Projects
Projects
Past Projects
SuMoCoS The SuMoCoS project (Sustainability and Mobility in the Context of Smart cities) is a travelling conference with project partners in Germany, Uzbekistan and Mongolia. The aim of the project is to strengthen the cooperation between all project partners and to further deepen the understanding of the theoretical and practical challenges of Smart City projects in Central Asia. In addition, there will be an exchange of knowledge between the participants with the aim of deepening and promoting cooperation in research and in economic projects. |
|
Smart Modeling Recent technological advancements have led to an increasingly interconnected world, leading to new, autonomous smart devices and services that permeate everyday life (Internet of Things) and industry (Industry 4.0). This opens up a wide array of opportunities for applications in diverse domains. At the same time, the systems supporting these applications are reaching new levels of complexity, necessitating appropriate engineering methodologies. Model-driven Engineering provides the required foundations for formally rigorous development of software-intensive systems, but is still a long way from realizing its full potential, and the adoption in industry remains limited. The Smart Modeling project is aimed at providing a thematic framework to facilitate knowledge exchange between computing science research groups at the University of Oldenburg, Germany, and the Tashkent University of Information Technologies in Uzbekistan, as well as industry partners. The project’s workshops act as student and doctoral symposium to promote young researchers, and as discussion forum to identify research and collaboration opportunities based on scientific challenges and concrete industry needs. Major outcomes will be a comprehensive report on the state of the art of model-driven engineering, jointly developed by participating young researchers, and concrete proposals for follow-up collaborative projects to advance Smart Modeling research, improve its coverage in education, and transfer results into practical application. |
|
J@TA In this cooperation project, TARGIS GmbH and the University of Oldenburg examine approaches to software development and maintenance, including tool support. These approaches are targeted to the concrete requirements of the TARGIS GmbH, and are tested and refined in an application environment. |
|
NEMo: Sustainable Fulfillment of Mobility Needs in Rural Areas With more than 60% of the german population living in rural areas, where public transport coverage is, in general, declining, diverse mobility needs arise. NEMo is an interdisciplinary, holistic approach towards fulfilling those needs by considering social, demographic, accessibility, legal, economic, and ecological conditions and objectives. IT is seen as key enabler to create a mobility platform software system for the provision and consumation of mobility services. The software engineering group seeks to research, develop, and apply novel means to bridge the semantic gap between business processes and component-based implementations. The group's Sensei approach, originally conceived as service-oriented, model-driven framework for tool integration, provides the basis, and will be extended and generalized to meet the demands of the NEMo project in particular, and software development beyond tool integration, in general. |
|
TOCSE In the TOCSE project (Tashkent Oldenburg Cooperation in Software Engineering), researchers from Tashkent University of Information Technology, Uzbekistan are currently visiting researchers in the Software Engineering group at the Carl von Ossietzky University of Oldenburg. The research stay of the guests is funded by a grant according to the decree of Cabinet of Ministers of Uzbekistan. |
|
Q-MIG
Building a Quality-Driven, Generic Tool-Chain for Software Migration |
Aufbau einer qualitätsgetriebenen, generischen Werkzeugkette für die Software-Migration. |
|
Modeling Deltas Since large scaled software models typically exist in many revisions, extraction and representation of differences between versions is a crucial issue of model versioning systems. While handling model differences is playing an essential role in evolution of models, there is a need for appropriate techniques to maintain model changes and analyse model histories. This PhD thesis intents to reveal appropriate approaches to versioning software models which is substantial challenge of current MVCS. |
|