can be investigated.
It could thus be asked if statements about the limit
values of Q(Θ) at local optima, finite sample sizes, or
for approximate EM can be made. For this consider
again the free- and inner-energy, this time in their
formulation for variational EM:

L(Θ) ≥ F(q,Θ) = Q(q,Θ) + 1
N

∑
n H(qn(~z; Θ′)), (27)

Q(q,Θ) = 1
N

∑N
n=1

∫
qn(~z; Θ′) log

(
p(~y (n), ~z | Θ)

)
d~z.

For the derivation of entropy limits in Propositions 1
and 2 we explicitly used properties of global optima
and consistency of distributions. At first, it there-
fore seems unlikely that entropy limits can be obtained
without these assumptions. However, we may be able
to exploit specific properties of some generative mod-
els that go beyond an independence of the entropy
from parent node values. As an example, let us con-
sider the most common sparse coding model given by a
Laplace prior and a Gaussian noise model (Eqns. 7 and
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8). By applying EM, we obtain the M-step equations
(see Supplement for the derivation):

σ2
new = 1

D N

∑N
n=1

∫
qn(~z; Θ′) ‖~y (n) −W~s ‖2d~z , (28)

γnew = 1
N

∑N
n=1

∫
qn(~z; Θ′) ‖~z‖1 d~z , (29)

and a corresponding equation for W . In the global op-
timum we know that Q(Θ) in Eqn. 3 converges to the
entropy limit given in Eqn. 20. We therefore rewrite
Q(q,Θ) in (27) as a sum of its entropy limit and addi-
tional terms:

Q(q,Θ) = Q(Θ) +A(q,W, σ) +B(q, γ),with (30)

A(q,W, σ) = − 1
2σ2N

∑N
n=1

∫
qn(~z; Θ′)

×‖~y (n) −W~z‖2 d~z + D
2

B(q, γ) = − H
γN

∑N
n=1

∫
qn(~z; Θ′) ‖~z‖1 d~z +H

If the assumptions of Proposition 1 are fulfilled, the
terms A(q,W, σ) and B(q, γ) consequently vanish at
the global optimum. However, nothing about the be-
havior of A and B can be concluded from Proposition 1
if the assumptions are not fulfilled, e.g., in case of finite
sample sizes, local optima, or model/data mismatches.

The crucial observation at this point is, that for the
standard sparse coding model and after the conver-
gence of parameters, A(q,W, σ) and B(q, γ) vanish also
in the case of: local optima, finite sample sizes, and
for any approximate distribution q. Also the data dis-
tribution does not have to be matched by the model
distribution, which is related to the result being appli-
cable for local optima. This remarkable weakening of
the assumptions for entropy limits can be shown by us-
ing the update equations for σ and γ in Eqns. 28 and
29. By inserting these equations into the expression
for Q(q,Θ) in (30), we obtain:

Q(q,Θ) = Q(Θ) +
D

2
(1 − σ2

new

σ2
)

︸ ︷︷ ︸
A(q,W,σ)

+H(1 − γnew

γ
)

︸ ︷︷ ︸
B(q,γ)

(31)

It follows that at any convergence point of the param-
eters, Q(q,Θ) indeed converges to the entropy limit
Q(Θ). Again, note that the entropy limit originally
derived for infinite sample size, global optimum, and
exact posterior is also describing the convergence value
of the free-energy for finite sample sizes, local optima
and even for approximate posteriors and model/data
mismatches. But also note that the derivation of the
result exploits more properties of the specific model
distributions than were used for Propositions 1 and 2.
However, these properties are provided by still a large
class of distributions. Convergence to entropy limits
can thus, for instance, be shown for any SC model with
Gaussian noise model and a prior from the exponential
family with h(~z)=const (e.g., standard SC or the BSC

model). Fig. 2B shows a numerical verification of this
result (Q convergence to Q also at the local optimum).

As a corollary with practical significance, consider
the case when the sparse coding model (7) and (8) is
trained by approximating its intractable exact poste-
riors by Gaussian distributions. That is, for each data
point ~y (n) the posterior p(~z | ~y (n),Θ) is approximated
by a Gaussian qn(~z; Θ′) = N (~z; ~µ (n),Σ (n)) with
appropriately chosen mean and covariance matrix
(compare, e.g., Bishop, 2006; Seeger, 2008). By using
that Q(q,Θ) converges to the entropy limit Q(Θ), we
obtain with Eqn. 27:

F(q,Θ) = − D
2 log(2πeσ2) − H log(2eγ)

− 1
2 N

∑N
n=1 log(|2πeΣ (n)|) , (32)

where the F(q,Θ) depends on both, model and ap-
proximation parameters, and is equal to F(q,Θ) when-
ever the parameters have converged. Now note that
the free-energy F(q,Θ) is not computable in closed-
form because it involves nested integrals over Gaus-
sians with boundaries other than zero or ± infinity. In
contrast, F(q,Θ) in Eqn. 32 is an elementary closed-
form expression. Hence, to compute the free-energy,
all that has to be done for a given run of the algorithm
is to wait until the parameters have converged, and to
use Eqn. 32 with the parameters at convergence. This
provides the free-energy value without the necessity of
any numerical integrations or look-up tables. As the
free-energy is often computed or estimated to evalu-
ate the quality of a given run of an algorithm, formula
(32) is an example for the direct applicability of en-
tropy limits in practice. As mentioned earlier, similar
formulas can also be derived for other models or other
approximation schemes including, for instance, mean-
field variational approaches.

7 Numerical Consistency

Let us control for the consistency of our analytical re-
sults using numerical experiments on two generative
models: p-PCA and Binary Sparse Coding (BSC).
Both models have exact EM solutions but while pa-
rameter optimization in p-PCA is known to be convex,
BSC has local likelihood optima.

P-PCA. In the first experiment we apply p-PCA to
recover a one-dimensional subspace of a two dimen-
sional observed space. The data have been generated
according to the p-PCA model 16 and 17 with gener-
ating parameters Θ∗ (note that the generating param-
eters are thus the maximum likelihood parameters for
N → ∞). As can be observed in Fig. 2A, the inner-
energy Q(Θ) converges to a value close to the entropy
limit Q(Θ∗) of the generating parameters. The finite
difference between Q(Θ) and Q(Θ∗) is hereby due to
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Figure 2: Development of the inner-energy during
learning with Expectation Maximization for prob-
abilistic PCA (A) and Binary Sparse Coding (B)
for global (red) and local (blue) optima. Solid lines
represent Q(Θ), dashed lines mark Q(Θ). The black
solid line represents the entropy limit, i.e. Q(Θ∗).
The scattering of results for 20 runs with different
data sets is indicated by red and blue x’s. The
sub-figures show values of Q(Θ) for different data set
sizes (N1 = 100, N2 = 200, N3 = 500, N4 = 1000,
N5 = 2000, N6 = 5000, N7 = 10000 data points).

the finite sample size. This is highlighted by the dis-
tribution of final Q(Θ) for different samples (red x’s).
With increasing sample size, the differences become
smaller (see sub-figure of Fig. 2A). During the devel-
opment of a learning algorithm entropy limits can thus
serve as a verification tool: In addition to likelihood
increase and parameter recovery, an entropy limit pro-
vides an analytical expression for the inner-energy that
an algorithm has to converge to for N → ∞. Fig. 2A
can thus be regarded as a consistency verification of
the used p-PCA implementation.

BSC. In the second experiment we apply BSC to re-
cover basis functions that are linearly mixed using bi-
nary factors. We use functions in the form of bars as,
e.g., in (Spratling, 2006; Henniges et al., 2010). To
optimize the parameters of BSC we use the learning
algorithm described in (Henniges et al., 2010) but in-
stead of variational EM we apply exact EM which is
still tractable for low numbers of hidden dimensions.
Fig 2B shows the convergence of the inner-energy Q(Θ)
to a limit value during EM optimization. In most cases
Θ converges to the maximum likelihood solution but
in some case to a local optimum. Note that also in
the local optimum, Q(Θ) converges to the entropy
limit (compare Sec. 6). At the global optimum the
limit value of Q(Θ) is approximately given by Q(Θ∗).
The finite difference is again due to a finite data sam-
ple. With increasing sample size, the differences again
become increasingly small (see sub-figure of Fig. 2B).
Also in this case the figure can be regarded as a consis-
tency verification of the algorithm’s implementation.

8 Discussion and Outlook

In this paper we have studied the behavior of a crucial
entity emerging in the likelihood optimization using
EM: the parameter dependent part of the free-energy
which we have termed inner-energy. The free-energy
and the likelihood of the data under a given model
are important measures for the quality of an optimiza-
tion result. However, they are in general not given
in closed-form. This is the case for finite as well as
for infinite sample sizes and at global as well as local
maximum likelihood solutions. In this limit the like-
lihood L(Θ∗) is given by the negative entropy of the
modeled distribution, L(Θ∗) = − H(p(~y |Θ∗)) (com-
pare Eqn. 11, and see Supplement Eqn. 33). The of-
ten rather intricate forms of the model distributions
do not allow for closed-form solutions of the model
entropy. For exact EM the same is true for the free-
energy because it becomes equal to the likelihood at
the optimum.

For many generative models we do obtain closed-form
solutions for the convergence value of the inner-energy,
however. These closed-form solution are simply given
by summing over the entropies of the constituting dis-
tributions. For some models, we have furthermore
shown that the inner-energy converges to entropy lim-
its also in the case of local optima, finite sample sizes,
and approximate EM. For the example of the most
standard sparse coding model and a standard approx-
imation, we have shown that closed-form solutions
for the free-energy can be derived using entropy lim-
its. This formula for the free-energy (32) applies at
any point of convergence, for finite sample sizes, and
model/data mismatches. In order to provide a mea-
sure of the optimization quality after convergence of
the algorithm, we can thus directly use a closed-form
formula for the free-energy which otherwise would re-
quire numerical integration or a nested series of look-
up tables. This example demonstrates, that the theo-
retical results obtained in this study can be very use-
ful for practical applications. As discussed, similar
formulas can be derived for other models and other
approximation schemes. Moreover, entropy limits can
serve as consistency check for learning algorithms as
they provide theoretical and easy to compute values
that a learning algorithm finally has to converge to
(Fig. 2). As graphical models and training schemes
tend to become increasingly more advanced and dif-
ficult to handle, theoretical results for checking the
consistency of implementations or for monitoring the
quality of a given run are bound to become more im-
portant. This contribution provides a new tool for
these purposes that is applicable for a wide range of
models, and we hope that its easy applicability will
improve the process of developing new algorithms in
the field.
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Appendix – Supplementary Material

Alternative Proof for Proposition 1

We first follow the first steps as the Proof in the main
text (first paragraph). As a direct consequence of (11),
we obtain at the maximum likelihood solution Θ∗:

L(Θ∗) = −H(p(~y | Θ∗)). (33)

On the other hand, L(Θ) is equal to the free-energy
after each E-step, i.e., if qn(~z; Θ) = p(~z | ~y (n),Θ) we
get:

L(Θ) = Q(Θ) − 1

N

N∑

n=1

∫
p(~z | ~y (n),Θ)

× log
(
p(~z | ~y (n),Θ)

)
d~z (34)

By applying (10) in the limit N → ∞ and by using
p(~y) = p(~y |Θ∗) we obtain at the optimum Θ∗:

L(Θ∗)=Q(Θ∗) −
∫
p(~y | Θ∗) p(~z | ~y,Θ∗)

× log
(
p(~z | ~y,Θ∗)

)
d~z

=Q(Θ∗) −
∫
p(~z, ~y | Θ∗) log

(
p(~z, ~y | Θ∗)

)
d~z d~y

+
∫
p(~z, ~y | Θ∗) log

(
p(~y |Θ∗)

)
d~z d~y

It thus follows

L(Θ∗) = Q(Θ∗)+H(p(~z, ~y | Θ∗))−H(p(~y | Θ∗)), (35)

and by combining (33) and (35) we thus get:

Q(Θ∗) = −H(p(~z, ~y | Θ∗)). (36)

The last steps are then equal to those of the original
proof again.
�

Proof of Proposition 2

To simplify the steps following Eqn. 15, let us define

(~x1, . . . , ~xK) := (~y1, . . . , ~yD, ~z1, . . . , ~zH). (37)

The graph of a Bayesian network has a partial order
and is finite. Without loss of generality, we can thus
choose a numbering of the nodes ~xk such that nodes
with higher numbers can never be parents of nodes
with lower numbers (compare Fig. 1A). With such a
numbering we rewrite:

H
( K∏

k=1

p(~xk | pak,Θ)
)

= H
(( ∏

k∈B

p(~xk |pak,Θ)
) ( ∏

k∈A

p(~xk | pak,Θ)
))
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with A = {1, . . . , ko} and B = {ko + 1, . . . ,K}.
Because of the chosen numbering we now know that
the second factor in the entropy is independent of the
variables ~xk with k ∈ B. For notational compactness
let us further introduce d ~XA = d~x1 . . .d~xko and

d ~XB = d~xko+1 . . .d~xK . It follows:

H
(( ∏

k∈B

p(~xk | pak, Θ)
) ( ∏

k∈A

p(~xk | pak, Θ)
))

= −
∫ ( ∏

k∈B

p(~xk | pak, Θ)
) ( ∏

k∈A

p(~xk | pak, Θ)
)

× log
( ∏

k∈B

p(~xk | pak, Θ)
)
d ~X

−
∫ ( ∏

k∈B

p(~xk | pak, Θ)
) ( ∏

k∈A

p(~xk | pak, Θ)
)

× log
( ∏

k∈A

p(~xk | pak, Θ)
)
d ~X

= −
∫ ( ∏

k∈A

p(~xk | pak, Θ)
) ∫ ( ∏

k∈B

p(~xk | pak, Θ)
)

× log
( ∏

k∈B

p(~xk | pak, Θ)
)
d ~XB d ~XA

−
∫ ( ∏

k∈A

p(~xk | pak, Θ)
)

log
( ∏

k∈A

p(~xk | pak, Θ)
)
d ~XA

=

∫ ( ∏

k∈A

p(~xk | pak, Θ)
)
H

( ∏

k∈B

p(~xk | pak, Θ)
)
d ~XA

+ H
( ∏

k∈A

p(~xk | pak, Θ)
)

= H
( ∏

k∈B

p(~xk | pak, Θ)
)

+ H
( ∏

k∈A

p(~xk | pak, Θ)
)

For the last step we used the assumption of the
entropy being independent of the parent values.

The subgraphs defined amongst the nodes in A and B
are partially ordered as well. We can thus recursively
apply the result above and obtain:

H
( K∏

k=1

p(~xk |pak,Θ)
)

=

K∑

k=1

H
(
p(~xk | pak,Θ)

)
.

If we back-replace ~xk using the original variable names
~yd and ~zh and insert into Eqn. 15, we obtain the claim
Eqn. 14 with the corresponding expression for Q(Θ∗).

Section 6 – Details of Derivations

To derive Eqn. 31, let us take a closer look at the
behavior of the inner-energy at the optimum. The
Sparse Coding generative model under consideration
consists of a Laplace prior and a Gaussian noise model:

p (~z |Θ) =
H∏

h=1

1

2γ
exp

(
−|zh|

γ

)

p
(
~y (n) |~z,Θ

)
= N

(
~y (n);W~z, σ2

)
(38)

To find the optimal parameters for a given data set,
we have to compute the derivatives of the inner-energy
with respect to the corresponding parameters. The

inner-energy is given by:

Q(q,Θ) =
1

N

∑

n

∫
qn(~z; Θ′) log

(
p(~y (n), ~z | Θ)

)
d~z

(39)

At the optimum, Q must be constant in the model
parameters. The parameters that maximize Q are thus
the ones for which the derivative of Q becomes zero:

∂Q
∂Θ

!
= 0

To obtain the update rules, we first calculate the
derivative of Q with respect to γ. Splitting up the
joint in (39) and omitting the noise term which does
not depend on γ we get:

∂Q
∂γ

=
1

N

∑

n

∫
qn(~z; Θ′)

× ∂

∂γ
log

[
H∏

h=1

1

2γ
exp

(
−|zh|

γ

)]
d~z

=
1

N

∑

n

∫
qn(~z; Θ′)

×
[
−H

γ
+

H∑

h=1

|zh|
γ2

]
d~z

!
= 0

This leads to:

γnew =
1

N

∑

n

∫
qn(~z; Θ′)‖~z‖1 d~z (40)

Now, we compute the derivative with respect to σ2:

∂Q
∂σ2

=
1

N

∑

n

∫
qn(~z; Θ′)

[
− D

2σ2
− 1

2σ4
‖~y (n) − W~z‖2

]
d~z

⇒ σ2
new =

1

ND

∑

n

∫
qn(~z; Θ′) ‖~y (n)−W~z‖2d~z (41)

We can now rewrite:

Q(q,Θ) =Q(Θ) +A(q,W, σ) +B(q, γ), where

A(q,W, σ) = − 1

2σ2N

N∑

n=1

∫
qn(~z; Θ′)

× ‖~y (n) −W~z‖2 d~z +
D

2

B(q, γ) = − H

γN

N∑

n=1

∫
qn(~z; Θ′) ‖~z‖1 d~z +H

By inserting the expressions in (40) and (41), we ob-
tain (31). This can also be shown for any other SC
model with Gaussian noise model and a prior from
the exponential family provided it can be written as:
p(~x |~η ) = h(~x ) g(~η ) exp(~ηT~u(~x )) with h(~x ) = const.
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