Kontakt

Department für Psychologie  (» Postanschrift)

NELI Journal Club

In unserem Journal Club, der alle zwei Wochen stattfindet, diskutieren wir Forschung zu mobilem/Ohr-EEG, auditorischer Wahrnehmung, Lärmempfindlichkeit und vielem mehr. Gerne diskutieren wir auch aktuelle Preprints und geben den Autor*innen Feedback basierend auf unseren Diskussionen. Wir freuen uns immer über Vorschläge und ermutigen Autor*innen uns auf ihre Forschungsarbeiten aufmerksam zu machen. Bitte senden Sie ihre Vorschläge an Thorge Haupt.

Liste der bisher kommentierten Artikel (Preprints)

Ladouce, S., Mustile, M., & Dehais, F. (2021). Capturing cognitive events embedded in the real-world using mobile EEG and Eye-Tracking. bioRXiv 1–26. doi.org/10.1101/2021.11.30.470560

Our comments: disq.us/p/2lioepi

Knierim, M. T., Berger, C., & Reali, P. (2021). Open-Source Concealed EEG Data Collection for Brain-Computer-Interfaces. arXiv. 1-28. arxiv.org/abs/2102.00414

Our comments: Personal discussion with author

Segaert, K., Poulisse, C., Markiewicz, R., Wheeldon, L., Marchment, D., Adler, Z., Howett, D., Chan, D., Mazaheri, A. (2021). Detecting impaired language processing in MCI patients using around-the-ear cEEgrid electrodes. medRxiv. 1–23. doi.org/10.1101/2021.03.18.21253911

Our comments: disq.us/p/2g92srm

Wöstmann, M., Erb, J., Kreitewolf, J., & Obleser, J. (2021). Personality captures dissociations of subjective versus objective noise tolerance. PsyArXiv. 1–27. doi.org/10.31234/osf.io/yfes9

Our comments: Sent direcly to authors via email (German)

Liste der bisher diskutierten Artikel (chronologische Reihenfolge)

Cahn, B. R., & Polich, J. (2009). Meditation (Vipassana) and the P3a event-related brain potential. International Journal of Psychophysiology, 72(1), 51–60. https://doi.org/10.1016/j.ijpsycho.2008.03.013

Manning, J.R., Notaro, G.M., Chen, E. et al. (2022). Fitness tracking reveals task-specific associations between memory, mental health, and physical activity. Sci Rep 12, 13822. doi.org/10.1038/s41598-022-17781-0

Delorme, A. (2022). EEG is better left alone. bioRXiv. https://doi.org/10.1101/2022.12.03.518987

Schneider, D. M., & Mooney, R. (2018). How Movement Modulates Hearing. Annual Review of Neuroscience, 41(1), 553–572. doi.org/10.1146/annurev-neuro-072116-031215

Symons, A. E., Dick, F., & Tierney, A. T. (2021). Dimension-selective attention and dimensional salience modulate cortical tracking of acoustic dimensions. NeuroImage, 244(May), 118544. doi.org/10.1016/j.neuroimage.2021.118544

Studnicki, A., Downey, R. J., & Ferris, D. P. (2022). Characterizing and Removing Artifacts Using Dual-Layer EEG during Table Tennis. Sensors, 22(15). doi.org/10.3390/s22155867

Cao, L., Thut, G., & Gross, J. (2017). The role of brain oscillations in predicting self-generated sounds. NeuroImage, 147(September 2016), 895–903. doi.org/10.1016/j.neuroimage.2016.11.001

Fuglsang, S. A., Dau, T., & Hjortkjær, J. (2017). Noise-robust cortical tracking of attended speech in real-world acoustic scenes. NeuroImage156, 435–444. doi.org/10.1016/j.neuroimage.2017.04.026

Schlossmacher, I., Dellert, T., Bruchmann, M., & Straube, T. (2021). Dissociating neural correlates of consciousness and task relevance during auditory processing. NeuroImage, 228(June 2020), 117712. doi.org/10.1016/j.neuroimage.2020.117712

Jin, P., Zou, J., Zhou, T., & Ding, N. (2018). Eye activity tracks task-relevant structures during speech and auditory sequence perception. Nature Communications, 9(1), 5374. doi.org/10.1038/s41467-018-07773-y

Hamilton, L. S., Edwards, E., & Chang, E. F. (2018). A Spatial Map of Onset and Sustained Responses to Speech in the Human Superior Temporal Gyrus. Current Biology, 28(12), 1860-1871.e4. doi.org/10.1016/j.cub.2018.04.033

Sörqvist, P., & Rönnberg, J. (2014). Individual differences in distractibility: An update and a model. PsyCh Journal, 3(1), 42–57. doi.org/10.1002/pchj.47

Wunderlich, A., & Gramann, K. (2021). Eye movement-related brain potentials during assisted navigation in real-world environments. European Journal of Neuroscience, 54(12), 8336–8354. doi.org/10.1111/ejn.15095

Stangl, M., Topalovic, U., Inman, C. S., Hiller, S., Villaroman, D., Aghajan, Z. M., Christov-Moore, L., Hasulak, N. R., Rao, V. R., Halpern, C. H., Eliashiv, D., Fried, I., & Suthana, N. (2021). Boundary-anchored neural mechanisms of location-encoding for self and others. Nature, 589(7842), 420–425. doi.org/10.1038/s41586-020-03073-y

Zuk, N. J., Teoh, E. S., & Lalor, E. C. (2020). EEG-based classification of natural sounds reveals specialized responses to speech and music. NeuroImage, 210(December 2019), 116558. doi.org/10.1016/j.neuroimage.2020.116558

Burgess, A. P. (2012). Towards a Unified Understanding of Event-Related Changes in the EEG: The Firefly Model of Synchronization through Cross-Frequency Phase Modulation. PLoS ONE, 7(9). doi.org/10.1371/journal.pone.0045630

Gillis, M., Vanthornhout, J., Simon, J. Z., Francart, T., & Brodbeck, C. (2021). Neural Markers of Speech Comprehension: Measuring EEG Tracking of Linguistic Speech Representations, Controlling the Speech Acoustics. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 41(50), 10316–10329. doi.org/10.1523/JNEUROSCI.0812-21.2021

Cohen, M. X. (2022). A tutorial on generalized eigendecomposition for denoising, contrast enhancement, and dimension reduction in multichannel electrophysiology. NeuroImage, 247(April 2021), 118809. doi.org/10.1016/j.neuroimage.2021.118809

Volpert-Esmond, H. I., Page-Gould, E., & Bartholow, B. D. (2021). Using multilevel models for the analysis of event-related potentials. International Journal of Psychophysiology, 162(August 2020), 145–156. doi.org/10.1016/j.ijpsycho.2021.02.006

Zink, R., Hunyadi, B., Huffel, S. Van, & Vos, M. De. (2016). Mobile EEG on the bike: Disentangling attentional and physical contributions to auditory attention tasks. Journal of Neural Engineering, 13(4). doi.org/10.1088/1741-2560/13/4/046017

Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. (2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314(5800), 829–832. doi.org/10.1126/science.1129156

Strauss, D. J., Corona-Strauss, F. I., Schroeer, A., Flotho, P., Hannemann, R., & Hackley, S. A. (2020). Vestigial auriculomotor activity indicates the direction of auditory attention in humans. ELife, 9, 1–18. doi.org/10.7554/eLife.54536

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186. doi.org/10.3758/s13428-017-0935-1

Stuldreher, I. V., Thammasan, N., Van Erp, J. B. F., & Brouwer, A. M. (2020). Physiological synchrony in EEG, electrodermal activity and heart rate reflects shared selective auditory attention. Journal of Neural Engineering, 17(4). doi.org/10.1088/1741-2552/aba87d

Ke, J., Zhang, M., Luo, X., & Chen, J. (2021). Monitoring distraction of construction workers caused by noise using a wearable Electroencephalography (EEG) device. Automation in Construction, 125, 103598. doi.org/10.1016/j.autcon.2021.103598

Lu, Y., Wang, M., Yao, L., Shen, H., Wu, W., Zhang, Q., Zhang, L., Chen, M., Liu, H., Peng, R., Liu, M., & Chen, S. (2021). Auditory attention decoding from electroencephalography based on long short-term memory networks. Biomedical Signal Processing and Control, 70, 102966. doi.org/10.1016/j.bspc.2021.102966

Montoya-Martínez, J., Vanthornhout, J., Bertrand, A., & Francart, T. (2021). Effect of number and placement of EEG electrodes on measurement of neural tracking of speech. PLoS ONE, 16, 1–18. doi.org/10.1371/journal.pone.0246769

Haumann, N. T., Lumaca, M., Kliuchko, M., Santacruz, J. L., Vuust, P., & Brattico, E. (2021). Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Research, 1754, 147248. doi.org/10.1016/j.brainres.2020.147248

Mijović, P., Ković, V., De Vos, M., Mačužić, I., Todorović, P., Jeremić, B., & Gligorijević, I. (2017). Towards continuous and real-time attention monitoring at work: reaction time versus brain response. Ergonomics, 60(2), 241–254. doi.org/10.1080/00140139.2016.1142121

Kojima K., Oganian Y., Cai C., Findlay A., Chang E., Nagarajan S. (2021). Low-frequency neural tracking of speech amplitude envelope reflects the convolution of evoked responses to acoustic edges, not oscillatory entrainment. bioRxiv. doi.org/10.1101/2020.04.02.022616

Yoshida, K., Takeda, K., Kasai, T., Makinae, S., Murakami, Y., Hasegawa, A., & Sakai, S. (2020). Focused attention meditation training modifies neural activity and attention: Longitudinal EEG data in non-meditators. Social Cognitive and Affective Neuroscience, 15(2), 215–223. doi.org/10.1093/scan/nsaa020

Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage, 85, 761–768. doi.org/10.1016/j.neuroimage.2013.06.035

de Cheveigné, A., Wong, D. D. E., Di Liberto, G. M., Hjortkjær, J., Slaney, M., & Lalor, E. (2018). Decoding the auditory brain with canonical component analysis. NeuroImage, 172, 206–216. doi.org/10.1016/j.neuroimage.2018.01.033

Puschmann, S., Regev, M., Baillet, S., & Zatorre, R. J. (2021). MEG inter-subject phase-locking of stimulus-driven activity during naturalistic speech listening correlates with musical training. The Journal of Neuroscience, JN-RM-0932-20. doi.org/10.1523/jneurosci.0932-20.2020

Kaneshiro, B., Nguyen, D. T., Norcia, A. M., Dmochowski, J. P., & Berger, J. (2020). Natural music evokes correlated EEG responses reflecting temporal structure and beat. NeuroImage, 214, 116559. doi.org/10.1016/j.neuroimage.2020.116559

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G., & Scherer, R. (2012). Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage, 63(3), 1203–1211. doi.org/10.1016/j.neuroimage.2012.08.019

Donhauser, P. W., & Baillet, S. (2020). Two Distinct Neural Timescales for Predictive Speech Processing. Neuron, 105(2), 385-393.e9. doi.org/10.1016/j.neuron.2019.10.019

Fodor, Z., Marosi, C., Tombor, L., & Csukly, G. (2020). Salient distractors open the door of perception: alpha desynchronization marks sensory gating in a working memory task. Scientific Reports, 10(1), 1–11. doi.org/10.1038/s41598-020-76190-3

Campbell, J., Nielsen, M., Bean, C., & LaBrec, A. (2020). Auditory Gating in Hearing Loss. Journal of the American Academy of Audiology. doi.org/10.1055/s-0040-1709517

Huang, N., & Elhilali, M. (2020). Push-pull competition between bottom-up and top-down auditory attention to natural soundscapes. ELife, 9, 1–22. doi.org/10.7554/eLife.52984

Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subjects research. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6106–E6115. doi.org/10.1073/pnas.1711978115

Berger, H. (1931). Über das Elektrenkephalogramm des Menschen - Dritte Mitteilung. Archiv Für Psychiatrie Und Nervenkrankheiten, 94(1), 16–60. doi.org/10.1007/BF01835097

Ki, J. J., Kelly, S. P., & Parra, L. C. (2016). Attention strongly modulates reliability of neural responses to naturalistic narrative stimuli. Journal of Neuroscience, 36(10), 3092–3101. doi.org/10.1523/JNEUROSCI.2942-15.2016

Ellermeier, W., & Zimmer, K. (1997). Individual differences in susceptibility to the “irrelevant speech effect.” The Journal of the Acoustical Society of America, 102(4), 2191–2199. doi.org/10.1121/1.419596

Kliuchko, M., Heinonen-Guzejev, M., Vuust, P., Tervaniemi, M., & Brattico, E. (2016). A window into the brain mechanisms associated with noise sensitivity. Scientific Reports, 6, 1–9. doi.org/10.1038/srep39236

Koreimann, S., Gula, B., & Vitouch, O. (2014). Inattentional deafness in music. Psychological Research, 78(3), 304–312. doi.org/10.1007/s00426-014-0552-x

Djebbara, Z., Fich, L. B., Petrini, L., & Gramann, K. (2019). Sensorimotor brain dynamics reflect architectural affordances. Proceedings of the National Academy of Sciences of the United States of America, 116(29), 14769–14778. doi.org/10.1073/pnas.1900648116

Olguin, A., Bekinschtein, T. A., & Bozic, M. (2018). Neural encoding of attended continuous speech under different types of interference. Journal of Cognitive Neuroscience, 30(11), 1606–1619. doi.org/10.1162/jocn_a_01303

Chung, Y. S., Hyatt, C. J., & Stevens, M. C. (2017). Adolescent maturation of the relationship between cortical gyrification and cognitive ability. NeuroImage, 158, 319–331. doi.org/10.1016/j.neuroimage.2017.06.082

Hill, N. J., & Schölkopf, B. (2012). An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. Journal of Neural Engineering, 9(2). doi.org/10.1088/1741-2560/9/2/026011

Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of virtual reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862–869. doi.org/10.3758/s13428-017-0911-9

Saiz-Alía, M., Forte, A. E., & Reichenbach, T. (2019). Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits. Scientific Reports, 9(1), 1–10. doi.org/10.1038/s41598-019-50773-1

Dimitrijevic, A., Smith, M. L., Kadis, D. S., & Moore, D. R. (2019). Neural indices of listening effort in noisy environments. Scientific Reports, 9(1), 11278. doi.org/10.1038/s41598-019-47643-1

Ladouce, S., Donaldson, D. I., Dudchenko, P. A., & Ietswaart, M. (2019). Mobile EEG identifies the re-allocation of attention during real-world activity. Scientific Reports, 9(1), 1–10. doi.org/10.1038/s41598-019-51996-y

Kappel, S. L., Makeig, S., & Kidmose, P. (2019). Ear-EEG Forward Models: Improved Head-Models for Ear-EEG. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00943

Dehais, F., Roy, R. N., & Scannella, S. (2019). Inattentional deafness to auditory alarms: Inter-individual differences, electrophysiological signature and single trial classification. Behavioural Brain Research, 360, 51–59. doi.org/10.1016/j.bbr.2018.11.045

Van Ackeren, M. J., Barbero, F. M., Mattioni, S., Bottini, R., & Collignon, O. (2018). Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. ELife, 7, 1–20. doi.org/10.7554/elife.31640

Roye, A., Jacobsen, T., & Schröger, E. (2013). Discrimination of personally significant from nonsignificant sounds: A training study. Cognitive, Affective and Behavioral Neuroscience, 13(4), 930–943. doi.org/10.3758/s13415-013-0173-7

Kaya, E. M., & Elhilali, M. (2017). Modelling auditory attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1714). doi.org/10.1098/rstb.2016.0101

Dmochowski, J. P., Ki, J. J., DeGuzman, P., Sajda, P., & Parra, L. C. (2018). Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity. NeuroImage, 180, 134–146. doi.org/10.1016/j.neuroimage.2017.05.037

Vatta, F., Meneghini, F., Esposito, F., Mininel, S., & Di Salle, F. (2010). Realistic and spherical head modeling for EEG forward problem solution: A comparative cortex-based analysis. Computational Intelligence and Neuroscience, 2010. doi.org/10.1155/2010/972060

Tost, H., Reichert, M., Braun, U., Reinhard, I., Peters, R., Lautenbach, S., Hoell, A., Schwarz, E., Ebner-Priemer, U., Zipf, A., & Meyer-Lindenberg, A. (2019). Neural correlates of individual differences in affective benefit of real-life urban green space exposure. Nature Neuroscience, 22(9), 1389–1393. doi.org/10.1038/s41593-019-0451-y

Cavanagh, & Frank, M. J. (2014). Frontal Theta as a Mechanism for Affective and Effective Control. Trends in Cognitive Sciences, 18(8), 414–421. doi.org/10.1016/j.tics.2014.04.012.Frontal

 

 

Webmaster (Stand: 20.06.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page