Lectures

Talks

Isoperimetric inequalities for eigenvalues of the Laplace-Beltrami operator on surfaces

Im Rahmen des Oberseminars Analysis/Numerik spricht
Herr Dr. Alexei Penskoi (Max-Planck-Institut in Bonn)

über

Isoperimetric inequalities for eigenvalues of the Laplace-Beltrami operator on surfaces

Outline

  • Spectral Geometry
  • Laplace-Beltrami operator
  • Spectral Geometry problems
  • Geometric optimization of eigenvalues of Δ
  • Lord Rayleigh question
  • Geometric optimization of eigenvalues
  • Known results about particular surfaces
  • Minimal submanifolds in \(S^n\) and harmonic maps to \(S^n\)
  • Minimal isometric immersions to \(S^n\)
  • Minimal maps and harmonic maps
  • Calabi-Barbosa theorem
  • Harmonic degree and Ejiri bound
  • Scheme of proofs of the recent results
  • Scheme of proof for \(S^2\)

Der Vortrag findet statt am

Donnerstag, den 16.05.2024 um 14.15 Uhr im Raum W01 0-006

 

Interessierte sind herzlich eingeladen.

16.05.2024 14:15 – Open End

Isoperimetric inequalities for eigenvalues of the Laplace-Beltrami operator on surfaces

Im Rahmen des Oberseminars Analysis/Numerik spricht
Herr Dr. Alexei Penskoi (Max-Planck-Institut in Bonn)

über

Isoperimetric inequalities for eigenvalues of the Laplace-Beltrami operator on surfaces

Outline

  • Spectral Geometry
  • Laplace-Beltrami operator
  • Spectral Geometry problems
  • Geometric optimization of eigenvalues of Δ
  • Lord Rayleigh question
  • Geometric optimization of eigenvalues
  • Known results about particular surfaces
  • Minimal submanifolds in \(S^n\) and harmonic maps to \(S^n\)
  • Minimal isometric immersions to \(S^n\)
  • Minimal maps and harmonic maps
  • Calabi-Barbosa theorem
  • Harmonic degree and Ejiri bound
  • Scheme of proofs of the recent results
  • Scheme of proof for \(S^2\)

Der Vortrag findet statt am

Donnerstag, den 16.05.2024 um 14.15 Uhr im Raum W01 0-006

 

Interessierte sind herzlich eingeladen.

16.05.2024 14:15 – Open End

(Changed: 20 Jun 2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page