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Abstract

We study a model of the cortical macrocolumn consisting of a collection of in-
hibitorily coupled minicolumns. The proposed system overcomes several severe
deficits of systems based on single neurons as cerebral functional units, notably lim-
ited robustness to damage and unrealistically large computation time. Motivated
by neuroanatomical and neurophysiological findings the utilized dynamics is based
on a simple model of a spiking neuron with refractory period, fixed random exci-
tatory interconnection within minicolumns, and instantaneous inhibition within one
macrocolumn. A stability analysis of the system’s dynamical equations shows that
minicolumns can act as monolithic functional units for purposes of critical, fast de-
cisions and learning. Oscillating inhibition (in the gamma frequency range) leads
to a phase-coupled population rate code and high sensitivity to small imbalances
in minicolumn inputs. Minicolumns are shown to be able to organize their collec-
tive inputs without supervision by Hebbian plasticity into selective receptive field
shapes, thereby becoming classifiers for input patterns. Using the bars test, we crit-
ically compare our system’s performance with that of others and demonstrate its
ability for distributed neural coding.

Keywords: Cerebral Cortex, Columnar Organization, Neural Dynamics, Stability
Analysis, Neural Coding, Hebbian Plasticity, Unsupervised Learning



1 Introduction

Simulations of artificial neural networks (ANNSs) are a standard way to study neural
information processing. Although a large amount of data about biological neural
networks is available there remain uncertainties regarding the way in which neurons
process incoming action potentials, the way the neurons are interconnected, and
the way in which interconnections change dynamically over time. These uncertain-
ties have generated a broad variety of different models of neural networks. They are
based on different assumptions for connectivity (e.g., feed-forward or symmetrically
interconnected), neuron models (e.g., McCulloch-Pitts, integrate-and-fire, Hodgkin-
Huxley), and different modification rules for synaptic weight changes (e.g., Heb-
bian learning, back-propagation). ANNSs like the Hopfield network (Hopfield, 1982;
Hopfield and Tank, 1986) or perceptrons afford deep functional insight on the ba-
sis of mathematical analysis that (1) allowed the networks to be successful in vari-
ous technical applications and (2) influenced our views on learning and information
processing in biological neural networks significantly. By now, it has become ob-
vious, however, that the classical ANNs fall short in modeling the generalization
abilities or computation times of biological networks. Many important reactions

in the brain take place in times so short that individual neurons had time to trans-
mit only very few or just a single action potential (see Nowak and Bullier (1997)
and Thorpe et al. (1996) for reaction times in the visual system). If graded signals
are to be processed, models based on a single neuron rate code fail to model the
measured reaction times. Further, most ANNs do not reflect biologically plausible
connectivity because they were motivated by the view that biological information
processing is continuously distributed over the cortical surface or that information
is processed strictly feed-forward through layers of equal neurons. However, in the
last decades a large amount of anatomical and physiological data was accumulated
suggesting that the cortex is hierarchically organized in cellular columns as princi-
pal building blocks (see Mountcastle (1997) and Buxhoeveden and Casanova (2002)
for overviews and Jones (2000) for a critical discussion). Columnar organization is
advantageous (1) with respect to implementation of a neafatlation rate code

able to overcome the computational speed limitationsimfle neuron rate codes

and (2) with respect to connectivity and robustness. With evolutionary growth of the
brain, individual building blocks had to connect to more and more other elements.
Groups of neurons can support many more connections than individual neurons and
a network based on neural columns as principal units can be expected to be much
more robust against the loss of connections or drop-out of neurons. In the cerebral
cortex of mammals neural columns can be identified on different scalesmifire
columnis believed to be the smallest neural entity consisting of several tens up to
a few hundred neurons, which are stacked orthogonally to the cortical surface (Pe-
ters and Yilmaze, 1993). The minicolumns themselves combine to what is called a
macrocolumror segregatgFavorov and Diamond, 1990) (see Mountcastle (1997)
for an overview). Like minicolumns, macrocolumns can be identified both anatom-
ically and physiologically (Favorov and Diamond, 1990; Elston and Rosa, 2000;
Lubke et al., 2000) and are shown to process stimuli from the same source such as



an area of the visual field or a patch of a the body surface (Favorov and Whitsel,
1988; Favorov and Diamond, 1990). In the primary somatosensory cortex of the
cat macrocolumns were found to contain approximately 80 minicolumns. Although
mini- and macrocolumns are best studied in primary sensory areas they are found
in higher cortical areas as well (Peters et al., 1997; Constantinidis et al., 2001) and
are believed to represent the basic building blocks of all areas of cortices of higher
vertebrates (Mountcastle, 1997; Buxhoeveden and Casanova, 2002). The main part
of a minicolumn is a collection of excitatory cells grouped around bundles of den-
drites (Peters and Yilmaze, 1993) and axons (Peters and Sethares, 1996). Together
with physiological findings (Thomson and Deuchars, 1994) this suggests that the
excitatory cells of a minicolumn are mutually strongly interconnected (Mountcastle,
1997; Buxhoeveden and Casanova, 2002). For inhibitory feedback double-bouquet
cells and basket (clutch) cells play a central role (DeFelipe et al., 1989, 1990; Peters
and Sethares, 1997; Budd and Kisvarday, 2001). Dendritic branch and axonal field
analysis suggests that the inhibitory cells are stimulated by the activities within the
excitatory cells of their minicolumn and project back to a number of minicolumns

in their neighborhood.

In this paper we study a model of the macrocolumn which is motivated by the
above findings. We model the macrocolumn as a collection of inhibitorily coupled
minicolumns which consist themselves of a collection of randomly interconnected
excitatory neurons. The excitatory neurons are modeled explicitly. The neuron
model is a very abstract one but it takes into account the neurons’ spiking character.
The assumptions made allow for a detailed mathematical analysis which captures
the basic properties of the neuron dynamics. It turns out that the spiking character
of the neurons in combination with the columnar interconnection structure and fast
inhibitory feedback leads to a dynamics with ideal properties for computing input
mediated by afferent fibers to the macrocolumn. We will show that in the absence of
input the macrocolumn dynamics possesses stationary points, i.e. states of ongoing
neural activity. The number of these depends exponentially on the number of mini-
columns. The stability of the stationary points is controlled by a single parameter
of inhibition and changes at a single critical value of this parameters. The sys-
tem is operated by letting the inhibition parameter oscillate about its critical value.
An isolated macrocolumn is hereby successively forced to spontaneously break the
symmetry between alternate stationary points. If the dynamics is weakly coupled to
input by afferent fibers which are subject to Hebbian plasticity, a self-organization
of minicolumnar RFs is induced. The self-organization makes the macrocolumn to
a decision unit with respect to the input. The result of a decision is identified with
the active state of the macrocolumn at the maximum of one inhibitory oscillation
(or v-cycle). Possible-cycle periods may be very short, suggesting cortical oscilla-
tions in they-frequency range as their biological correlates and allowing very rapid
functional decisions.

The macrocolumn model will be shown to be able to classify input patterns and
to extract basic features from the input. The latter capability is demonstrated using
the bars test @diak, 1990) and it can be shown that the presented model is com-
petitive to all other systems able to pass the test. During the bars test a system has
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to learn the basic components of input patterns made up of superpositions of these
components. In the superpositions the components do not add up linearly which
presents an additional difficulty. Systems passing the test must be able to represent
an input pattern by exploiting constituent combinatorics. The passing of the bars
test can be seen as a prerequisite for systems which are intended to handle large
and varying natural input because natural input is expected to be most efficiently
represented by combining elementary features.

The presented network owes its computational abilities to the properties of the
internal macrocolumnar neuron dynamics, which itself is emergent from the colum-
nar interconnection structure, the spiking nature of neurons, and background oscil-
lation. The network reflects, on the one hand, major properties of biological neural
information processing and is, on the other hand, competitive to a class of systems
which focus on functional performance in tasks of basic feature extraction. In com-
bining these two aspects the system distinguishes itself from all other column-based
systems, e.g., (Fukai, 1994; Favorov and Kelly, 1996; Somers et al., 1995; Fransen
and Lansner, 1998; Lao et al., 2001) and systems whose ability of extracting basic
input constituents was demonstrated using the bars benchmark test, @djak(F
1990; Saund, 1995; Dayan and Zemel, 1995; Marshall, 1995; Hinton et al., 1995;
Harpur and Prager, 1996; Frey et al., 1997; Hinton and Ghahramani, 1997; Fyfe,
1997; Charles and Fyfe, 1998; Hochreiter and Schmidhuber, 1999; O’'Reilly, 2001;
Spratling and Johnson, 2002).

In Sec. 2 we define the macrocolumn model and analyze its dynamical proper-
ties. In Sec. 3 we introduce Hebbian plasticity of afferents to the macrocolumn and
study the resulting input driven self-organization of the minicolumns’ RFs. In Sec. 4
the computational abilities of the system are systematically studied for the problem
of pattern classification and for the bars problem. In Sec.5 we finally discuss the
system’s general properties in comparison with systems which were applied to the
bars problem and discuss our system’s relation to neuroscience.

2 Neural Dynamics of the Macrocolumn

We first define and analyze the dynamics of a model of a single minicolumn and
than proceed by studying the dynamical properties of the macrocolumn as a set of
inhibitorily coupled minicolumns.

2.1 Model of the Minicolumn

A minicolumn we take to consist of excitatory neurons which are randomly intercon-
nected as motivated by the above mentioned findings (see Mountcastle (1997) and
Buxhoeveden and Casanova (2002) for review). The excitatory neurons are modeled
as McCulloch-Pitts neurons with a refractory period of one time step. The dynam-
ics of a minicolumn consisting af, neurons is described by the following set of



difference equations & 1,...,m):

= HS Tyl — ) K= nio), K= {1150 @

refraction

For the interconnectioff;; we assume that each neuron receiveynapses from
other neurons of the minicolumn. We further assume that the dendrites and axons
interconnect randomly such that a natural choice for the probability to receive a
synapse from a given neuron {s (compare Anninos et al. (1970)). The synaptic
weights we take to be equal to the constantNote that for any choice of the
threshold® can be chosen such that the resulting dynamics is the same. Without
loss of generality we therefore choase: 1 . such thap > Ty = 1. To further
analyze the dynamics we describe equatlons (1) in ' terms of the activation probability
of a neuronp(t), at timet. The probability depends first on the number of received
inputs and second on the probability that the neuron was active in the preceding time
step. Due to the interconnecti¢fy;) the probabilityf,, (z) of a neuron to receive
non-zero inputs from its pre-synaptic neurons is given by the binomial distribution

fule) = (3 )rra-pr @

For s > 1 the distribution can be approximated by a Gaussian probability density
(theorem of Moivre-Laplace) of the form

folz) = \/21—7” e 35 a=sp, o= /sp(1—p). 3)
The probabilityp4(t + 1) that a neuron receives enough input to exceed threshold
at (¢t + 1) is thus given by the integration of af},(z) att with z > € = s©. The
probability p(¢ 4+ 1) that the neuron is activated at tine+ 1) further depends on
the probabilityps(t + 1) that it is not refractory att + 1). The probabilitypg(t + 1)
is directly given by the complement of the probability that the neuron was active the
time step beforepp(t + 1) = (1 — p(t)).

To further analyze the dynamics so called coherence effects are to be consid-
ered, i.e. effects which are caused by repeating (cycling) neural activity states.
Such effects are a direct consequence of the random but fixed interconnection ma-
trix (7;,) and thus interdependent neural activation and refraction probabilities. As
we will discuss at the end of the section, the coherence effects can be suppressed,
e.g., by neural threshold noise. If the effects are sufficiently suppressed, we can
assume the probabilities (¢ + 1) andpg(t + 1) to be approximately independent,
p(t+ 1) =pa(t+1)pp(t +1). The assumption permits a compact description of
dynamics (1) in terms of the activation probabiliti¢) (see Appendix for details):

t) — ©
plt+1) = o, (0=C ) (1), @
p(t) (1 —p(t))
where &,(z) = —— f;/gx e~ 3v’ dy is the Gaussian error integral parameterized
\/ﬂ fe'e)

by s. The inhibitory feedback to the minicolumnar activity is modeled indirectly

6



as a rise of the threshold. It is taken to be present already in the next time step
and to be equally sensed by all neurons, which can be motivated by the axonal
distribution of inhibitory double-bouquet neurons (DeFelipe et al., 1990; Peters and
Sethares, 1997). The inhibitory neurons receive input from the excitatory neurons
of the minicolumn. The inhibitory feedback we choose to depend linearly on the
over-all activity, - >, n,(t), of the minicolumn,

1 m
0 = VEZni(t)—k@o = vp(t)+ 06,, (5)
i—1

wherev is the proportionality factor of inhibition an@, the constant threshold of
the neurons. The choice represents a natural approximation of the feedback and
allows for a further analytical treatment. Inserting (5) into (4) we get:

(1—v)p(t) — O,
p(t) (1 = p(t))

The difference equation (6) can be shown to possess a point of non-zero stable sta-
tionary activity for a wide range of parametet®©,, andv, given by:

plt+1) = @y ) (1—=p()). (6)

Py =max{p|p = <I>s((1_;)(%§“) (I-=p)}. (7)
P> (or P, for short) can be numerically determined and its value is in good agree-
ment with activity probabilities obtained by directly simulating (1) with inhibition
(5). The dynamics (1) with (5) has to be simulated with additional neural thresh-
old noise in order to suppress the coherence effects mentioned above. Fluctuations
of the inhibitory feedback caused by a finite number of simulated neunonalso
contribute to the noise but are on their own for a wide range of parameters not suf-
ficient for an appropriate suppression of the effects. Note that the coherence effects
are most efficiently suppressed if the interconnection mafiriy is re-randomized
at each time step. In this case the assumpti@n+ 1) = pa(t + 1) pp(t + 1) and
also the computation gf4 (¢ + 1) via the binomial distribution can be adopted from
(Anninos et al., 1970). There the matter is thoroughly discussed for a dynamics with
another type of inhibition, but the essential arguments carry over to our dynamics.
Neural threshold noise as an alternative to re-randomization was first described in
(Lucke et al., 2002). In specific simulations with fixed interconnections and thresh-
old noise we have validated that their behavior closely matches that of simulations
with successively re-randomized interconnections, which shows that the analytical
results are also applicable for the biologically realistic case of fixed interconnections,
as used in this work.

2.2 Model of the Macrocolumn

As motivated by the distribution of synapses of inhibitory neurons (DeFelipe et al.,
1989, 1990; Peters and Sethares, 1997; Budd and Kisvarday, 2001) the macrocol-
umn is modeled as a collection of inhibitorily coupled minicolumns. With the same
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assumption as above the dynamics is given by the following sktofifference
equations,

(t+1) iTm SI() - 0 HI-nID). (@

wherea = 1,.. ., k counts the minicolumng,= 1, ..., m the neurons of the mini-
column, and wheré€(t) denotes a time dependent inhibition. Note that equation
system (8) assumes that there are no direct connections between excitatory neurons
of the different minicolumns. For a fixed the interconnectio7;) is of the same

type as in the previous section. By the statistical considerations of Sec. 2.1 we can
replace the: m difference equations by a set bfdifference equations in terms of
activation probabilitiep,, of neurons of different minicolumns:

Palt) — Z(t) — O,
\/poc )(1 = pa(t))

The inhibitory feedback (¢) is modeled as the maximum of the over-all activities
in the minicolumnsp; = = 37" n? (t),

i=1""

I(t) = v max {pal0)}, (10)

.....

Pa(t+1) = CID(

) (1 =pal(t)). (9)

where the maximum operation is assumed to be implemented by the system of in-
hibitory neurons of the macrocolumn. The maximum operation can be biologically
implemented in various ways (Yu et al., 2002). Some possibilities are based on
shunting inhibition (compare also Reichardt et al. (1983)) whereas others use sub-
tractive inhibition. On the functional side, inhibition proportional to the maximal
minicolumnar activity (10) results in a qualitatively different and favorable behav-
ior compared to a dynamics with inhibition proportional to the average activity as
was studied in (Licke et al., 2002). The dynamical difference and its functional
implications will be further discussed later in this section.

2.3 Stability Analysis

The dynamical properties of the macrocolumn model can now be studied with a sta-
bility analysis of a system df coupled non-linear difference equations£ 1, . . . , k):

palt+1) = @, (Pl = v maXstpa®) = Ooy () oy — g0 (11)
\/pa 1_poz )

First note that the system possesses the following set of potentially stable stationary
points,

Q=A{qlvi=1,.... k(s =0VvVa="P,)}, (12)

e.g., fork = 3, (0,0,0), (P,,0,0), (0,P,,0), ..., (P,,P,,0), ..., (P,,P,,P,),
whereP, is given in (7). The magnitude @ is |Q| = 2*. The vector with small-
est norm, e.g.(0,0,0), will be calledq,.;,, and the vector with largest norm, e.g.,
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(P, P,,P.,), will be calledq,,... The set of@ without the trivial stationary point
Gmin Will be denoted byO*, O = Q — {G.in}- TO analyze the stability of the sta-
tionary points inQ we first approximaté (p) = v maxg{pg} with a differentiable
function:

o =

k
L) = v (Z W) >l Z,() = (). (13)

B=1

A stationary pointy'is stable if and only if the magnitudes of all eigenvalues of the
Jacobian oﬁ(ﬁ) (see (11)) are smaller than one. Thanks to symmetries of equation
system (11) and to the substitution ﬁy(ﬁ) the eigenvalues can be computed in
general and are, in the limit— oo, given by

N o= 0, A = L 0w 2000 0) — @)
2./P, (1 —P,) Py
No = ! 1+ —2P) v+ =P 0 ) &' (h(v)) — ®.(h())

Py

2y/P, (1 —="P,)

where h(v) = 1=v)P - 6".

7)1/ (1 - Pl/)

If for a given vectorg € Q, I(q) is the number of non-zero entries, thenis of
multiplicity (k—1(g)), A1 is of multiplicity 1, and), is of multiplicity (1(¢)—1). For
fixed parameters and©, the magnitudes of all eigenvalues are smaller than one for
v smaller than a critical value.. Forv > v,, A\, gets larger than one, which implies
that allg € Q with [(7) > 2 become unstable. Hence, a set2f— k — 1) stationary
points of Q" lose their stability at the same valug In Fig. 1 and 2 the properties
of the dynamics are visualized using bifurcation diagrams. The critical valcan
be computed numerically and is, fer= 15 and©, = % given byr, ~ 0.69.
For &k = 2 the setQ" consists of three non-trivial stationary points, which are all
stable forv < v.. Apart from the points irQ" there exist two unstable stationary
points, which are numerically computed and are given by the dotted lines in Fig. 1.
For small values of’ the unstable points lie in the vicinity of the anti-symmetric
stable stationary point&P,,0) and (0, P, ), which indicates that they attract only
a small volume of neighboring phase space. For increasitige unstable points
approach the symmetric stable stationary paipt. = (P,, P.), which indicates
that the phase space volume of points attracted, by gets gradually smaller. In
the point of structural instability; = v, ¢,... finally loses its stability when it meets
the unstable stationary points in a subcritical pitchfork bifurcation.

To visualize the crucial and analytically derived property that- £ —1) station-
ary points ofQ* lose their stability for the same value mfthe bifurcation diagram
of a network fork = 3 is given in Fig. 2. In the diagram all stationary points@f

Due to the symmetries in the equations we get,gfar Q, a symmetric Jacobiaﬁ’(q) which
eigenvalues are simple functions of the Jacobian matrix entries. The explicit equations for the eigen-
values can then be obtained by long but straight forward calculations.
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Figure 1: Bifurcation diagram of equation system (11) for parametets 15,

0, = 1 andk = 2. The points ofd™ = {(P,,0), (0,P,), (P,,P,)} are plotted to-
gether with the two unstable points of the dynamics. To obtain a 2-dimensional bifur-
cation diagram the stationary points for giveare projected onto the 1-dimensional
space with normal vecto%(l, 1). The only stationary point not plotted s,;,, be-
cause it projects onto the same poingas,. The solid lines mark stable stationary
points, the dotted lines mark unstable points.

are plotted and we find for < v. the set's(2* — 1) stable stationary points. Apart
from the points inQ™ we get a number of unstable stationary points, which all lie,
for smallv, at the same distance frofi,., and in the vicinity of the other points of

Q*. Asv increases, the unstable points are getting closer to the stable points with
() > 2 non-zero entries and for= v, these stable points @ lose their stability
when they are met by the unstable points in subcritical bifurcations.

Note that an inhibition proportional to the mean minicolumnar activity instead
of the maximum as in (10) results in a dynamics whose stationary points lose their
stability for different values of (compare also ucke et al. (2002)). This dynamic
property is reflected by eigenvalues of the dynamics’s Jacobian which depend on
1(q) for Z,,(p) with 0 < p < oo.

2.4 Input

For the neuron dynamics (8) we have gained, by our stability analysis, far reaching
insight into the dynamical properties of the macrocolumnar model. The knowledge
can now be exploited to investigate the dynamical behavior of the system if it is
subject to perturbations in the form of externally induced input. As is customary
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Figure 2: Bifurcation diagram of equation system (11) for parameietsl5,

0, = % andk = 3. For eachv the stationary points of the 3-dimensional phase
space are projected to the plane given by the normal veﬁt@r, 1,1). The vectors

D1, P, andp, are projections of the trihedron of the phase space onto this space. The
only stationary point of the system which is not plottedjs, because it projects
onto the same point ag,... The unstable stationary points are plotted as dotted
lines, the stable stationary points, which are always elemengs ofare plotted as
solid lines. Fow < v, all elements of2™ are stable but for > v, only k = 3 stable
points remain. All other stable points lose their stability in subcritical bifurcations
for the same value of.

in biology, we will denote the positive contribution of a presynaptic neuron to the
input of the postsynaptic neuraxcitatory postsynaptic potenti@dEPSP) and we

will say that a neuron emitsgpikeat timet if it is active at timet. For the dynamics

as investigated in the previous section there are essentially three different modes of
operation possible:

e Forv > v.the macrocolumn can serve as a memory unit being able to stabilize
k different macroscopic states, i.e. stable stationary points of equation system
(11). The switching between the states is possible by sending a sufficiently
large quantity of EPSPs to the respective minicolumn.

e Forv < v, the macrocolumn is able to stabili2& — 1 different macroscopic
states. The transition between the states would be possible by inducing a suffi-
ciently large quantity of EPSPs to an appropriate subset of minicolumns. If
is chosen to be only slightly smaller thanand if one starts with the stable sta-
tionary pointg,,.., already small differences in the input to the minicolumns
are sufficient for the macrocolumn to change to a corresponding macroscopic
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State.

e If, for an initial stateq,,.., v is continuously increased from < v, up to a
value larger tham,, the system will change to another stable stationary point
for some value of < v, depending on the input. For larger valuesahe
system can again change between stable points mmilfinally larger than
v, and the dynamics is forced to one of the remaining stable stationary points
where just one minicolumn is active. Consider, for instance, external EPSP
input to a macrocolumn witlk = 3 minicolumns. If the numbers of EPSPs
induced per time step\/5; »¢p, are different for the three minicolumns, e.g.,

Mipsp : Mipsp @ Mppsp = 0:1: (1+¢), for 0 <e< 1,
the dynamics will stabilize the initial stafg, .. for smallv. If v gets larger, the
system will change to the stable poiit P,, P, ) for somer; < v. because
this point is less deflected by the input than... The deflection of0, P, P,)
caused by the input is sufficiently large, however, i further increased. The
system will therefore finally stabilize the poifit, 0, P,).

The third possibility is the one with the most useful features. For given inputs the dy-
namics first successively switches off the minicolumns with smallest inputs. These
macro-state transitions occur the earlier the larger the differences between the inputs
are and can therefore encode neural population rate differences. If a new stable sta-
tionary point is reached, the process of switching off a minicolumn continues, each
time without the perturbing influence of the input of the already quiescent columns.
For a dynamics whose stationary points lose their stability for different values
of v (see lilcke et al. (2002)) the number of active minicolumns is determined by
and not by the input. Note in this context that (10) is not the only type of inhibition
that results in a single critical value of Other inhibition functions, e.g. the average
of active columns,

To(t) = v S ps(t), A= {B]ps>p}, (14)
‘A’ BEA

with 0 < p < 1, can also be shown to possess this property. In general, the contri-
bution of quiescent minicolumns to the inhibition has to be negligible as a prerequi-
site for a dynamics with qualitative behavior comparable to the one with inhibition
(10). The simplicity of (10) and its good functional performance were the reasons
to choose an inhibition proportional to the maximum in this work.

The macro state transitions which depend on input differences but which are
induced by an increased parameteare all performed near to symmetry break-
ing points. The transitions are theoretically infinitely sensitive to input differences
such that a macrocolumn can serve as an ideal decision unit (seeia&lse &t al.
(2002)). For appropriate parameterand©, the stabilization of stationary activity
is performed in a few iteration steps such that the time to incre&®en its minimal
to its maximal value lies within a few tens of time steps, which makes decisions very
fast in addition. If the inhibition parameter oscillates, the macrocolumn can repeat-
edly select the strongest input or inputs. In the next chapter this mode of operation is
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exploited and further discussed for a macrocolumn with explicitly modeled afferent
fibers.

3 Afferent Fibers and Hebbian Plasticity

We consider the situation that the excitatory neurons of the macrocolumme-

ceive input from an input layer a¥ external neuron&f which are of the same type

as the excitatory neurons of the minicolumns. In the following we think of the neu-
rons of the input layer as extra-cortical neurons in order to analyze the dynamical
properties of the macrocolumn in a more convenient way. However, the input neu-
rons can also be considered to be excitatory neurons of other macrocolumns, which
would account for lateral excitation within the cortex. An afference from an input
neuron,n!, to a neuron of a minicolummy, will be denoted byR{: (see Fig. 4A

for a sketch of the system). Analogously to the internal connect|V|ty we demand
that one neuron? receives a fixed number ofsynapses from neurons of the input
layer and that the synaptic weight of a synapse is given by % The receptive

field vector of a minicolumni® € {0,¢,2¢, ...}V, is defined as the sum of the RF
vectorsi® = (R%, ..., R?,) of all neurond of the minicolumna, R = 7| R,

Instead of reanalyzing the dynamics statistically it is (f@ignificantly smaller
than s) sufficient to treat the external input to the macrocolumn as perturbation of
the internal dynamics. The macrocolumn will be operated by repeatedly increasing
the inhibition factorr from a minimal valuey,,;, to a maximal value/,,,,. The
system is hereby forced to select the column(s) with strongest input at the end of
each period or-cycle(as we will call it from now on). In the beginning ofiacycle
the system has to be in the stalg,., which can be achieved under the influence of
noise by setting’ to a sufficiently small value before starting to increasat v,,;,

(see Fig. 3B). If for a macrocolumn of, e.@.,= 3 minicolumns, the RFsR®, are
already given, the system is able to distinguish even strongly overlapping input pat-
terns. The system first switches off the minicolumns with RFs very different to the
presented stimulus and then decides between the remaining minicolumns with RFs
similar to the stimulus (see Fig. 3). In this way the system can also gracefully handle
simultaneously presented patterns. If a superposition of two patterns corresponding
to the RFs of two minicolumns is presented, the dynamics switches off all irrelevant
minicolumns except the two corresponding ones, whose activities are symmetrized.
It then depends on the choice »f,,, whether this is the final state or whether the
symmetry is broken to favor one of the patterns.

We now proceed by introducing Hebbian plasticity of the afferent fibers to match
neurophysiological experiments which show input-dependent changes of neuron
RFs. As the RFs of neuron&?, change, the RFs of the minicolummn?, conse-
quently change in time as well. As update rule for the synaptic change,
ARG(t) = R(t) — RE;(t — 1), we use elementary Hebbian plasticity, i.e. an af-
ferent connectiori?; is increased if the pre-synaptic neuron was active at the time-
step directly preceding the firing of the post-synaptic neuron. The state of maximal

2In the neurons’ RF vectors only afferent connections are considered.
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Figure 3: Operation and dynamic behavior of a system with parametets,100,
s=15,r=17,0, = % with & = 3 minicolumns, and an input layer of = 16 x 16
neurons. InA the RFs,R?, of the minicolumnsy = 1,2,3 are given as two-
dimensional plots of thé6? vector entries. The entries are visualized as gray levels
(black = 0). To make the RFs more conceivable we have chosen them to be of
the form of simple two dimensional patterns. The input pattern is chosen to cor-
respond to the RF of minicolumm = 3. During the operation of the system all
neurons of the input layer which correspond to white pixels spike with probability
%, neurons which correspond to black pixels are not spikingB lime periodical
change of the parameter of inhibition, is visualized. After a short period with

v = 0.1 which serves to reset the dynamicsgg,., v is linearly increased from
Vmin 10 Ve = 1.12. Threev-cycles with period lengtif,, = 25 are displayed.

The dynamic behavior of the system is visualize€iwhere the activitiep, (¢) for

the minicolumnsy = 1,2, 3 are plotted against time. In the beginning af-aycle

the dynamics tends to symmetrize the activities as predicted by the theoretical re-
sults and the bifurcation diagrams. The symmetry is first broken when minicolumn
«a = 1 is switched off because its RF receives the smallest number of EPSPs from
the presented input. Afterwards the stationary péintP,, P, ) is stabilized, i.e.

the remaining two minicolumn activities are symmetrized, until minicoluma 2
becomes quiescent because it receives less input than minicalumb The qual-
itative behavior for each-cycle is the same but quantitative differences exist due to
threshold noise of the neurons and due to finitely many neurons per minicolumn.
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Figure 4: A Sketch of a macrocolumn with = 3 minicolumns connected to an
input layer of N = 25 neurons. Then = 8 neurons per minicolumn are randomly
interconnected, each minicolumnar neuron receies 3 synapses from within

its minicolumn. The inhibition is symbolically sketched as one inhibitory neuron
receiving input from all minicolumns and projecting back to all of them. Each mini-
columnar neuron receives = 2 synapses from neurons of the input layer. The
randomly initialized RFE!, of minicolumna = 1 is fully displayed whereas RFs
R? and R? are not. Lines within the input layer are only displayed for visualization
purposes, there are no connections of neurons within the input By®et of three
different input patterns of6 x 16 pixels. C Modifications of RFs of a macrocol-
umn with & = 3 minicolumns and parameters = 100, s = 15, r = 7, ©, = %
& =0.03,& =55, andN = 256. For0 v-cycles the random initialization of the RFs

is displayed. After fives-cycles (and five presentations of patterns randomly chosen
from the set of input patterns%i’1 is slowly specializing to patter2 and after10
and15 y-cyclesﬁ2 and 3 specialize to the patteri3sand1, respectively. Afted5
v-cycles the RF specialization further increases until the maximal specialization is
reached after about0 v-cycles. Froml00 v-cycles on the degree of specialization
remains unchanged.
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macrocolumnar activityy,.... is the same for all inputs. Only after the selection
process, i.e. at lower levels of activity due to minicolumn inactivation, the activity
state is able to distinguish between inputs. Therefore, synaptic plasticity has to be
predominant at low levels of macrocolumnar activiB(t) = S>F_, S n%(t), in

order to generate discriminating RFs. A simple and, as it turned out, functionally
advantageous way to do this is enabling synaptic modification oilytifis smaller

than a threshold. As activity oscillations are ubiquitous in the cortex, it seem plau-
sible that synaptic plasticity is phase coupled (see Wespatat et al. (2003) for recent
evidence of phase coupled synaptic modification). For the dynamics of synaptic
change we further demand as boundary condition that the number of synapses re-
ceived by a minicolumnar neuron is limitedtan order to avoid unlimited synap-

tic growths. We get as dynamic equations for the synaptic weights 1, ... k;
i=1,....m;j=1,...,N):

ARY(t) = Afnf(t)yni(t—1) iff B(t) <¢, (15)
E%Rg(t) _ (16)

As our synaptic weights are discrete valugds, is not a real valued growth factor
but a probability that the synaptic weight is mcreasedday& <. If R isincreased
for given (o, i), the neurom$ removes randomly one afferent from the input layer
in order to fulfill the boundary condition.

We operate the system by periodically changias in Fig. 3B. Throughout the
duration of av-cycle we present a pattern randomly chosen from a set of input pat-
terns. An input neuron which corresponds to a white pixel is spiking and a neuron
which corresponds to a black pixel is not. The RFs of the neurons are randomly ini-
tialized and are modified according to (15) and (16). If the set of training patterns is
structured, e.g., in the sense that it contains a small number of patterns as in Fig. 4B,
we can observe a specialization of the RFs of the minicolumns to the different in-
put patterns. In Fig.4C the modification of the REE, of a macrocolumn with
a = 1, 2, 3 minicolumns is displayed and it can be seen that the system organizes
its RFs such that the macrocolumn becomes a decision unit for the input patterns.

In the beginning an input pattern effects all minicolumns equally such that the
system selects a subset of minicolumns by symmetry breakings. As soon as, initiated
by random selection, a RF specializes for one class of input patterns, the correspond-
ing minicolumn is more likely to be activated by patterns of this class, which further
increases the specialization of the RF. This is the positive feedback loop of the self-
organizing process, which amplifies small fluctuation and finally leads to an ordered
state of the RFs. Additionally to self-organizing aspects, we have a competition
due to the minicolumn selection process and competition between afferent fibers in-
duced by (16). In order to avoid mutual weakening of different patterns stored in the
same minicolumnar RF, the system specializes its RFs to adequately different input
patterns.

3To be more precise, for each, j,a) A € {0,c} is an independent Bernoulli sequence with
probability P(0) = 1 — £ andP(c) = €.
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4 Experiments

We have seen that the system is able to specialize its RFs to different input pat-
terns. So far we presented three different patterns to a network of three minicolumns
(Fig. 4). We will now investigate two more general situations. In the first experimen-
tal setting we will present to the network different patterns which can be grouped
into different classes. In the second setting the network’s task is to extract basic con-
stituents of a class of patterns generated by combining different bars, a task known
as thebars problenm(Foldiak, 1990).

For both tasks one and the same network is used with the same set of parameters.
All experiments use an input layer ©6 x 16 input neurons. If a binary (black and
white) pattern ofl6 x 16 pixels is presented, the input neur@zrj, of a given pixel
spikes with probability% if the corresponding pixel ihiteand is not spiking if the
corresponding pixel iblack Gray levels can be coded by intermediate firing rates
but in the following, for simplicity, only binary input is considered. We use a net-
work with m = 100 neurons per minicolumn. Each neuron receives15 synapses
from pre-synaptic neurons of the same minicolumn ard 7 synapses from neu-
rons of the input layer. The neurons’ constant threshold is g€t te % ~ 0.067, it
is chosen such that a single EPSP is not sufficient to activate a neuron. The constant
threshold is subject to Gaussian threshold noise with zero mean and a variance of
(O'@)Q = 0.01.

The oscillation of the inhibition is essentially governed by the parameters
Vmin = 0.5, Ve = 1.12, and the length of a-cycle is7, = 25 time steps. To
allow shortv-cycle periods we use:aoscillation as given in Fig. 3B where the first
part (with» = 0.1 and additional noise) serves to reset the dynamics to the station-
ary pointg,.... Note, however, that self-organization of RFs is also possible with
other, e.g., sinusoidal, types ofoscillations.

Hebbian plasticity (15)(16) is determined by the synaptic modification rate
& = 0.03 and the parametér= 55 which determines the network activity for which
synaptic modification is possible. The latter is chosen such that synaptic modifica-
tion is only enabled close to the end of-&ycle (note that a 2-3 times larger value
for £ with simultaneously reducefiresults in a system with comparable qualitative
behavior).

All parameters are independent of the number of minicolukwkich we allow
to change for different experiments. The parameters are partly chosen to reflect
anatomical data as in the case of the number of neurons per minicolurans00
and partly to optimize performance in the experiments. In the following we will
refer to these parameterstag standard set of parameters

4.1 Pattern Classification

We have seen that the system is able to specialize its RFs to be sensitive to a number
of input patterns. More realistic input would not consist of a repeated presentation
of exactly the same patterns as in Fig.4B,C but rather of different patterns which
can be grouped into different classes. In Fig.5 a pattern classification experiment
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Figure 5: InA the set of input patterns is displayed. During eaetycle one ran-
domly chosen pattern of this set is presendistance matrix generated using the
distance measur@s. The line and column index enumerates #enput patterns

in the same order as they appeaAinin C the modification of the RFs of a macro-
column withk = 6 minicolumns and the standard set of parameters is displayed.
After 250 and 1000 v-cycles four and six different pattern classes are represented,
respectively. The RFs’ degree of specialization further increases thereafter and it can
be seen that RFB! and K2 further subdivide the pattern class formerly represented
by R only. D Final RF specialization (aftex50 v-cycles) if a macrocolumn with

k = 3 minicolumns is used with the same inpl. Final RF specialization (after
10000 v-cycles) if a macrocolumn with = 9 is used.
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for such a kind of input is illustrated. For input pattefii € {0, 1}?°% as displayed
in Fig. 5A we can define the distance measure,

|AAB|
|AUB|’

whereA = {i|V;* = 1}, B = {i|[V} = 1}, and wherd AAB) = (AU B) — (AN B)

is the symmetric difference of sets. Distance function (17) can directly be derived
by analyzing RF mediated input to the minicolumns (further detail would go beyond
the scope of this paper) and can be used to group the input patterns into different
classes of mutually similar patterns as can be seen in Fig.5B. In Fig.5C a typical
modification of RFs of a macrocolumn with six minicolumns is displayed and it can
be observed that the system builds up representations of all classes identifiable in
Fig. 5B. If fewer minicolumns than pattern classes are available, the system builds
up larger classes of mutually similar patterns (see Fig.5D). If more minicolumns
than major classes are available, the system further subdivides the pattern classes
(see Fig.5E). The subdivision may in this respect slightly differ from simulation to
simulation. E.g., fok = 9 the ‘square class’ is in many cases only represented by
one and the ‘plus class’ by three instead of two minicolumns as in Fig.5E. In the
experiment it can further be observed that the final representation rather depends
on the substructure of the pattern classes than on their size, e.g., the ‘plus’ pattern
appears more frequently than the ‘St. Andrew’s cross’ pattern but the ‘St. Andrew’s
cross’ tends to be represented by more RFs (see Fig. 5C,E). Furthermore, the classi-
fication is independent of the number of white pixels per pattern because the impact
of the patterns on the minicolumns is normalized by boundary condition (16). The
independence is only affected by patterns approximately filling out the whole input
layer or by patterns having a number of white pixels close to zero.

dg(V*, V) (17)

4.2 Feature Extraction

So far we have seen that if the training patterns contaitasses of patterns, the
system is able to identify these classe% if> v. There are situations, however,
where the training patterns cannot easily be grouped into pattern classes. This is the
case, for instance, if we present from a numbev ghltterns not only the patterns
themselves but also all possible superpositions. 4f 2¥, the system is not able to
store all patterns in different RFs. We have already mentioned in Sec.3, however, that
the internal dynamics of a macrocolumn is especially suitable to take into account
pattern superpositions such that we can, nevertheless, expect the system to generate
appropriate RFs. A method to evaluate the ability of a network to handle input
which can only be represented by a combination of different patterns is the bars
test. It was first introduced in fdiak, 1990) and soon became a benchmark test for
generalization and combinatorial abilities of learning systems. The training patterns
of the bars test consist of horizontal and vertical bars. On a quadratic inputgayer,
(non-overlapping) horizontal argj(non-overlapping) vertical bars can be displayed
(with b an even integer) each with probabilil{tyand all of equal size (see Fig. 6A for
some examples with = 8). Note that overlapping horizontal and vertical bars do
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Figure 6: A A selection of33 typical input patterns of the bars test ®tifferent
bars.B Typical example of the self-organization of the RFs of a macrocolumn with
10 minicolumns and the standard set of parameters. During:eaghle a randomly
generated input pattern of the upper type is presented. After &30ut-cycles

the network has already found representations of seven bars. 1Afier-cycles
representations of all bars are found and are further stabilized.
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not add up linearly because two overlapping white pixels do not add but result in a
white pixel, as well. The bars test is passed if, after a training phase, the system has
built up representations of all bars and is able to correctly classify input consisting
of superpositions of the learned bars.

We can operate our system without modification, with the same set of parame-
ters as for the experiment in Fig. 5, and it turns out that it passes the bars test without
difficulties. The only prerequisite for a correct representation is that the number of
minicolumnsk is greater or equal to the number of different bars; b. If &£ > b
the RFs of some minicolumns remain uncommitted or specialize for a bar already
represented by another minicolumn. For a bars testwitt8 different bars Fig. 6B
shows the modification of the RFs of a macrocolumn with= 10 minicolumns.
Starting from random initialization the RFs specialize to different single bars even
though the input patterns consist mainly of bar superpositions. In Fig. 6B a repre-
sentation of all bars is clearly visible afte#00 v-cycles and the representation can
be seen to further stabilize thereafter. During the learning phase a RF sometimes
specializes to a combination two or more bars as can be seen by looking&it RF
in Fig. 6 (after 50Q/-cycles). Such a RF is not stable, however, because the parts of
the RF which correspond to different bars compete via equation (16). The RF there-
fore rapidly specializes for one bar if another RF becomes sensitive for the other.
An example is given by RF&” and &8 in Fig. 6 from 500 to 1000--cycles. In
the experiment of Fig. 6 two RFs remain unspecialized. In other experiments or for
a longer learning phase the two super-numerary RFs often specialize to an already
represented bar and increase redundancy in this way.

The bars test was used in different versions with different numbers of bars and
different systems. In (Hinton et al., 1995), for instance, 8 bars where used, (Hochre-
iter and Schmidhuber, 1999) and others used 10 bars, (Hinton and Ghahramani,
1997) 12 bars, and {#diak, 1990) and others used 16 bars. To allow for compari-
son with these systems we measured the performance of our system for bars tests of
8, 10, 12, 14, and 16 bars. For all tests we used the same system and always with
the standard set of parameters and an input lay&6 of 16 neurons. The different
bars tests required different bar widths in order to cover the input layer appropri-
ately. For the bars test with = 8 bars a bar width of four pixels was used (see
Fig.6), forb = 10 three pixels, and fob = 12, 14, 16 bars were of a width of
two pixels. Consequently, the input layer is not uniformly covered for 10, 12, and
14 bars. In Fig. 7A,B,C the results of different test series are presented. In Fig. 7A
the number of minicolumns is equal to the number of different bars, in Fig. 7B the
number of minicolumns exceeds the number of bars by 2, and in Fig. 7C a surplus
of 4 minicolumns is available. A measurement point in the diagrams corresponds to
the number of/-cycles after which there isi@% probability that all bars are repre-
sented, e.g., iR00 runs with 8 bars ané = 10 minicolumns there wer&00 runs in
which a representation was found after 1850ycles (see first measurement point
in Fig. 7B). A bar is taken to be represented by a minicolumn if the minicolumn
remains active in 9 of 1@-cycles if the bar is presented. A macrocolumn is said
to have found a representation of all bars if all bars are represented by at least one
minicolumn and no minicolumn represents two different bars. In all runs the system
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Figure 7: InA, B, andC results of bars tests with = 8,10, 12, 14, 16 bars and a
macrocolumn with standard set of parameters are displayed the number of
minicolumns of the used macrocolumns is always equal to the number of different
bars. InB the number of minicolumns exceeds the number of bars by two a@d in
there is a surplus of four minicolumns. Dy E, andF results of a bars tests with

b = 8 bars and a macrocolumn with= 10 minicolumns and standard parameters
are given. IrD the input patterns are perturbed with bit flip noise@dab 12%. In E

the bar widths are varied andkthe generation of the input patterns is altered in the
way that for each run four randomly chosen bars appear with proba@{lltyL v)
whereas the other four appear with probabiﬁ()l + v). The measurement points

of A, B, andC were obtained by taking00 runs into account, the measurement
points of D, E, andF with 100 runs, each. As result the numbers:etycles is
given after which a representation of all bars is found with a probability®fThe
lower and upper bounds of the error bars correspond to a probability ehd0.8
respectively. For each run a newly generated macrocolumn with newly initialized
RFs was used.
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finally found a correct representation. Once a representation was found it remained
stable in the sense that the minicolumns remained specialized for the same bars. For
a given experimental setting there can be relatively large differences between indi-
vidual runs, however. F& bars and: = 10, e.g., a correct representation of the bars
was not found after abo100 v-cycles in20% of the 200 runs (indicated by the
upper bound of the error bar) whereas anottéf, of the experiments found repre-
sentations already aftdf0 v-cycles (lower bound). The reason for this is that all
bars but one find presentations very early whereas the remaining bar might consume
a long time to be represented — an effect which is, for instance, also observable in
(Spratling and Johnson, 2002) for the noisy bars test.

In Fig. 7B,C a large reduction of learning time can be observed if the number of
minicolumns is larger than that of presented bars. A surplaswfhicolumns results
in a reduction to less than half of the learning time for no surplus and a surpius of
minicolumns results in a learning time of coarsely a fourth.

For the results in Fig. 7A,B,C we used a newly generated bars image for every
v-cycle. The same experiments can be carried out, however, by choosing randomly
from a fixed set of a number af generated bars images.ufis several times larger
thanb the results are qualitatively and quantitatively comparable. For a bars test
with 8 bars andt = 10 minicolumns, for instancey; = 50 input patterns are fully
sufficient to build up a correct representation of single bars.

The results of Fig. 7A,B,C further show that learning time in terms-of/cles
decreases if the number of bars does. This can be expected because the system has
to learn a decreasing number of independent input constituents. On the other hand,
there is an increasing overlap of bars, which makes it harder for the system to dif-
ferentiate between two bars (compare Dayan and Zemel (1995) and Hochreiter and
Schmidhuber (1999)). The positive effect of fewer constituents is predominant in
our system. The negative effect of more overlap can be made responsible, how-
ever, for an increase of learning time if the bar widths are varied in an experiment
discussed below.

Once a system has learned a correct representation of the bars it can be used to
analyze bars images. To test the accuracy of the recognition we trained a macrocol-
umn with images generated according to the bars test until it found a representation.
After some additional learning to further stabilize the representation it was tested
with newly generated bars images of the same type as the training images. If an im-
age is presented, the minicolumns corresponding to the bars appearing in the image
remain active longer than minicolumns associated to bars not appearing in the test
image. At the end of a-cycle a minicolumn is either active or not. A test image
is considered to be correctly recognized if for all minicolumns which correspond to
bars appearing in the image, the probability to remain active is above average and if
the probabilities of minicolumns corresponding to all other bars lie below average.
Six macrocolumns of6 minicolumns trained with bars imagesdf bars were each
tested 100000 times with images generated according to the bars test except that,
for convenience, we required each image to contain at least one bar. The networks
could classify the input correctly in all but two of tlié0000 cases. In the first case
one of seven bars was not recognized and in the second one of eight bars.
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In the usual bars test an individual bar is always displayed identical, the bars
are of the same size, and all bars occur with exactly the same probability. Systems
solving the bars test can therefore be suspected to use these artificial assumptions.
The system (Bldiak, 1990), for instance, not only exploits the fact that the bars are
occurring with the same probability but also needs to know the exact value of the
bars’ probability of occurrence. How much a system relies on the assumptions of
the bars test can be tested by relaxing them and we present three test series showing
the corresponding behavior of our system. For all three series we use a bars test
with b = 8 bars and a macrocolumn with= 10 minicolumns and standard set of
parameters.

For the robustness against perturbed bar images we presented input images with
bit flip noise during the learning phase (see Fig. 8). In Fig. 7D the learning time is
plotted for different degrees of noise. As can be observed, low levels of noise even
have positive effects. However, with an increasing noise level the final degree of
specialization of the minicolumns’ RFs is reduced. In Fig. 8, the final specialization
degree corresponds to the displayed RFs after about 2000 orns6@fes. If com-
pared to the final degree of specialization in Fig. 6B, it can be seen that in the noisy
case the RFs have more overlap. The overlap increases with increasing noise which
leads to an increasing instability of a representation of all bars until the system can-
not find a representation of the bars anymore. For the standard set of parameters
and for a bars test with 8 bars no representations can be found for noise levels about
abovel2%. By decreasing the learning rafethe robustness against noise can be
increased such that representations can be found for noise levelslabave

In the second test series the bar size is varied. bFer 8 the bars are usually
w = 4 pixels wide. Ifw = (wq, ws,ws,w,) denotes the bar widths for the four
vertical as well as for the four horizontal bars, we can defilne= fol |w; — 4]
as a measure for the bar width variation. In Fig. 7E the results for the test series
W= (4,4,4,4),(3,4,4,5),(3,3,5,5),(2,3,5,6), (1,3,5,7) are given. The learning
time increases with increasidg presumably because the maximal bar overlap in-
creases, e.g., far = (1,3, 5,7) the horizontalr pixel wide bar covers nearly half
of the1 pixel wide vertical bar.

The robustness of the system against relaxation of the assumption that all bars
occur with equal probability is investigated in the third test series. We reduce the
appearance probability of four randomly chosen bars to the valgep, (1 — ),
and increase the appearance probability of the four other bars by the same value
p = po(1+ 7). Herey is a parameter in the intervéll, 1] andp, = ; =  is the
usual appearance probability. In Fig. 7F the resultsyfer 0.0,...,0.8 are given,
for v = 0.9 the corresponding measurements 2r&0, 8050, and32850 v-cycles
for probabilities to get a correct representatio @f 0.5, and0.8, respectively. The
measurements show that the system learns reliable a correct representation even if
half of the bars appear nearly 20 times more frequently than the others and it only
needs a longer learning phase if half of the bars occur more than four times more
frequently.

The bar appearance probability can also be varied globally. If all bars appear
with the same probability, and if p, is increased to values larger th?nthe prob-
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Figure 8:A A selection of33 typical input patterns of a bars test with- 8 different

bars and% bit flip noise. B Typical RF specialization corresponding to this input.
RFs of a macrocolumn with0 minicolumns and the standard set of parameters are
displayed. After about 500-cycles representations of all bars are recognizable and
after about 2000-cycles the maximal degree of specialization is reached.
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ability to find a few or a single bar in an input image gets gradually smaller. For
k = 10, b = 8, and the standard set of parameters, learning time increaggs if
gets larger. Fop, = 1.5% the system found a stable representation in all of 100
runs and needed less than 1680ycles to find representations in 50% of them. In
addition to a longer learning phase, the RFs representing the different bars become
less disjunct until the final representation gets unstable for valugslafger than
about1.8 % Representations for input with higher valuegpgttan be found, how-
ever, if the synaptic modification rateis reduced, which in general stabilizes the
representation. Faf = 0.005 instead of€ = 0.03 the system always finds stable
representations fqr, = 2.0% (after less than 1860@-cycles in 50% of 100 runs).
However, even for very low values &f there is limit atp, somewhat larger than
2.0 % from which on no stable representation can be found anymore.

We have seen that one and the same network solves problems such as pattern
classification and basic feature extraction. As demonstrated in the bars test, the
network can build up a representation of the input which allows to classify patterns
by using distributed neural coding. The network found correct representations of all
bars in all5700 simulations which were carried out to acquire the data given in Fig. 7.
After the learning phase the classification for the usual bars test shows a reliability
of virtually 100%. All experimental data given in Fig. 5 to Fig. 8 was obtained with
the same parameters. Different sets of parameters lead to different results and for an
individual task the parameters can be optimized to obtain shorter learning times or a
higher robustness. We have chosen, however, to use for all experiments the standard
set of parameters in order to demonstrate universality and robustness of the system’s
dynamics.

5 Discussion

From an elementary neuron model and a random but column-based interconnection
we derived a neural dynamics with properties which make of the macrocolumn an
ideal decision unit for input to its minicolumns. The dynamics is best exploited with
an oscillating gain factor of the inhibition. If the afferent fibers to the macrocol-
umn are subject to elementary Hebbian plasticity which is also phase locked to the
oscillation of inhibition, we get a system which self-organizes the RFs of its mini-
columns. The system is able to classify input patterns into different groups or to
extract basic constituents of the input patterns as was demonstrated using the bars
test. The way the system represents the input depends only on the nature of the in-
put, as for the pattern grouping task and for the bars test the same system with the
same set of parameters was used.

5.1 Computational Aspects

There are various systems capable to learn without supervision. Important (not nec-
essarily disjoint) classes are different types of ANN, probabilistic models, and, in
a more general sense, independent component analysis (ICA) and principal compo-
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nent analysis implementations. Among these systems, only few are able to build up
efficient combinatorial representations of the input. The bars test is a means of test-
ing this ability and it represents in this respect a hard problem because in general its
components, the bars, do not add up linearly. Linear methods like ICA therefore fail
to pass the test (see e.g. Hochreiter and Schmidhuber (1999)). The problemis (in its
more or less difficult versions) solved by merely a small subset of systaitdigk,

1990; Saund, 1995; Dayan and Zemel, 1995; Marshall, 1995; Hinton et al., 1995;
Harpur and Prager, 1996; Frey et al., 1997; Hinton and Ghahramani, 1997; Fyfe,
1997; Charles and Fyfe, 1998; Hochreiter and Schmidhuber, 1999; O’'Reilly, 2001;
Spratling and Johnson, 2002). Some of them need additional knowledge about the
input, e.g., (lBldiak, 1990) and (Marshall, 1995) require that all bars occur with
equal probability. Other systems, e.g. (Dayan and Zemel, 1995) and (Hinton and
Ghahramani, 1997), use hierarchical approaches. If these systems are applied to the
bars test, a pattern is first represented as containing horizontal or vertical patterns
and then exact instances of the those patterns are represented in the next level. The
system as presented in this paper is not hierarchical. However, the dynamics can be
extended to allow for hierarchical learning in the sense that the input patterns are
first subdivided into larger classes of patterns on the basis of the distance measure
(17). Such an extended system increases the paramgleduring learning. A
system based on this mechanism is currently studied in our lab. Note, however, that
such a system is learning hierarchically but that it is not hierarchically representing
a pattern as the systems (Dayan and Zemel, 1995) and (Hinton and Ghahramani,
1997) do.

To compare systems which solve the bars test, their behavior under the relax-
ation of the bars test assumptions is one important criterion, their reliabilities (some
systems do not always find correct representations) and the time they need to find
a representation are others. Comparison between the systems is difficult in many
cases, however, because important data concerning, e.g., robustness or reliability, is
often missing. Even if data is available, e.g., in terms of the number presentations
of input images required to build up a correct representation, comparison remains
difficult because systems specialized to the bars test assunfptambe expected
to be much faster than systems which can also be applied to more general input
Our system was therefore tested against relaxations of the bars test assumptions and
was shown to behave favorably (Fig. 7D,E,F). In terms of pattern presentations only
the systems (@ldiak, 1990) and (Spratling and Johnson, 26G#E faster than the
presented network. In fdiak, 1990) the probability of bar occurrence has to be
known ahead of time, however, and (Spratling and Johnson, 2002) don’t report on
the robustness of their system when bars are of different size or appear with different
probability. A further possibility to compare systems is complexity of computation.

A typical system withV input units and: internal computational units with all-to-all
connectivity need®(Nk+k?) elementary computations for one update in the learn-

4 e g the sgstemcﬂdlak (1990) required learning time of 1200 presentations for 16 bars.
Hochreiter and Schmidhuber (1999) needed 5000 passes through a training set of 500
patterns ‘for 10 bars.

5The s¥stem Spratling and Johnson (2002) needs 210 cycles to get a correct representation in the
majority of runs for 16 bars and a specially chosen set of parameters.

27



ing phase, (Spratling and Johnson, 2002) re@gi¥ k*) computations, whereas our
system need®(Nk + k) because it is not using internal all-to-all connectiVity

5.2 Neuroscientific Aspects

As discussed in the introduction we designed our model of the cortical macrocolumn
in accordance with relevant neuroanatomical and neurophysiological facts. We show
that on discrimination and learning tasks the resulting system can overcome two se-
rious problems raised by the concept of single neurons as the brains’ decision units,
reaction time and limited fault tolerance. The essential components of our model
are column-based interconnections, discrete neural spike signals, oscillatory activ-
ity, and Hebbian plasticity. These neural characteristics, usually seen as independent
of each other, are shown here to form a natural alliance, with important functional
consequences. The model requires little genetic information, being based on sparse,
asymmetric and random interconnections within the minicolumn. Our model makes
several simplifying assumptions, using an abstract neuron model, discrete time and
direct inhibition. Experimental predictions of the model should therefore be treated
with caution. A fundamental property of our system is the ability to sustain neural
activity without input. The property is based on a random interconnection matrix
within a minicolumn. A relatively high number of EPSPs per time step results in

a relatively high number of EPSPs in the next. The amount of EPSPs is controlled
by inhibitory feedback and refractoriness of the neurons. As studies of continuous
time systems suggest (e.g. Wilson and Cowan (1973)), this mechanism can be im-
plemented in a continuous time version of the presented minicolumn model as well,
such that, with a continuous inhibition between the minicolumns similar to (10), the
gualitative dynamical behavior of the discrete model can be expected to carry over to
a continuous one, which is based, e.g., on an integrate-and-fire or Hodgkin-Huxley
neuron model. It can even be expected that convergence to stable stationary points of
the dynamics is faster than in the discrete time case, which would allow for a shorter
v-cycle period and consequently an even faster reaction time. For this reason, and
because of the possibility of a better comparison with neurophysiology, continuous
time systems are the subject of further studies.

Our system realizes neural populations with well-defipkdal behavior, while
realistically usinglocal update rules for individual neurons and synapses. The re-
sulting population code is based on a collective firing rate, evaluated by the macro-
columnar dynamics as average over each minicolumn’s population at a particular
phase relative to oscillating inhibition. We tentatively identify our inhibitory cy-
cle with cortical oscillations in the gamma frequency range, ca. 30—60 Hz. Recent
neurophysiological experiments (Perez-Orive et al. (2002), see Singer (2003) for
review) support this view of a phase-coupled population rate code. For evidence
for phase dependence of Hebbian modification see (Wespatat et al., 2003), where
membrane potential oscillations of 20-40 Hz were artificially induced in pyramidal
cells.

’If N grows, the number of available afferents per input unit can be kept constant by proportion-
ally increasing- and reducing the synaptic weights of the afferents accordingly.
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A central issue for understanding the brain is the neural code. The currently
dominant view is the single neuron hypothesis (Barlow, 1972), according to which
essential decisions of the brain can be linked directly to firing decisions of individ-
ual neurons. A fundamental difficulty for this view are reaction times of the brain.
These can be so short that single neurons can fire only once. This makes it impossi-
ble to express graded signals (see, however, the time-of-arrival hypothesis of Thorpe
(1988), which also advocates a firing phase). On the other hand, a population code
can be the basis for very fast information processing. In our model with standard set
of parameters, individual neurons typically fire only 2-10 times before the macro-
column makes a decision, and yet the decision is based in a precise graded fashion
on the input (if7,, is reduced tdl,, = 10 the system shows qualitatively the same
behavior but neurons spike only 1-4 times before the first macro-state transition).

The other fundamental weakness of the single neuron hypothesis is lack of ro-
bustness against damage and accidents of wiring. The usual proposal to repair this
weakness is a population code, and our model may be seen as an essential step at es-
tablishing one. The minicolumn has a collective receptive field. This makes it fault
tolerant with respect to accidents in the afferent connections; the same can be said
about intra-cortical connections. Moreover, self-tuning of the activity dynamics of
minicolumns (e.g., of the parametexs;,, andv,,.,) can make them robust to lesion
or imperfections in ontogenesis.

In summary, our model, motivated by macrocolumn connectivity, has neurody-
namical properties that solve important conceptual problems of neurophysiology.
The spiking character of neurons, column based interconnection structure, oscilla-
tory inhibition, and Hebbian plasticity are shown to combine together to form an
advanced information processing system which allows to solve problems such as
pattern classification and, most specifically, the bars benchmark problem, where it
is highly competitive with other recent systems.

Appendix
Derivation of the neuron dynamics in terms of neuron activation probability

For the dynamics (1) with the above described interconnedjpthe probability,
p(t+1), thata neuron is activated at tirfie+- 1) can be approximated by the product
of the probability,p4 (¢ + 1), that it receives enough input to exceed threshold and
the probability,ps(t + 1), that the neuron is not refractory. Using equation (3) we
get in the limits — oc:

p(t+1) = pa(t+1)ps(t+1)
= [, @) de (1= p()

= /S: \/%o' o355 4y (1—=p(t), a=sp(t), U:\/Sp(t)(l — ()
1 % _1.2
= =[] )

29



pit) — © L), du(z) = = [V b
p(t)(l_p(t)))( p(t)), () NN

The approximation has proven to be applicable even for a relatively low neuron num-
berm and for relatively small values af
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