Event
The dates and events shown here are dynamically displayed from Stud.IP.
Therefore, if you have any questions, please contact the person listed under the item Lehrende/DozentIn (Lecturers) directly.
Event
Semester:
Winter term
2024
2.01.5408 Applied Deep Learning in PyTorch -
Event date(s) | room
- Montag, 14.10.2024 16:00 - 18:00 | A14 0-031
- Montag, 21.10.2024 16:00 - 18:00 | A14 0-031
- Montag, 28.10.2024 16:00 - 18:00 | A14 0-031
- Montag, 4.11.2024 16:00 - 18:00 | A14 0-031
- Montag, 11.11.2024 16:00 - 18:00 | A14 0-031
- Montag, 18.11.2024 16:00 - 18:00 | A14 0-031
- Montag, 25.11.2024 16:00 - 18:00 | A14 0-031
- Montag, 2.12.2024 16:00 - 18:00 | A14 0-031
- Montag, 9.12.2024 16:00 - 18:00 | A14 0-031
- Montag, 16.12.2024 16:00 - 18:00 | A14 0-031
- Montag, 6.1.2025 16:00 - 18:00 | A14 0-031
- Montag, 13.1.2025 16:00 - 18:00 | A14 0-031
- Montag, 20.1.2025 16:00 - 18:00 | A14 0-031
- Montag, 27.1.2025 16:00 - 18:00 | A14 0-031
Description
This lecture provides a comprehensive introduction to contemporary Deep Learning methods, with a specific emphasis on their practical application. Concurrently, it serves as a primer for the widely-used PyTorch Deep Learning framework, assuming only a basic familiarity with Python. The course encompasses a wide range of prevalent machine learning tasks across various data types, including tabular, image, text, audio, and graph data. Throughout the course, we delve into the most crucial and up-to-date model architectures within these domains. This encompasses convolutional neural networks, recurrent neural networks, and transformer models. The lecture is complemented by hands-on exercise sessions, where students will gain practical proficiency with PyTorch. Simultaneously, they will acquire practical insights to effectively apply contemporary deep learning methods within their specific fields of interest.
Lecturers
SWS
4
Lehrsprache
deutsch und englisch