Contact

Director

Prof. Dr Andreas Stein

+49 (0)441 798-3232

W1 2-216

Office

IfM Office

+49 (0)441 798-3004

Antje Hagen

+49 (0)441 798-3247

W1 1-115

Frauke Wehber

+49 (0)441 798-3247

W1 1-115

Desislava German

+49 (0)441 798-3241

W1 1-120

Equal Opportunities Officer

Carolin Lena Danzer

+49 (0)441 798-3227

W1 1-104

Dr Birte Julia Specht

+49 (0)441 798-3607

W1 1-110

Dr Sandra Stein

+49 (0)441 798-3237

W1 2-214

Ombudsperson for issues of
discrimination and sexual harassment

Antje Hagen

+49 (0)441 798-3247

W1 1-115

IT Officer

Veronika Viets

+49 (0) 441 798-3236

W1 1-116

Address

University of Oldenburg
Institute of Mathematics
Campus Wechloy
Carl-von-Ossietzky-Str. 9-11
26129 Oldenburg

How to find us


Final seminars

Hodge-Riemann relations for convex valuations

Vortragsankündigung

 

Im Rahmen des Kolloquiums spricht

 

Herr Prof. Dr. Andreas Bernig (Uni Frankfurt)

über

 

Hodge-Riemann relations for convex valuations

 

The so-called Kähler package consists of a Poincaré duality, a hard Lefschetz theorem and the HodgeRiemann relations. The origin goes back to the cohomology theory of compact Kähler manifolds, but similar structures appeared in the last few years in many different areas in mathematics such as algebraic geometry, combinatorics and polytope theory and have far reaching consequences.

 

After explaining some of these structures, I will report on a recent project with Jan Kotrbatý (Charles University Prague) and Thomas Wannerer (Friedrich-Schiller University Jena) where we introduce a Kähler package for convex valuations. As a consequence, we find quadratic inequalities for mixed volumes that generalize the fundamental Alexandrov-Fenchel inequality.

 

Der Vortrag findet statt am

Mittwoch, 03.07.2024 um 17.15 Uhr im Raum W01 0-006

Kaffee/Tee um 16.45 Uhr im Raum W1 2-213

 

Interessierte sind herzlich eingeladen.

 

03.07.2024 17:15 – Open End

Webmaster (Changed: 07 Apr 2025)  Kurz-URL:Shortlink: https://uol.de/p105418c116562en | # |
Zum Seitananfang scrollen Scroll to the top of the page