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Abstract

We describe a neural network able to rapidly establish spoedence between
neural feature layers. Each of the network’s two layers ists®f intercon-
nected cortical columns and each column consists of irgrilyitcoupled sub-
populations of excitatory neurons. The dynamics of theesysbuilds upon
a dynamic model of a single column, which is consistent wétent experi-
mental findings. The network realizes dynamic links betwiteiayers with
the help of specialized columns that evaluate similaribesveen the activity
distributions of local feature cell populations, are subj® a topology con-
straint, and can gate the transfer of feature informatidwéen the neural lay-
ers. The system can robustly be applied to natural images@nespondences
are found in time intervals estimated to be smaller thanil®h physiologi-
cal terms.

Keywords. Cortical Columns, Homomorphy, Non-linear Dynamics, Cerre
spondence Problem, Visual Cortex, Dynamic Links

1 Introduction

Aristotle described two kinds of mental association: byetiemd by patternThe
Complete Works of Aristotl®arnes (ed.), 1984). It is interesting to note that stan-
dard neural network theory, which sees association by tinpéamented as Hebbian
plasticity, has no sophisticated and direct concept of@ason by pattern. In stan-
dard approaches, a common way to link two patterns is to cottyg@present them
by cardinal cells, which can then be associated by time, biytibexternal events
activate the patterns simultaneously. Thus, structutatioms between patterns as
such cannot lead to association directly.
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A mechanism that enables association by pattern requiresi@pt of pattern
similarity and, for complex patterns, similarity is bestrfaulated as homomorphy:
A pattern is composed of elements that carry feature lalmelgtzat have neighbor-
hood relationships. Two patterns are homomorphic if ther@ mapping between
them that relates elements with similar labels such thahieirs are mapped onto
neighbors. The process of establishing such a mappingas offerred to amatch-
ing.

In the context of vision, homomorphic pattern matching igamant to find
stereo correspondences (i.e. finding point-to-point i@iahips between the two
retinal images), for motion extraction (finding correspences between consecu-
tive images), and for pattern recognition (finding corresjences between retinal
images and patterns in memory). Systems that apply expétiern matching mech-
anisms are state-of-the-art in object and face recognigonnology (Phillips et al.,
2000; Messer et al., 2004). More generally, pattern assoogare probably funda-
mental for subsystem integration in the brain and for iflgetice in general, where
new problems are solved by homomorphy to known problemsatstract schemas.

It has repeatedly been proposed to expand standard netwalrks by the intro-
duction of a class of neural units that stand not for patteaments but that stand for
relationships between pattern elements. The generalsdeamulated in (Kree and
Zippelius, 1988), application to stereo matching in (De¥73; Marr and Poggio,
1976), and application to correspondence-based objengnéwn, e.g., in (Hinton,
1981; Olshausen et al., 1993; Wiskott and von der Malsb@g51Arathorn, 2002;
Zhu and von der Malsburg, 2004). These systems are nonasthirdrequiring un-
usual interaction patterns to implement estimation of llsailarity, topographic
relations and for controlling the flow of signals betweennieched patterns.

The model we present here builds on previous neural netwgpkoaches such
as (Hinton, 1981; Olshausen et al., 1993; Wiskott and vonMigsburg, 1995).
The model described in (Hinton, 1981) represents an eargeaqmual study. The
model in (Olshausen et al., 1993) represents an analytiaati numerically well-
investigated correspondence-based approach that isybogJienited to scalar fea-
tures types and artificial input. The model in (Wiskott and der Malsburg, 1995)
uses more advanced features and realistic input but hakeprsio neurally explain
feature similarity evaluation and it cannot account for sipeed of human object
recognition as measured by Thorpe et al. (1996).

The neural network model studied in this work addresse®ttiefcits of previ-
ous models. We use a neuro-dynamic approach that refleetstmesults on cortical
connectivity (e.g. Douglas and Martin, 2004; Yoshimura let 2005) and imple-
ments pattern matching using neural populations as el@necdmputational units.
We find that the network model can (1) establish pattern spaoedences in phys-
iologically plausible times< 100 ms) and can (2) be applied robustly to natural
images. Using a specific neural circuitry to organize therplay between feature
similarities and feature arrangements, the model oversdheetime-limitations in
earlier neural models (e.g. Wiskott and von der Malsbur@5)@nd limitations to
scalar features and artificial inputs as used in (Olshausain 993).

The paper is structured as follows: In Sec. 2 we introducedgstliss a dynamic



model of a single cortical column as formulated in (Luck@Q2), and subsequently
introduce the architecture of our network model which csitssof two layers of
such columns. The dynamics of the layers and their principéraction is defined
and discussed in Sec.3. Sec.4 describes how feature amantgeare neurally
evaluated and Sec.5 gives details of the Gabor-featurets useSec. 6, numeri-
cal simulations show the system’s dynamic behavior ancbits€rgence to pattern
correspondences if natural images are used as input. Sescusses the system’s
properties and its relation to the literature.

2 Columnar Network M odel

The central element of our model is tbertical column Depending on the perspec-
tive or the cortical area a column is also often referred tmasrocolumn (Mount-
castle, 1997), segregate (Favorov and Diamond, 1990),merbglumn (Hubel and
Wiesel, 1977) and in primary visual cortex comprises roygtil neurons that can
be activated from one point in visual space. In recent néwmsiplogical experi-
ments it was shown that columns possess a fine-structuréatif/edy disjunct sub-
populations of excitatory neurons (Yoshimura et al., 2005)model of a column
with this structure was studied in (Licke and von der MalghR004; Liicke, 2004)
and we will base our system on an abstract dynamical formoulas suggested in
(Lucke, 2005). This abstract formulation models the mesiviséy in populations of
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Figure 1: Plot of the functiorfi(p, i) in (1) for three different values é¢fando,, = 0.
The function models the behavior that is expected from a jadipn of intercon-
nected excitatory neurons with inhibitory inplut If %p = f(p, h) describes the
change of activityp in such a population thari results in two stable stationary
points if h is small: one at zero and one with high activity. The actigtyncreased
if f(p,h) > 0 and decreased if(p,h) < 0. Values are plotted fo# = 100 (unit
omitted) but note that just the scale of th@xis changes for other valuesaf

excitatory neurons. To recapitulate the approach in (e{i2k05), consider a single
population of excitatorily interconnected neurons. Tlgloits connections, such a



population can be expected to increase its activity levelnta critical level of ac-
tivity on, active neurons in one time interval can exciterareasingly large number
of neurons in the next time interval. This positive feediblaop continues until the
self-excitation is counterbalanced by self-inhibitiorg.ethrough neural refraction
times. If activity in the population is very low, excitatomgurons are not able to ex-
cite a larger number of other neurons. In this case we expeddtivity to decay to
zero. If the change in activity is described by a differelr&'quation% p = f(p,h)
with p denoting the population’s mean activity, we can model thpeeted dynamic
behavior using a polynomial of order three ffar

fp.h) =a(p® — hp — p°) + ouny . 1)

In (1), o,,n; is additive Gaussian noise of varianeg which models noisy activities
that are to be expected. The linear terah p models the influence of external
inhibition h: the effect of inhibition increases the more neurons arector no
activity inhibition is without effect. Fig. 1 depicts therfation f for three different
values ofh and no noise. As can be observed, a population can onlyigehigh
levels of activity if the level of inhibition is small. For §h levels, the population
activity converges to zero.

The column model used in this paper consists pbpulations of excitatory neu-
rons that are coupled inhibitorily. Measurements repdriédoshimura et al., 2005)
suggest that such a model reflects the fine-scale structtinenvai cortical column.
Pyramidal cells in layer 2/3 of the visual cortex were founddrm functionally
disjunct populations that receive a common inhibition freithin their layer. Here,
we will model this lateral inhibition to be proportional tee maximally active pop-
ulation in the column:h = h(py,...,px) = vmax,{p.}, Wherep, denotes the
activity in population owunit o of the column. Different types of inhibitory coupling
were studied (see, e.g., Lucke et al., 2002; Licke and eorviilsburg, 2004) but
inhibition proportional to the maximal activity has beemwifiol to have a number of
functional advantages (Licke, 2005). Taken togetherdymamics of a column is
described by the equation system:

d .
gibe = f(pa,v max {ps}) + £Ja, 2)
where the7,’s are external inputs to the = 1,.. .,k different units. x param-

eterizes the coupling strength of the column dynamics tartpat. As a neuron
within a population is found to receive most of its input frevithin its own popu-
lation (Yoshimura et al., 2005), will later (Sec. 6) be set to a value which is small
compared ta in (1).

In this paper a multitude of columns of the type above camstiheural layers for
the representation of input and model images. A simple meetéhg for the process
of correspondence finding (see Fig. 2A) consists ofrgrut layerZ, left array of
large shaded ellipses, andwdel layetM, right array. Both layers represent images
by activity distributions in local feature-sensitive pdgions and will therefore be
referred to ageature layers The model domain should contain many such feature
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layers to represent objects in memory, but in this work wei$oan just one. Note
that for visualization purposes the layers in Fig. 2A ar@ldiged one-dimensionally.
In each point of the two layers there are two columns, onegresent local features
(horizontal ellipses within the shaded regions of Fig. 2Adl @ne (vertical ellipse)
to control the connections dinks between the two layers. This double column (a
shaded ellipse in Fig. 2A) is calledreode Feature columngepresent, with their
activity, the local textures of the input or model images ff@ent activity levels

in their units encode for different local spatial frequesscand orientations of an
image’s gray-level distribution, details of which will bévgn later in Sec. 5.

As will be discussed at the end of the paper, the feature agam be thought
of as different areas in the visual cortex. They communitateugh links, which
connect feature columns by as many fibers as there are fegpes. In alink
control columreach unit stands for one link entering the node and does tiniregs.
One, it compares the activity distributions of the featuoumns at the two ends
of the link, two, it tries to be consistent with activities wifits controlling parallel
links (“topology constraint”), and three, by its activityykeeps open its link. The
situation is shown in more detail in Fig. 3A. As we will seeclatthe dynamics of
the system results, per column, in the deactivation of alldme control unit, i.e.,
all but one of the links into a node are switched off. The lih&ttremains active
is selected by a combination of two criteria. One is featimalarity, the other is
the topology constraint. The latter is to favor those linkkagements that connect
neighbors in one layer with neighbors in the other layer, snitmplemented by
connections between control units in neighboring nodes Esg 2B). The topology
constraint is important when feature similarities are ajabus and would, on their
own, lead to many wrong correspondences. For a systematig of the influence
of the topological constraint see (Wiskott, 1999).

3 System Dynamics

The dynamics of the system builds upon the column model gwe(2). The dy-
namic properties of single columns and the specific cormigctutlined in the pre-
vious section define the dynamic properties of the whole oktw\Ve first introduce
some notation. Let € {Z, M} andL’' € {Z, M}\{L} be indices for the two lay-
ers, i.e. (L, L) = (Z, M) or (M, T). Further, letp~* stand for the activity of the
feature unito in node: of layer £ (Fig. 3B). We assuma to run from 1 tok andq
from 1 to NV, whereN is the number of nodes per layer. Using the column model
(2), the dynamics of the feature columns is described by

d Li Li Li 7Li
P = (pa',v ﬁgf}?fk{pg b+ RIS (3)
where 7 is feature input to the unit of nodeLi. A feature column represents
a given feature vectofJ\, . .., J') by activities of itsk sub-populations. The
feature vectors can convey information from the other laed from an (input or

model) image. The importance of input from the other layes In the transmission
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Figure 2:A Network of columns for correspondence finding. The netwankststs

of an input layer and a model layer with nodésto Z3 and M1 to M3, respectively.
Each node consists of a feature column (horizontal ellipst) &£ = 4 units and of

a control column (vertical ellipse) withv = 3 units. Each node in the input layer
receives input from each node in the model layer, wicg versa The inputs to

a node are modulated by its control column according to tteréonnectivity as
displayed in Fig.3. The control columns receive input frdm units of feature
columns of both layers and from neighboring control columBsInput received
by control columniW 2. Units that control parallel links excite each other. The
interconnectivity implements cyclic boundary conditions
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Figure 3: Detailed connectivity of one model node. The nddeé consists of a
feature column and a control column. On the input side, dmiyféature columns of
the input nodes are shown. The feature vectors (on the input side) ang M (on
the model side) are represented by the activity distrilmstia their feature columns.
ImagesA andB illustrate the connectivity of the model node at differeegalutions.
In A the information that converges onto the node’s controlmmwmlis shown together
with the controlled links. Input to each control unit is a moise of, one, feature
inputs from different layers and, two, inputs from neighhgrcontrol columns of
the same layer. For details about the connections that gahedatter type of input
see Fig. 4. The control column has as many units as there desmothe input layer,
in order to control as many links. A given control unit intatgs feature information
from the pair of feature columns that is associated withntsand from neighboring
control columns. BB the connectivity of the model node is shown in more detail and
together with labels for the system’s dynamic variableshayg tippear in (3) to (5).
Connections from other control columns are not shown. Timrobunits evaluate
the similarity between feature column activities in ternighe scalar product of
their activity vectors (multiplicative interactions irudited by arrowheads touching
connecting fibers). With its output a control unit gates teoming link it stands
for. Linking fibers are depicted as feature preserving. Thalkcircle represents
neurons that, by inhibition, subtract the mean from incanfeature inputs.



of information after correspondences have been establishethat situation the
information is channeled through the links between therkayeat connect corre-
sponding points, and it is the task of the control column®tect these links. In this
paper we study the neural dynamics of link selection, forolwhihe direct connec-
tions between feature columns are not required. For siityyltbe inputs in (3) will
therefore convey information from the (input or model) iraagone (see Lucke and
von der Malsburg, 2006, for a system with about an equal mextd image input
and input from the other layer). Details of the image feauvél be given in Sec. 5.

For the control columns we use the same dynamic model as éfetture
columns. To allow for potentially all possible connecticatterns between the lay-
ers, each control column must contain as many control ugitisexe are nodes in the
other layer, in order to control as many links (see Fig. 2A Bigd 3A). The control
column of nodeli will be referred to adV*! and the activity in its units will be
denoted byiv €7 with j = 1,..., N (see Fig.3B). A unii?’~>£’7 controls the
link from node/’; in layer £’ to nodeL: in layer £. The link is open or active if
and only if its unit is active. The activity distribution vaih a control columnjV/~?,
represents the current connectivity of nafleto nodes of the other layer. The dis-
tribution is determined by the dynamics within the contr@uenn and by its inputs
[Li,ﬁ’j:

d

_Wﬁi,ﬁ/j — f(WEi,,C/j’ U max {Wﬁi,ﬁll}) + H[Ei,ﬁ/j’ (4)
dt 1=1,...N
k
[T = Cp 30 PR DG + (1= Cr) T, (5)
a,f=1
ﬁ - - -
similarity term topology term

whereC; € [0, 1] controls the relative influence of the two terms in (5). Thstfir
term evaluates feature information represented by featahemnsp® and p~7,

which is conveyed by the aﬁeren(sﬁ%ﬁgﬁ/j ) to control unitW 4447, We use for

all control units the same connectivity structure and cbd@%‘:/j = 0o — 7. In
this case the similarity term resembles a scalar produdt Bitclidean metric be-
tween the activity vectors of the two associated featureroakp Liandp£ (other
choices ofRﬁ};”j would correspond to other metrics). The second term in (5) im
plements the interaction between control columns witheyat, which will be used
to enforce the topological constraint (Sec. 4). The conwviecof a single control
column is illustrated in Fig. 3.

If equations (3) and (4) are numerically simulated, we finat tifhe dynamics
possesses, for a wide range of parameters, a number of padtars that grows
exponentially with the number of units in the system. Thathe system can sta-
bilize any subset of active units in any column (feature amtd column). The
system inherits this property from the single column mo#gikhich can be shown
to possess up t@* — 1) stable stationary points (i is the number of units in the
column). The network state with maximal activity is the stat which all units in
all columns are active. Stability in the network cruciallgpgnds on the level of in-
hibition within the individual columns, and this level isrdoolled by the parameter
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vin (3) and (4). Ifv is increased, the number of stable stationary points deesea
The transitions of the stable states to unstable states acoundr = 0.5 which is
the bifurcation point of the single column model (2) in theeaf no input

If v in dynamics (3) and (4) gets larger, only activity configigas can survive
in which active units sufficiently excite each other throtigéir mutual connections.
The dynamics thus selects the most stable subnets of actitgeeftom a large class
of possible ones. The stability of these subnets is heretgyrdened by the internal
connectivity of the network and by external feature input.our system the inter-
nal connectivity allows for a comparison of activity disuitions in feature columns
(similarity term) and for an interaction between controlurons that will be used
to favor particular activation patterns (topology termdr Fow levels of inhibition,
the system can potentially stabilize all activity configioas and we start with the
state of maximal activity to allow for the selection of pdiatly any of them. Un-
der the influence of noise, the state of maximal activity igjrty an initial phase,
automatically stabilized using zero inhibitiom & 0). Subsequently, we increase
from a valuev,,;, = 0.4 that is smaller than the critical value of = 0.5 to a value
Vmax = 0.6 that is larger:

0 if t~< 7—‘init
v(t) = { (Vinax — Vimin) e + Vi 1 £ > Thge ©

init
wheret = ¢ mod T, which ist — nT', with n the greatest integer satisfying
t —nT > 0. That is, afterv has reached its maximal value, the system is reset
to full activity at v = 0 again, and the selection process can begin anew. Such a
cyclically drivenv allows for repeated selections as required for changingtgin
realistic situations. One selection cycle, consisting céset to full activity and an
increase ofv from v,;, t0 v.x, WIll be called av-cycle (see Liucke and von der
Malsburg, 2004).

4 |Implementationsof the Topology Constraint

To understand the effect of the topological term let us aersone-dimensional
layers first. The connectivity among control columns is @iged in Fig. 4A for the
case of layers with five instead of three nodes as in Fig. 2Bsiraplicity we have
chosen to just connect units that control strictly parditéds. Such a connectivity
is reflected by the following form of the topology term in (5):

A
Li L' T Li+a,L'j H _
T51 = Z TaW vra.Lyta with (Ta) = (...,UQ, Uy, 0, Uy, UQ,...), (7)
a=—A
whereT, is a one-dimensional kernel with denoting positive connectivity strengths.
WL is the mean-free version of control column activity“>~7 given by
WELET = WELLS — L s JWEs£ - The sum over is taken to continue cyclically

Forv = 0.5 — e the activitiesp,, possess stable stategat= 0.5 + € which results in a value of
h = 0.25 — 2 (compare Fig. 1).



if the index (i + a) or (j + a) exceeds the index range (compare Fig.2B), i.e., the
neighborhood relationship between control columns hasoih@ogical structure of

a ring. Note that for Fig. 2B the maximal distance betweemeeted columns4,
equalsl, and equal® in Fig.4A. The connectivity given by (7) establishes mu-
tual excitation between control units of parallel links.eT$ituation is displayed in
Fig. 5E for columns connected as in Fig. 4A. If a given contirat is active, it helps

to keep active parallel links of its neighbors. Togetheiwitcal inhibition within
the control columns, this implements a competition betwemmectivity structures
of parallel links. If the parameteris small enough, all these connectivity structures
can co-exist. But i’ is increased, control units of structures which are onlykiyea
supported by feature similarities are deactivated.

Fig. 4B illustrates connectivity that implements the taqmptal constraint for
two-dimensional layers. Only the connections for the @ninit of the central
column are shown. Note that for two-dimensions, the indicasd j in Eqns. (3)
to (5) become two-dimensional (- i andj — 7). The topology term in (5) now
reads:

I Cariy, -
Tﬁi,ﬁ’j _ Z TaWLi—i—&,L’j-i-E (8)
d=(—A,—A) Uy
Uy
with (Td)z cee Uy U | 0 jug ug - ,
Uy
U2

where (T3) is a two-dimensional kernel (empty entries are zero) in While v;
denote positive connectivity strengths (compare Eqn. EBy.a given control unit
WELL'T | the matrix (7;) contains the weights of all afferents from control units
of neighboring parallel links. Fig. 4B illustrates the twlonensional connectivity
given by (8) forA = 2. In this case the potentialli2gA + 1)? = 25 neighbors could
be connected. However, for the kernel in (8) just the eiglghteors that correspond
to the eight non-zero entries ¢f};) are connected (black arrows in Fig. 4B)

We have also tested a version of the system which includgsdél connectivity
between neighboring columns (corresponding to non-zetigesron the diagonals
of T), but have not observed significant functional advantay¢s have therefore
chosen to work with the kernel as described above as nurhsngalations can be
made more efficient in this case. Similarly to diagonal catioes, a connectivity
that involves connections between approximately parébelrs has not produced
significant functional improvements for the sets of natimsges considered here
(see below). In a system with one-dimensional layers asritbestin (Lucke and
von der Malsburg, 2006), also approximately parallel liaks interacting. There,
feature vectors were artificial and independent from nodeoide. In the system

2Again we assume cyclic boundary conditions in the layersh shat the neighborhood relation-
ship amongst the nodes in a layer now has the topologicaltaneiof a torus.
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Figure 4: A Connectivity of control columns for one-dimensional inpuid model
layers with five nodes each. All inputs received by the céntnét of the central
column are shown. Only units that control exactly paraliekd are connected.
Connectivity of any other unit is obtained by globally simiff the displayed connec-
tions while respecting cyclic boundary conditions (conepfaig. 2B). Note that i\
andB the prefixes and £’ have been suppresseld.’ denotes the control column
of node: and W%/ denotes its control unit with index The connectivity associ-
ated with the non-zero entries of the kernel(T,) in (7) is shown (black arrows).
B Connectivity of control columns for two-dimensional in@utd model layers with
5 x 5 nodes each. IB, i andj become vectorsand;. All inputs received by the
central control unit of the central column are shown. Ag#ie connectivities of
any other unit can be obtained by globally shifting the digpd connections while
respecting cyclic boundary conditions. Only units coniingl exactly parallel links
are connected. The connectivity associated with the nomergriesu,; of the kernel
(T%) in (8) is shown (black arrows).
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described here we will use Gabor-wavelet filters as basi®dorfeature vectors.
Consequently, neighboring feature vectors and the agiivitheir feature columns
will not be independent. Control units of parallel links Make correlated also in the
case in which only exactly parallel links are connected.

5 Feature Vectors

Let us neglect color and binocularity of the input and let shid-populations of a
column just be sensitive to different spatial frequenciesd @rientations, describing
their receptive fields (RFs) by the well-known Gabor wawel&abor wavelets de-
scribe the response properties of neurons in primary vearggx (Jones and Palmer,
1987; Ringach, 2002) and are thought to be the basic coastgwf natural images.
They can be learned by a variety of algorithms, including I@&ll and Sejnowski,
1997) and sparse coding (Olshausen and Field, 1996). Nates#bor-wavelets,
indeed, also emerge if a system based on the dynamical catundiel as used in
this paper is applied to natural images (Lucke, 2007). Hewnenstead of learning
them, we use a predefined set of Gabor wavelets for our puspdse model the
RFs of the sub-populations of our feature columns, we useJater responses as
inputs. IfV is an image with/ (%) denoting the gray-value of a pixel at positign
the filter responseg,, (¥) are given by:

Qu(@ = [V(@)Wald—#)dF ©)
@ = Y2 o <_ - 2)[exp(ﬁ;af)_exp(_g:)},a:%, (10)

o2 202

Q

where the wave vector is parameterized as

o Ko k, cos —pt2 n
k;a:(k ):< : %>’ k=20 gu=pf Q1)

oy k,sin g,

with p = 1,..,5andu = 1,..,8. That is,(Q: (%), . .., Q4(Z)) is a vector of Gabor-
filter responses in which each entry corresponds to one ofittombinations of

p andy. As feature values we use the magnituglé’ = |Qa(27)], thus ignoring
Gabor phase to model complex cell responses (Hubel and Wi€s&’) (while ap-
propriately sampling the spatial layer, with denoting the image position of node
L£i). As input to a feature column, (3), we use the mean-freeivesf jf given
by JLi = JL — Y5 J5 with k = 40. Feature vectors as defined by (9) to
(11) have been used in various systems including Dynamik Matching (DLM)
(Wiskott and von der Malsburg, 1995) and highly competitiypplications to face
and object recognition (e.g. Okada et al., 1998). For thenfdation used here see
(Wiskott et al., 1995). In applications using Gabor-featuit has turned out that
with 40, as above, good results can be achieved. Performance sesréa more
wavelets, butl0 represents a good compromise between performance and tasmpu
tional cost.
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6 Simulations

To demonstrate the functioning of the system we use natmadeés 012 x 512
pixels. Each input and each model image is covered by a gr&d>o8 nodes with
cyclic boundary conditions (see Fig. 5A-D right images)n€ol columns are taken
to be connected according to (8) with= 3 andu; given by:

Uu; = exp <—% (%>2> . 12)

The exact values of the’s are of subordinate importance for the simulation results
but, in general, they should lie betwe@and1 and should decrease with increasing
1.

We numerically simulate the differential equations (3) &hpwith time steps
of At = % ms. The time constant in (1) for the columnar dynamics (3) and (4)
reflects the ability of the balanced network to rapidly dtabinew balanced states.
In an earlier system with explicitly modeled spiking newsdhiicke and von der
Malsburg, 2004) the input sensitive transition from fullgtige columns to states
with just one active unit was possible withinzacycle of T = 25ms. For the
abstract dynamics (3) and (4) with (1) this behavior is rdpoed for time constants
of roughlya = 100 ms~! (compare Liicke and Bouecke, 2005) and sédhfto reset
the system we found that time intervals of ab@yt; = 4 ms are sufficient). We
choose the noise term in (1) to be relatively smajl,= 1 x 10" ms™~!, and the
input is taken to just weakly couple to the column dynamics 1.0 ms™! (k < a)
as in (Lucke and von der Malsburg, 2004), (Lucke, 2004) @iidke and Bouecke,
2005).

Input to a feature column potentially consists of featurgt@einput from its own
layer and of input from feature columns of the other layerteAtorrespondences
have been found, the direct connections between featuencs are crucial to con-
vey image information between the layers in order to recayar classify objects in
later stages of processing (compare Olshausen et al.,.1BRBBB illustrates how
feature information can be transfered from one to the othaarl For the task of cor-
respondence finding, as considered here, a direct exchamgferonation between
feature columns is, however, not required. For simpliditg feature layers thus
solely communicate via their systems of control columnshi dynamics studied
here. In a more general system, input to feature columnsggee3) can, however,
also constitute of mixtures of feature vector input anddsatolumn input from the
other layer (compare Lucke and von der Malsburg, 2006).

The system of control columns integrates feature inforomaéind information
about the connectivity state between the layers. That istralbcolumns receive
input from the evaluation of feature similarities betweke layers and from neigh-
boring control columns. Both input sources we take to be tchu@ngC; = 0.25in
(5), i.e., the topology term is emphasized more than thdaiityi term.

For our simulations we visualize the activities of the cohtolumns, i.e., the
dynamic variablegV % andWZ"Mi in (4). The matricedV % and WZ»MJ
represent the connectivity from input lay&rto model layerM and from M to
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7, respectively. Foonedimensional layers the matricég are two-dimensional
and their visualization allows a direct interpretation loé¢ inter-layer connectivity
(compare Zhu and von der Malsburg, 2004; Liicke and von désteg, 2006).

For two-dimensional inputWWﬁ andWZ-Mi are four-dimensional matrices
and, although their entries can in principle be visualizbe@, connectivities they
represent are difficult to grasp intuitively. For two-dinsemal images it is more
instructive to visualize, for each control column, the eermf gravity of its activity
distribution. That is, we compute the positigg using:

217
Zﬂ' WL@,L] Zpe
U = —2 1 (13)

where the index runs over all64 nodes of thed x 8 grid in £’ (see Fig.5) and
wherez - denotes these nodes’ positions in the image. We will galthe mean

link positionof control columriV4. Note that the mean link position corresponds to
a position in the image of the opposite lay#r(compare Fig. 5E). We can therefore
overlay this image with the mean link positions to betteeiptet the connectivity
states. If finally just one control unit of nod®, say the unit with indey,,, remains
significantly active, Eqn. 13 results if}; ~ 7, , i.e., the final mean position is
close to the position of nodé’;, in this case. Fig.5E illustrates this situation for
one-dimensional images with one-dimensional ‘grids’ o fimdes each. Fig. 5A-D
shows the time course of control column activiti&@-Z7 using the mean link po-
sitions of all control columns of the model layer for visuzaliion. Grid points in
the right column of images represent the node positionsemtbdel image. For

a given node’s feature colun]ﬁ‘”‘;, its grid positionZ, ;; in the image is used to
compute the Gabor-filter responses in (9). As mentionedeeathe vector7 Mi
consists of the magnitudes 4§ such responses and encodes the image texture in an
area around’, ;. The mean link position (13) of each model node’s controlioot

is visualized in the left-hand-side images of Fig. 5A-D. Eacodel node in Fig.5
has been assigned a different color (e.g., blue in the upglet and yellow in the
lower left). The color identifies the node’s grid positidg,; in the model image and
its mean link positiory, ;- in the input image. When the system has converged to a
final mapping, the active links connect points of the samercth Fig. 5E the color
coding is shown for one-dimensional images. For visuabmapurposes, we have
connected any two mean link positions of directly neighbgrcontrol columns
When all neighboring nodes have neighboring mean linksyisigalization results

in a more or less regular grid. Initially, in Fig.5A, each nebdiode is linked to
all input nodes. Consequently, each mean link positionmsezed in the middle of
the image. With increasing inhibition controlled byin (6), control units are de-
activated and the activity in a control column is restricte@n increasingly small

3Final states of these systems are usually shifted diageviath correspond to neighborhood-
preserving connectivities.

4We did not visualize the cyclic neighborhood relationshighich would have resulted in all
visualized positions having four edges) in order to makerteslation of the grid in the input image
with respect to the model grid more salient (compare Fig. 5E)
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active links

L

/i
/Li 7
—

input model

Figure 5: Time course of map formation between the featyerta Grid points in
the right image ofA-D represent the node positions in the model layer. Each model
node has active links originating from potentially many esdh the input layer and
the average of all active links, the mean link position (183hown on the left-hand-
side of A-D. With increasing inhibition (increasing) links are deactivated and the
map converges from all-to-alA( to one-to-one connectivity that links correspond-
ing points within the limit of grid resolution). To illustrate the color codingd;
shows a mapping that has formed between one-dimensioragési (bottom). Two
of the active links together with their control columns ar®wn in magnification
(top). The displayed connections between the active cbutits (small dark cir-
cles) support the parallel links of the formed mapping (careg-ig. 4).
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subset of units. In Fig. 5B this is reflected by the mean linkifp@ns starting to sep-
arate. In Fig. 5C the connectivity between the layers isadlyaelatively sparse and,
locally, neighboring control units in the model have oftegighboring mean link
positions in the input. In Fig. 5D the system has finally cogee to a one-to-one
connectivity structure in which the activities of the cahtcolumns are dominated
by just one significantly active control unit each. The meak positions, therefore,
lie close to the grid-point positions of the input layer (quare Fig. 5E). The emer-
gence of a regular grid puts in evidence that the final matfix"Z/ corresponds to
a neighborhood-preserving connectivity frdmo M. If v is further increased, the
mean link positions are approaching the fixed grid positimse closely. By in-
specting Fig. 5D we may conclude that the system has foundggheneighborhood
preserving correspondence map within the limits of the gegblution. Note that
the system can, depending on the input, converged to angmpieanslation within
this resolution. More precise results could be obtainedl Vuiter grids, although at
higher computational costs. The time-course for the recgirmapping from model
to input layer (given byV %) is very similar and results in the same correspon-
dences.

During the formation of the correspondence map, the featolenns represent
the Gabor feature-vectors by subsets of active feature.unfith increasingly strong
inhibition, these subsets of active units get smaller. tFitse feature units with
smallest inputs are deactivated and finally only subsetsit§ wvith strong input
remain active. During map formation, there are, howeverags many feature units
active (compare Lucke and von der Malsburg, 2006). Onlywéy high levels of
inhibition, and after the map has formed, just one unit patuee column remains
active. In simulations, both, the representation of feau@ctors by subsets of active
feature units, and their deactivation times have been foord important for map
formation.

Figure 6: Result for the same image pair as used in Fig. 5 indke of no topology
term, i.e.,C; in (5) is equal one. The figure shows the connectivity#foe 0.6.
Although the system was used with the same parameters atleemo correspon-
dences were found.

The resulting mean link positions for the same simulatiomasig. 5A-D but
without the influence of the topological connectivity;(= 1) are shown in Fig. 6.
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In this case, the system has not converged to a neighbon@serving connectivity
as is obvious from the irregular grid on the left. Its emengeis caused by ambigu-
ities in feature vector similarities if image and model éifftoo much, as is the case
for the image pair in Fig. 6. This influence of ambiguitiesd @ahe importance of a
topology constraint, are documented in (Wiskott, 1999)r the other extreme of
only topological input ¢'; = 0) the system converges, independent of the images,
to a neighborhood-preserving connectivity that, howeslees not connect corre-
sponding points (see Lucke and von der Malsburg, 2006 ,uch simulations with
1D layers). Only if feature information and the topologicahstraint are appropri-
ately mixed using intermediate values 10y, the dynamics converges (in the limit
of grid resolution) to the right correspondence map.

:
-

Figure 7: An example of convergence to an imperfect map betweodel and in-
put layer. For the same system and parameters as in Fig. 5heve @nnectiv-
ity matrices forv = 0.6 for both, input to model mapping/l(wzf) in A, and
model to input mappingWﬁ’Mf) in B. In B the dynamics has converged to a global
neighborhood-preserving mapping butinhe mapping is imperfect as some wrong
correspondences between background and object have dedelo

The system has been simulated using various different impags. Accuracy
of found correspondences can vary from image pair to image lpghly distorted
images of the same object and/or very different backgrooaddead to the conver-
gence to wrong correspondences. In general the networé&ase\rer, capable to find
correspondences in pairs of very different images of theesalnject as illustrated
by Fig. 5A-D or Fig. 7B.

To illustrate the convergence to a mapping that is not glgbaighborhood
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preserving consider Fig. 7A. The figure shows an imperfe¢tmaviean link posi-

tions of some control columns of the model layer show thatsiretem has linked
part of the background in the model to the object in the inpuatthis case, the

lateral topological interaction has not been strong endodgbrce the system into
a global neighborhood-preserving connectivity. Howeeerrespondences of grid
points on or in the vicinity of the object are found as accelyats permitted by

grid resolution. Nodes at grid points on the background doadly not have correct
correspondences if the backgrounds are different. In tee o&Fig. 7A the feature
dissimilarities between the background nodes have pusired Bnks out of the or-

der of a regular mapping. If we use pairs of images that do aotain the same
object, the emergence of irregular grids is the usual ouécom

7 Discussion

Finding homomorphic, that is, structure-preserving, niagg between neural fea-
ture layers — the correspondence problem — is a capabilifgmdamental im-
portance for the brain, not only for the visual system (stenatching, motion field
extraction) or perceptual systems in general (invariatieparecognition), but more
fundamentally for the application of abstract schemas e situations and ana-
logical thinking, and thus for intelligence on all levelsy Bs very nature, correspon-
dence requires for its establishment and expression neysémentation media for
the formulation of structural relationships and for the r@gsion of dynamic links.
Both roles are played in our system by control columns.

Our model describes neural population activities by abstrantinuous vari-
ables, but as shown in previous work (Lucke, 2005) this @uang the essential
properties of a more direct modeling of a system of spikingroes (Lucke and
von der Malsburg, 2004). The essential assumption of thesemss is the ex-
istence of relatively disjunct populations of interconteelcexcitatory neurons. In
combined neuroanatomical and neurophysiological measnmts such populations
were found in (Yoshimura et al., 2005). The relation of thpepulations to the
mainly anatomically investigated cortical minicolumnshfah motivated the mod-
eling of self-excitatory populations in our earlier workillshas to be investigated,
however (see, e.g., Peters and Yilmaz, 1993; Peters andr8gtl1996; Buxhoeve-
den and Casanova, 2002, for experimental data on minicaumn

Our model makes essential use of sigma-pi neurons, regustims of products
of signals,cf. the first term in (5). Also the routing of information afterroespon-
dences are found has to rely on such mechanisms. Both caségeigontrol units,
on the input side in one case, the output side in the other. attieity of control
columns and of feature columns is described here by the sgmeeof stochastic
differential equations, Eqns. (3) and (4), but their coninéyg patterns are markedly
different. Control columns receive input from neighborgantrol units and, thus,
form a network with lateral medium range connections. Tleisvork integrates in-
put from afferents of inner- and extra-layer feature colsmmhe control column
activity in this lateral network controls the inter-layemsmunication between fea-
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ture columns. In our system this control is modeled to belldd&hese anatomical
and neurophysiological characteristics may help to idgotntrol units with known
types of neurorfswhose functional roles have yet to be understood (Olshaaiseén
Field, 2005). Feature columns, on the other hand, express $tructure and must
be able to transmit it over distance.

The facility for evaluating similarities of sets of neuradysals in two feature
columns makes it possible to represent whole feature spatsead of just sin-
gle sample points as represented by sets of synaptic valussmbination-coding
neurons.

Note that in our model, neurons of both control and featuhemas, receive only
weak afferent input compared to input from within their oveif®xcitatory popu-
lation (small couplings in Eqns. 3 and 4). Such weak couplings are consistent with
physiological and anatomical studies (e.g. Douglas andiva004; Yoshimura
et al., 2005), which report that cells in excitatory neurgpplations are much more
strongly coupled to input from within their population themmmedium and long-
range afferent input. Our simulations show that such a systn, nevertheless, be
very sensitive to external stimuli. Excitation and inhidit are kept in balance, but
with increasing inhibition, afferent input can break thiial activity symmetry.

Our system solves several problems with previous modelg @ddthem is the
neural evaluation of feature similarities, which was a peobfor (Zhu and von der
Malsburg, 2004), (Olshausen et al., 1993) and (Wiskott amdher Malsburg, 1995).
Another is excessive time requirement in (Wiskott and vanMalsburg, 1995). In
the system presented, neural correspondence finding igofeossvery small time
intervals because of the use of a balanced network with ptipalrates. The ve-
locity of the system depends on the time required to dedetivaural populations.
In simulations on the basis of single spiking neurons (lelakd von der Malsburg,
2004), 25ns have been found to be sufficient for these deactivations tiltecon-
stanta in Eqn. 1 has been chosen to reproduce those deactivaties timthe abstract
dynamics here used (compare Liucke, 2005; Liucke and Bey2€K5). The exact
value of the time constant is difficult to determine as it casdme extent depend
on details of neural time constants and connectivity witmapulations. However,
even if neural spike and refraction times in (Lucke and ven Malsburg, 2004)
are estimated conservatively, the length of the deacbimgieriod is on the order of
just a few tens of milliseconds. Thus, although difficult &tetmine exactly, the
required order of magnitude farthat reproduces such deactivation times allows us
to infer that convergence of the dynamics here presentedssilge in times well
below 100mns.

In this paper we have considered pairs of images as inputiteymiem. For
each pair we have started from fully active control columtsciv corresponds to
all-to-all connectivity between the feature layers. Thelically changing inhibition
(6) represents not only a mechanism that, by increasingiiindm, forces the system

50On the other hand, since a specific activated corresponaeapeonstitutes valuable informa-
tion in itself, as pointed out in (Arathorn, 2002), it migtg Advantageous for control neurons also to
project over longer distances.

SFor the hypothesis that control units are constituted byagtes see (Moller et al., 2007).
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to converge but also a mechanism to reset the system afteastanvergence. In a
potential extension of the system, the cyclically drivemilrition could be exploited
further: e.g., if the input is moving, it seems unrealistcoperate the system by
resetting it to all-to-all connectivity multiple times insgcond. Instead the map be-
tween the layers can partially be reset by preventing thibiitnén (6) from dipping

to low values during the oscillation. In this way the systewull take the previ-
ously found correspondence as a prior for the next. Singjléwtal distortions of
objects could be addressed more actively: e.g., if a nerdidoal preserving map
between two images has been found after a firsycle, the map could be refined
by a partial reset and a secongycle with less emphasis on the topology term in
(5).

There are some more challenges ahead of us. Thus it is wstieal assume
all links between the input layer and the model layer (whickspmably are to be
identified with primary visual cortex and infero-temporatiex, resp.) to be direct.
This would require a potentially unrealistic number of axda converge on one
unit. As proposed in (Olshausen et al., 1993), this probkerery likely solved in
the brain with the help of intermediate layers to reduce #messary fan-in and the
number of required connections (Wolfrum and von der Malgh@007). Further,
whereas in the present system the model layer containsnegpattern that is to be
compared to the image layer, the object recognition prolllamto select the right
model from a layer containing dozens of thousands of stoegtbims. This will
require a control hierarchy to load appropriate patterts aur model layer, and a
bootstrap mechanism to overcome the simultaneous amypigfuibject/ocationon
the input side and objeatlentityon the model side. Yet another important problem
area is to develop a clear picture of the ontogenesis of ttéynspecific connectivity
patterns required for our system.
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