• A green laser beam is guided by mirrors and lenses through an experimental set-up.

    The research group "Ultrafast Nano-Optics" examines processes in the nanoworld with the help of lasers that emit extremely short flashes of light. Photo: University of Oldenburg

New nanolaser explained

Nanoparticles made of metals and semiconductors have fascinating properties. A German-Swedish research team reports in the journal Nature Communications how a new material increases light emission.

Nanoparticles made of metals and semiconductors have fascinating properties. A German-Swedish research team reports in the journal Nature Communications how a new material enhances light emission. 

Tiny particles composed of metals and semiconductors could serve as light sources in components of future optical computers, as they are able to precisely localize and extremely amplify incident laser light.  A team from Germany and Sweden led by Prof. Dr. Christoph Lienau and Dr. Jin-Hui Zhong from the University of Oldenburg has now explained for the first time how this process works. The study is published in the current issue of the journal Nature Communications.

For their study, the team produced hybrid nanomaterials that combine the optical properties of metals and semiconductors. The starting point of the study were sponge-like gold particles with a diameter of several hundred billionths of a metre (nanometres) and pores with a size of around ten nanometres. The material scientists Dr. Dong Wang and Prof. Dr. Peter Schaaf from the Technical University of Ilmenau fabricated these nanosponges and further used advanced nanofabrication techniques to coat the sponges and infiltrate their tiny pores with a thin layer of the semiconductor zinc oxide.

Using photons for calculations

The particles are capable of changing the colour of an optical light beam. For example, if they are irradiated with the light of a red laser, they might emit blue laser light, which has a shorter wavelength. The emitted colour depends on the properties of the material. "Creating such so-called nonlinear optical materials with nanoscale dimensions is one of the grand challenges in current optics research," Lienau reports. In future optical computers, which might use light instead of electrons for calculations, such nanoparticles could serve as tiny light sources. "You could call such particles nanolasers," adds Zhong, who together with Dr. Jan Vogelsang from Lund University is the lead author of the study. Possible applications include ultrafast optical switches or transistors.

When metals and semiconductors unite

In order to elucidate how nanomaterials convert light of one colour into another, team members led by Prof. Dr. Anne L'Huillier and Prof. Dr. Anders Mikkelsen from Lund University in Sweden used a special microscopic method, ultrafast photoemission electron microscopy. Combining extremely short flashes of light with an electron microscope, they were able to directly show that light is efficiently concentrated in the nanopores – an important prerequisite for its future application. Prof. Dr. Erich Runge, a physicist from the Technical University of Ilmenau, simulated the properties of the material with theoretical models. As the team reports, nanoparticles composed of metals and semiconductors probably offer new opportunities for adjusting the properties of the emitted light. "Our study provides fundamental new insights into how hybrid metal-semiconductor nanostructures amplify light," says Zhong. In addition, the observations could help develop materials with even better optical properties.

The research group "Ultrafast Nano-Optics" at the University of Oldenburg headed by Prof. Dr. Christoph Lienau specializes in studying processes in the nanoworld with particularly high spatial and temporal resolution. The physicists have already achieved several significant breakthroughs in this field. Only recently, they developed a metallic superlens made of gold with previously unattained optical resolution.

Original article: Jin-Hui Zhong, Jan Vogelsang, Jue-Min Yi, Dong Wang, Lukas Wittenbecher, Sara Mikaelsson, Anke Korte, Abbas Chimeh, Cord L. Arnold, Peter Schaaf, Erich Runge, Anne L’Huillier, Anders Mikkelsen, Christoph Lienau: "Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure", Nature Communications. https://doi.org/10.1038/s41467-020-15232-w

 

This might also be of interest to you:

Close-up of a quartz crystal
Top News Physics

Automatically predicting the properties of crystal surfaces

The properties of complex crystal surfaces can be calculated automatically using a new method. This could speed up the search for suitable materials…

more
Two men assemble the accessories for the experiment.
Top News Physics International affairs

From Zakho to Oldenburg

How to design experiments for students based on current research in physics? In a joint project, Oldenburg researchers are helping a team from the…

more
The experimental setup consists of an electron spectrometer, a so-called filter wheel and light phenomena reminiscent of a fire.
Research Top News Physics

In the attosecond realm

This year's Nobel Prize in Physics was awarded for breakthroughs in the field of attosecond physics. The new methods are also being used in Oldenburg…

more
Presse & Kommunikation (Changed: 18 Oct 2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page