Department of Psychology  (» Postal address)

A07 0-038 (» Adress and map )

Nach Vereinbarung

+49 441 798-2940  (F&P

NELI Journal Club


In our biweekly journal club, we discuss research on mobile/ear-EEG, auditory perception, noise annoyance and beyond. We also like to discuss recent preprints and provide direct feedback to the authors based on our discussions. We are always happy for suggestions and encourage authors to point us to their work. Please send your suggestions to .

List of commented papers (Preprints)

Ladouce, S., Mustile, M., & Dehais, F. (2021). Capturing cognitive events embedded in the real-world using mobile EEG and Eye-Tracking. bioRXiv 1–26.

Our comments:

Knierim, M. T., Berger, C., & Reali, P. (2021). Open-Source Concealed EEG Data Collection for Brain-Computer-Interfaces. arXiv. 1-28.

Our comments: Personal discussion with author

Segaert, K., Poulisse, C., Markiewicz, R., Wheeldon, L., Marchment, D., Adler, Z., Howett, D., Chan, D., Mazaheri, A. (2021). Detecting impaired language processing in MCI patients using around-the-ear cEEgrid electrodes. medRxiv. 1–23.

Our comments:

Wöstmann, M., Erb, J., Kreitewolf, J., & Obleser, J. (2021). Personality captures dissociations of subjective versus objective noise tolerance. PsyArXiv. 1–27.

Our comments: Sent direcly to authors via email (German)

List of discussed papers (chronological order)

Strauss, D. J., Corona-Strauss, F. I., Schroeer, A., Flotho, P., Hannemann, R., & Hackley, S. A. (2020). Vestigial auriculomotor activity indicates the direction of auditory attention in humans. ELife, 9, 1–18.

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186.

Stuldreher, I. V., Thammasan, N., Van Erp, J. B. F., & Brouwer, A. M. (2020). Physiological synchrony in EEG, electrodermal activity and heart rate reflects shared selective auditory attention. Journal of Neural Engineering, 17(4).

Ke, J., Zhang, M., Luo, X., & Chen, J. (2021). Monitoring distraction of construction workers caused by noise using a wearable Electroencephalography (EEG) device. Automation in Construction, 125, 103598.

Lu, Y., Wang, M., Yao, L., Shen, H., Wu, W., Zhang, Q., Zhang, L., Chen, M., Liu, H., Peng, R., Liu, M., & Chen, S. (2021). Auditory attention decoding from electroencephalography based on long short-term memory networks. Biomedical Signal Processing and Control, 70, 102966.

Montoya-Martínez, J., Vanthornhout, J., Bertrand, A., & Francart, T. (2021). Effect of number and placement of EEG electrodes on measurement of neural tracking of speech. PLoS ONE, 16, 1–18.

Haumann, N. T., Lumaca, M., Kliuchko, M., Santacruz, J. L., Vuust, P., & Brattico, E. (2021). Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Research, 1754, 147248.

Mijović, P., Ković, V., De Vos, M., Mačužić, I., Todorović, P., Jeremić, B., & Gligorijević, I. (2017). Towards continuous and real-time attention monitoring at work: reaction time versus brain response. Ergonomics, 60(2), 241–254.

Kojima K., Oganian Y., Cai C., Findlay A., Chang E., Nagarajan S. (2021). Low-frequency neural tracking of speech amplitude envelope reflects the convolution of evoked responses to acoustic edges, not oscillatory entrainment. bioRxiv.

Yoshida, K., Takeda, K., Kasai, T., Makinae, S., Murakami, Y., Hasegawa, A., & Sakai, S. (2020). Focused attention meditation training modifies neural activity and attention: Longitudinal EEG data in non-meditators. Social Cognitive and Affective Neuroscience, 15(2), 215–223.

Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage, 85, 761–768.

de Cheveigné, A., Wong, D. D. E., Di Liberto, G. M., Hjortkjær, J., Slaney, M., & Lalor, E. (2018). Decoding the auditory brain with canonical component analysis. NeuroImage, 172, 206–216.

Puschmann, S., Regev, M., Baillet, S., & Zatorre, R. J. (2021). MEG inter-subject phase-locking of stimulus-driven activity during naturalistic speech listening correlates with musical training. The Journal of Neuroscience, JN-RM-0932-20.

Kaneshiro, B., Nguyen, D. T., Norcia, A. M., Dmochowski, J. P., & Berger, J. (2020). Natural music evokes correlated EEG responses reflecting temporal structure and beat. NeuroImage, 214, 116559.

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G., & Scherer, R. (2012). Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage, 63(3), 1203–1211.

Donhauser, P. W., & Baillet, S. (2020). Two Distinct Neural Timescales for Predictive Speech Processing. Neuron, 105(2), 385-393.e9.

Fodor, Z., Marosi, C., Tombor, L., & Csukly, G. (2020). Salient distractors open the door of perception: alpha desynchronization marks sensory gating in a working memory task. Scientific Reports, 10(1), 1–11.

Campbell, J., Nielsen, M., Bean, C., & LaBrec, A. (2020). Auditory Gating in Hearing Loss. Journal of the American Academy of Audiology.

Huang, N., & Elhilali, M. (2020). Push-pull competition between bottom-up and top-down auditory attention to natural soundscapes. ELife, 9, 1–22.

Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subjects research. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6106–E6115.

Berger, H. (1931). Über das Elektrenkephalogramm des Menschen - Dritte Mitteilung. Archiv Für Psychiatrie Und Nervenkrankheiten, 94(1), 16–60.

Ki, J. J., Kelly, S. P., & Parra, L. C. (2016). Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli. Journal of Neuroscience, 36(10), 3092–3101.

Ellermeier, W., & Zimmer, K. (1997). Individual differences in susceptibility to the “irrelevant speech effect.” The Journal of the Acoustical Society of America, 102(4), 2191–2199.

Kliuchko, M., Heinonen-Guzejev, M., Vuust, P., Tervaniemi, M., & Brattico, E. (2016). A window into the brain mechanisms associated with noise sensitivity. Scientific Reports, 6, 1–9.

Koreimann, S., Gula, B., & Vitouch, O. (2014). Inattentional deafness in music. Psychological Research, 78(3), 304–312.

Djebbara, Z., Fich, L. B., Petrini, L., & Gramann, K. (2019). Sensorimotor brain dynamics reflect architectural affordances. Proceedings of the National Academy of Sciences of the United States of America, 116(29), 14769–14778.

Olguin, A., Bekinschtein, T. A., & Bozic, M. (2018). Neural encoding of attended continuous speech under different types of interference. Journal of Cognitive Neuroscience, 30(11), 1606–1619.

Chung, Y. S., Hyatt, C. J., & Stevens, M. C. (2017). Adolescent maturation of the relationship between cortical gyrification and cognitive ability. NeuroImage, 158, 319–331.

Hill, N. J., & Schölkopf, B. (2012). An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. Journal of Neural Engineering, 9(2).

Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of virtual reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862–869.

Saiz-Alía, M., Forte, A. E., & Reichenbach, T. (2019). Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits. Scientific Reports, 9(1), 1–10.

Dimitrijevic, A., Smith, M. L., Kadis, D. S., & Moore, D. R. (2019). Neural indices of listening effort in noisy environments. Scientific Reports, 9(1), 11278.

Ladouce, S., Donaldson, D. I., Dudchenko, P. A., & Ietswaart, M. (2019). Mobile EEG identifies the re-allocation of attention during real-world activity. Scientific Reports, 9(1), 1–10.

Kappel, S. L., Makeig, S., & Kidmose, P. (2019). Ear-EEG Forward Models: Improved Head-Models for Ear-EEG. Frontiers in Neuroscience, 13.

Dehais, F., Roy, R. N., & Scannella, S. (2019). Inattentional deafness to auditory alarms: Inter-individual differences, electrophysiological signature and single trial classification. Behavioural Brain Research, 360, 51–59.

Van Ackeren, M. J., Barbero, F. M., Mattioni, S., Bottini, R., & Collignon, O. (2018). Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. ELife, 7, 1–20.

Roye, A., Jacobsen, T., & Schröger, E. (2013). Discrimination of personally significant from nonsignificant sounds: A training study. Cognitive, Affective and Behavioral Neuroscience, 13(4), 930–943.

Kaya, E. M., & Elhilali, M. (2017). Modelling auditory attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1714).

Dmochowski, J. P., Ki, J. J., DeGuzman, P., Sajda, P., & Parra, L. C. (2018). Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity. NeuroImage, 180, 134–146.

Vatta, F., Meneghini, F., Esposito, F., Mininel, S., & Di Salle, F. (2010). Realistic and spherical head modeling for EEG forward problem solution: A comparative cortex-based analysis. Computational Intelligence and Neuroscience, 2010.

Tost, H., Reichert, M., Braun, U., Reinhard, I., Peters, R., Lautenbach, S., Hoell, A., Schwarz, E., Ebner-Priemer, U., Zipf, A., & Meyer-Lindenberg, A. (2019). Neural correlates of individual differences in affective benefit of real-life urban green space exposure. Nature Neuroscience, 22(9), 1389–1393.

Cavanagh, & Frank, M. J. (2014). Frontal Theta as a Mechanism for Affective and Effective Control. Trends in Cognitive Sciences, 18(8), 414–421.



(Changed: 2021-12-22)