Contact

Prof. Dr. Christiane Thiel

Projects

Neuromodulation of Motor and Cognitive Function in Brain Health and disease (GRK 2783)

Below are short descriptions of available PhD projects (P1-P13) and one postdoctoral project (P14) as well as the specific requirements of each of these positions

P1 The role of prefrontal cortex in motor recovery after stroke

PI: Grefkes Collaborators: Debener, Kranczioch

Stroke is a major cause of acquired motor disability. The most important driver of motor recovery in stroke is cortical reorganization. Neuroimaging studies have consistently shown that also activity in non-motor areas such as prefrontal cortex is enhanced during motor recovery. However, despite several ideas on how such "cognitive" areas might contribute to basic motor control in stroke patients, experimental data are lacking. This PhD project will use cutting-edge system's neuroscience methods such as combined TMS-EEG and online-TMS interference embedded in a clinical setting to elucidate the causal role of dorsolateral prefrontal cortex for motor function and recovery in stroke patients. The expected results may lay the ground for new therapeutic targets to promote recovery of function after stroke. Applicants should hold a master's degree in psychology, cognitive science, neuroscience, engineering or a related discipline. Prior experiences with TMS and/or EEG as well as advanced programming skills (e.g. matlab, python) are of advantage. Good knowledge of German is of advantage. The candidate will be integrated into an interdisciplinary team at the Department of Neurology, University Hospital Cologne which closely interacts with the scientific teams at the University of Oldenburg. Workplace is Cologne.

 Please send applications to:

P2 TMS-induced EEG responses for the characterization of brain network integrity

PI: Debener, Grefkes Collaborators: Herrmann

Transcranial magnetic stimulation (TMS) is an established noninvasive procedure for probing human brain function. We will combine TMS with the measurement of brain electrical activity (EEG) for the assessment of functional properties of the motor network in healthy individuals and subacute stroke patients. Applicants should hold a degree in psychology, cognitive science, neuroscience, engineering or a related discipline. Prior experience with EEG or TMS acquisition and analysis is required as well as excellent programming skills (Matlab). Good knowledge of German is of advantage. Workplace is Oldenburg and Cologne.

Send applications to:

P3 Motor imagery neurofeedback training at home for upper-limb motor recovery in stroke and associated changes in cortical motor-prefrontal functional connectivity

PI: Kranczioch Collaborators: Thiel, Grefkes, Witt

Neurofeedback focusing on motor and premotor brain areas can provide an effective intervention for improving motor function in stroke. An ongoing challenge is the implementation and validation of the still mainly lab-based interventions outside the lab. This PhD project aims to contribute to addressing this challenge by combining home-based EEG neurofeedback training in stroke patients with comprehensive pre- and postintervention functional, behavioral and brain imaging (fMRI, EEG) assessments. Analysis of brain imaging data will explore activity in networks and brain regions beyond motor and premotor brain areas. Of particular interest to the project will be the dorso-lateral prefrontal cortex and cortical motor/premotor - dorso-lateral prefrontal functional connectivity. Applicants should hold a degree in psychology, cognitive science, neuroscience or a related discipline. Prior experience with analysis of neuroimaging/neurophysiological data and solid programming skills (e.g. Matlab, Python) are required. Good knowledge of German is of advantage. Workplace is Oldenburg.

Send applications to:

P4 Sensor-based tracking of upper limb use in domestic environments

PI: Hein Collaborator: Kranczioch

Impairments in activities of daily living (ADL) are prevalent in about 50% of stroke survivors. Consistently, ADLs are an important outcome criterion for interventions aiming to improve upper limb function, though commonly used assessment tools regularly fail to show significant improvements. This PhD project aims to combine body-related inertial measurement units on both lower and upper arms with low-resolution infrared arrays and high-resolution depth imaging cameras and use data features for classifying upper arm ADL tasks performed of stroke patients during rehabilitation at home. Applicants should hold a degree in computer science, medical engineering or a related discipline. Prior experience with analysis of time series data and programming skills (e.g. Java, Matlab, Python, ROS) are required. Good knowledge of German is of advantage. Workplace is Oldenburg. Payment is TV-L13 100%.

Send applications to:

P5 Frequency specific neurofeedback to promote interference reduction in memory consolidation

PI: H. Hildebrandt, Kranczioch

Fast forgetting following distraction is a common problem in amnesia. We suggest that a state of decreased post-learning interference immediately after a memory task may promote interference resolution and memory in patients with such deficits. Initial research in healthy young individuals indicates that theta activity or EEG slow wave and alpha activity could be neural signatures of an optimal post-learning state. The PhD project aims to extend this work. The PhD student will develop an EEG neurofeedback to implement a state of decreased interference allowing for enhanced consolidation. A first study will be conducted on healthy older participants. In the second step, we will validate the EEG patterns in stroke patients. We expect that the patterns identified as characterizing the state of decreased interference (e.g. theta activity) in step 1 are reduced, and that the reduction is related to the impaired performance. Applicants should hold a degree in psychology and should have experience with EEG recording and evaluation. Programming skills (e.g., Matlab, Python) are of advantage. Good knowledge of German is necessary. Workplace is Oldenburg and Bremen.

Send applications to:

P6 Combining cognitive training and tACS in patients after stroke to improve interference control

PI: Özyurt Collaborators: Herrmann, Thiel

Research on cognitive rehabilitation of stroke patients reported heterogeneous results, low quality of evidence, and improvements mostly observable in the short, but not in the long-term. This PhD project will investigate whether effects of an interference control training can be improved by concurrent application of a transcranial alternating current stimulation (tACS) protocol in healthy older participants and patients with stroke presenting executive deficits. Applicants should hold a degree in psychology, cognitive science or neuroscience. Prior experience with analysis of neuroimaging/neurophysiological data or otherwise excellent programming skills (e.g. matlab, python) are required. Applicants should also have a very good knowledge of German. Workplace is Oldenburg.

Send applications to:

P7 Brain mechanisms of cognitive interference in  coordination of realistic action sequences in virtual reality

PI: Rieger Collaborator: Hein

Driving is a complex everyday task that requires strong interference control.  For older and younger people driving is central to maintain mobility, autonomy, and social interaction. This project aims a better understanding the brain basis of interference control during driving across the lifespan and to develop predictors for lapses of iit. The successful candidate will investigate and compare brain networks underlying interference control across two age groups and in two intervention schemes. The experiments will be performed in a rare MRI-compatible driving simulator setup and analysis methods will draw on machine learning techniques. Applicants should hold a degree in psychology, cognitive science, neuroscience, engineering, computer science or a related discipline. Prior experience with analysis of neuroimaging/neurophysiological data, machine leaning and excellent programming skills (e.g. matlab, python) are required. Good knowledge of German is of advantage. Workplace is Oldenburg.

Send applications to:

P8 Monitoring far-transfer effects of neuromodulation and cognitive training on interference control in daily activities after stroke by means of experience sampling methods

PI: Andrea Hildebrandt Collaborators: Brütt, Özyurt, Kranczioch

Individuals’ real-world cognitive functioning can be considered the ultimate clinical outcome relevant for diagnosis and evaluation of intervention success. However, assessment challenges for such outcomes are immense. Retrospective self-reports are often a poor proxy of the targeted outcome due to a multitude of biases. Ambulatory assessment and experience sampling methodologies are powerful emerging tools to immediately capture behavior in different situations at different times of the day. This PhD project will develop a specific instrument for assessing internal and external cognitive interference during daily life activities as experienced by stroke patients and will evaluate the instrument as an experience sampling method. Applicants should hold a degree in psychology, or a related discipline (e.g., health care sciences). Prior experience with multivariate statistical analyses approaches and excellent programming skills on R and/or Python are required. Furthermore, basic knowledge on Mixed Methods studies is of advantage, as well as good knowledge of German. Workplace is Oldenburg.

Send applications to:

P9 interference resolution in older volunteers and patients with Parkinson’s disease

PI: Herrmann Collaborator: Witt

Prior studies have shown changes in oscillatory activity in the beta, gamma and theta range in patients with Parkinson’s disease. Theta activity originating from medial prefrontal cortex has been tightly linked to interference control. First evidence points to reduced theta oscillations in a cognitive control task in Parkinson’s disease patients and changes in anterior cingulate dopamine metabolism which may contribute to dysexecutive behavior. Oscillatory brain activity can be modulated by transcranial alternating current stimulation (tACS). In young, healthy volunteers we have previously used tACS to up-regulate theta oscillations. In this PhD project, we plan to use a widely used visual go/no-go paradigm  which reliably evokes theta responses. In different experimental conditions, theta will either be up- or down-regulated in healthy humans by tACS to demonstrate that up- and downregulated theta oscillations in fact make behavior better and worse, respectively. If successful, a second study will apply theta-tACS in Parkinson’s disease patients in cooperation with PI Witt. Applicants should hold a degree in psychology, cognitive science, neuroscience, or a related discipline. Prior experience with analysis of neurophysiological data (EEG) and good programming skills in Matlab are required. Good knowledge of German is of advantage. Workplace is Oldenburg.

Please send applications to:

P10 Noradrenergic and cholinergic modulation of functional connectivity related to motor performance and interference resolution in older volunteers and patients with Parkinson’s disease

PI: Thiel Collaborators: Witt, Grefkes

Cholinergic and noradrenergic neuromodulation are of interest for improvement of cognitive and motor function, in both, Parkinson’s disease and stroke. Heterogeneous and/or small effects of pharmacological stimulation are however a challenge. Therefore, an important next step is to identify suitable predictors of beneficial drug effects. This PhD project will aim to identify neural predictors of individual drug responses in a larger sample of older volunteers using restings state, structural and task-based fMRI. Applicants should hold a degree in psychology, cognitive science, neuroscience, engineering or a related discipline. Prior experience with analysis of neuroimaging/neurophysiological data or otherwise excellent programming skills (e.g. matlab, python) are required. Good knowledge of German is of advantage. Workplace is Oldenburg.

Send applications to:

P11 Effectiveness of transcutaneous vagus nerve stimulation on interference resolution in patients with Parkinson’s disease

PI: Witt Collaborators: Thiel, Debener

A hallmark of Parkinson’s disease (PD) is the loss of dopaminergic neurons. However, other neurotransmitters such as noradrenaline are also affected and directly contribute to disease symptoms on the level of non-motor functions such as cognitive control and motivational behaviour. Targeting the auricular branch of the vagus nerve, previous studies demonstrated the activation of the noradrenergic locus coeruleus by a transcutaneous vagus nerve stimulation (tVNS) in healthy subjects. This PhD project will aim to identify the impact of tVNS in PD, namely we will explore the effects of tVNS on cognitive (interference resolution) and motivational functions. Here, we will use pupillometry, EEG and cognitive and behavioral tests. Applicants should hold a degree in psychology, cognitive science, neuroscience, engineering, medicine or a related discipline. Prior experience with analysis of EEG or neuropsychological data or programming skills are required. Given the clinical study, good knowledge of German is mandatory. Workplace is Oldenburg.

Send application to:

P12 Gait-related brain activity in patients with Parkinson’s disease: A mobile EEG study and non-invasive vagal nerve stimulation

PI: Debener Collaborators: Witt, Hein

Cognitive-motor interference is highly prevalent in many daily situations, particularly when complex movement sequences or motor planning are required, such as during natural gait. Transcranial vagus nerve stimulation is a noninvasive procedure and may improve gait parameters and freezing of gait in patients with Parkinson’s disease. We will use tVNS and mobile EEG to study the cortical contributions to gait and gait abnormalities. Applicants should hold a degree in psychology, cognitive science, neuroscience, engineering or a related discipline. Prior experience with EEG acquisition and analysis is required as well as excellent programming skills (Matlab). Good knowledge of German is of advantage. Workplace is Oldenburg.

Send applications to:

P13 How to translate neuromodulation into routine care?

PI: Brütt Collaborators: Hildebrand, Hein

Participatory approaches assure patient-centeredness by obtaining a holistic view of how neuromodulation interventions are perceived by patients, with respect to their effects including benefits and harms, way of action as well as barriers and facilitators for the translation of neuromodulation techniques in routine care. This PhD project will aim to explore patients’ expectations and preferences on neuromodulation and identify barriers and facilitators for the translation of neuromodulation techniques in routine care from the patients’ perspectives. Applicants should hold a degree in health sciences, psychology or a related discipline. Prior experience with analysis of qualitative data including software skills (e.g. MAXQDA) are required. As candidates are expected to interview patients with stroke and Parkinson’s Disease, very good knowledge of German is needed. Workplace is Oldenburg.

Send applications to:

P14 Postdoctoral Position in Network Neuroscience

Aim of this project is to identify how different neuromodulatory approaches impact dysfunctional brain networks and which brain network measures contribute to successful treatment outcome. Depending on the background and interests of the candidate, the project can be shaped to focus on structural or functional network analyses using either (f)MRI or EEG data. The project will tightly interact with several of the PhD projects above and focus on network-based structural and functional connectivity measures. Candidates are expected to have an academic university degree (Master or equivalent) and a PhD in the field of computational neuroscience or a related discipline with strong focus on analysis of human neuroimaging/neurophysiological data. They should have shown their ability to perform excellent scientific work, demonstrated by the outstanding quality of their Doctorate/PhD research and an excellent publication record.  Prior experience with advanced analysis of neuroimaging/neurophysiological data (e.g. network based measures) and excellent programming skills (e.g. matlab, python) are required. Good communicative skills and prior work experience in collaborative, interdisciplinary projects are of advantage. Workplace is Oldenburg. Payment is TV-L13 100%.

Send applications to:

(Changed: 31 Aug 2022)