Contact

Prof. Dr. Sascha Schäfer


room W01A 1-105
telephone +49-441-798-3536

Publications

Publikationen

2023

[67] Florian Giesl, Christian Schubbert, Patrick Eraerds, Stephan J. Heise, Robert Lechner, Thomas Dalibor, Jürgen Parisi. Investigation of electrical transport across the CIGSSe/Mo(Se,S)2 interface of a CIGSSe-based solar cell by experiment and device simulation. Thin Solid Films 763, 139570, doi.org/10.1016/j.tsf.2022.139570 (2022)

[66] Florian Giesl, Christian Schubbert, Patrick Eraerds, Stephan J. Heise, Robert Lechner, Thomas Dalibor, Jürgen Parisi. Improved modeling of the effect of sulfur on optical and electrical properties in a calibrated simulation model of a CIGSSe solar module. Journal of Physics D: Applied Physics 56, 045105, doi.org/10.1088/1361-6463/aca9d9 (2022)

[65] Janet Neerken, Raymund Schäffler, Stephan J. Heise. Exploring reverse-bias characteristics of CIGS solar cells: Impact of alkali-post-deposition treatment and CdS buffer layer. EPJ Photovoltaics 13, doi.org/10.1051/epjpv/2022023 (2022)

[64] Stephan J. Heise, Asliddin Komilov, Michael Richter, Bart Pieters, Andreas Gerber, Janet Neerken. Reverse-Bias Behaviour of Thin-Film Solar Cells: Effects of Measurement-Induced Heating. EPJ Photovoltaics (in press)

2022

[63]  Devendra Pareek,Marco A. Gonzalez,Nedal Grewo,Marten L. Janßen,Kumarahgiri Arunakiri,Kayode Luqman Alimi,Martin Silies,Jürgen Parisi,Levent Gütay,Sascha Schäfer. Large-Area Growth of MoS2/WS2 Heterostructures by a Sequential Atomic Layer Deposition and Spin-Coating Approach. Adv. Mater. Interfaces 2200816 (2022)

[62] Stephan J. Heise, Teoman Taskesen, Abdel Kader Ndoukoue Chintouo and Jörg Ohland. Which Parameters Determine the Low-Light Behaviour of CIGSSe-Based Thin-Film Solar Cells? Frontiers in Energy Research 10, doi.org/10.3389/fenrg.2022.906093 (2022)

[61] Stephan J. Heise, Hippolyte Hirwa, Marko Stölzel, Thomas Dalibor and Jörg Ohland. Investigating the origin of the N1 signature in admittance spectroscopy of Cu(In,Ga)(S,Se)_2 thin-film solar cells by a variation of individual cell layers. Thin Solid Films 759, 139463, doi.org/10.1016/j.tsf.2022.139463 (2022)

[60] Colleen Lattyak, Martin Vehse, Marco A. Gonzalez, Devendra Pareek, Levent Gütay, Sascha Schäfer and Carsten Agert. Optoelectronic Properties of MoS2 in Proximity to Carrier Selective Metal Oxides.  Adv. Optical Mater. 2102226 (2022)

2021

[59] Ashwin Hariharan,  Sascha Schäfer, and  Stephan J. Heise. Decay of excess carriers in a two-defect model semiconductor: A time-resolved photoluminescence study. Journal of Applied Physics 130, 235702  doi.org/10.1063/5.0065600 (2021)

[58] Hamsa Ahmed, Vita Solovyeva, Marco A. Gonzalez, Mohamed Elshabasi,  Michael Richter, Devendra Pareek, Stephan J. Heise, Marko Stölzel, Alfons Weber,Thomas Dalibor, Sascha Schäfer, and Jürgen Parisi. Impact of the Buffer/Absorber Interface on the Metastability of Fill Factor Temperature Coefficients in CIGSSe Solar Cells. Advanced Materials Interfaces. 18, 2100778 (2021)

[57] D. Nowak, T. Taskesen, D. Pareek, T. Pfeiffelmann, U. Mikolajczak, L. Gütay, Tuning of Precursor Composition and Formation Pathway of Kesterite Absorbers using an in-process Composition Shift: A Path towards Higher Efficiencies?, Solar RRL (In-press), (doi.org/10.1002/solr.202100237 )

[56] W. Chen, H. Hirwa, J. Ohland, T. Taskesen, U. Mikolajczak, D Pareek, J. Parisi, L. Gütay, SiOxNy back-contact barriers for CZTSe thin-film solar cells, Plos one 16 (1), e0245390, (2021). (doi.org/10.1371/journal.pone.0245390)

[55] T. Taskesen, D. Pareek, D. Hauschild, A. Haertel, L. Weinhardt, W. Yang, T. Pfeiffelmann, D. Nowak, C. Heske, L. Gütay, Steep sulfur gradient in CZTSSe solar cells by H2S-assisted rapid surface sulfurization, RSC Advances 11 (21), 12687-12695, (2021). (doi.org/10.1039/D1RA00494H)

[54] N. Bach and  S. Schäfer. Ultrafast strain propagation and acoustic resonances in nanoscale bilayer systems. Structural Dynamics 8, 035101 (2021)

[53] D. Pareek, K. G. Roach, M. A. Gonzalez, L. Büsing, J. Parisi, L. Gütay, S. Schäfer, Micro-patterned deposition of MoS2 ultrathin-films by a controlled droplet dragging approach, Scientific Reports, 11, 13993 (2021). doi.org/10.1038/s41598-021-93278-6

[52] T. Harvey, N. Rubiano, J. H. Gaida, M. Möller, A. Feist, S. Schäfer, C. Ropers, Ultrafast electron microscopy for probing magnetic dynamics, invited contribution to MRS Bulletin, accepted.

[51] N. Bach, S. Schäfer, Ultrafast Strain Propagation and Acoustic Resonances in Nanoscale Bilayer Systems, Structural Dynamics, in print. (2021)

[50] M. A. Gonzalez, D. Pareek, L. Büsing, M. Beer, J. Parisi, S. Schäfer, L. Gütay, Rapid formation of large area MoS2 monolayers by a parameter resilient atomic layer deposition approach, APL Materials 9, 051122 (2021).

[49] Hamsa Ahmed, Mohamed Elshabasi, Jörg Ohland, Marko Stölzel, Alfons Weber, Robert Lechner, Thomas Dalibor, Jürgen Parisi, Sascha Schäfer, Stephan J. Heise, Temperature coefficient characterization of CIGSSe solar cells with layer modifications, Solar Energy Materials and Solar Cells, 225, 111059 (2021)

[48] N. Müller, V. Hock, C. Rathje, H. Koch and S. Schäfer, Broadband coupling of fast electrons to high-Q whispering gallery mode resonators, ACS Photonics,  doi.org/10.1021/acsphotonics.1c00456 (2021)

2020

[47] A. Feist, S.V. Yalunin, S. Schäfer, C. Ropers, High-purity free-electron momentum states prepared by three-dimensional optical phase modulation, Phys. Rev. Research 2, 043227 (2020).

[46] P. Dombi, Z. Pápa, J. Vogelsang, M. Sivis, G. Herink, S. Schäfer, P. Gross, Ch. Lienau, C. Ropers, Strong-field nano-optics, Rev. Mod. Phys. 92, 025003 (2020).

[45] M. Möller, J.H. Gaida, S. Schäfer, C. Ropers, Few-nm tracking of current-driven magnetic vortex orbits using ultrafast Lorentz microscopy, Communications Physics 3, 1-7 (2020).

[44] Kevin Eickhoff*, Christopher Rathje*, Darius Köhnke, Stefanie Kerbstadt, Lars Englert, Tim Bayer, Sascha Schäfer and Matthias Wollenhaupt, Orbital angular momentum superposition states in transmission electron microscopy and bichromatic multiphoton ionization. New. J. Phys. 22, 103045 (2020),  doi.org/10.1088/1367-2630/abbe54 2020. (*equal contribution)

[43] D. Pareek, T. Taskesen, J. A. Márquez, H. Stange, S. Levcenco, I. Simsek, D. Nowak, T. Pfeiffelmann, W. Chen, C. Stroth, M. H. Sayed, U. Mikolajczak, J. Parisi, T. Unold, R. Mainz, L. Gütay, Reaction pathway for efficient CZTSe solar cells from alloyed Cu-Sn precursor via a Cu-rich selenization stage, Solar RRL, 4, 2000124, (2020)

2019

[42] M. Möller, J. H. Gaida, S. Schäfer, C. Ropers, Few-nm tracking of magnetic vortex orbits and their decay with ultrafast Lorentz microscopy, arXiv preprint arXiv:1907.04608.

[41] N. Bach, T. Domröse, A. Feist, T. Rittmann, S. Strauch, C. Ropers, S. Schäfer, Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters, Struct. Dyn. 6, 014301 (2019).

[40] D. Pareek, M. A. Gonzalez, J. Zohrabian, M. H. Sayed, V. Steenhoff, C. Lattyak,  M. VehseC. Agert, J. Parisi   S. Schäfer, L. Gütay, A vapor-phase-assisted growth route for large-scale uniform deposition of MoS2 monolayer films, RSC Advances 9, 107-113 (2019).

2018

[39] N. Rubiano da Silva, M. Möller, A. Feist, H. Ulrichs, C. Ropers, S. Schäfer, Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy, Phys. Rev. X 8, 031052 (2018).

[38] A. Feist, G. Storeck, S. Schäfer, C. Ropers,  Structural dynamics probed by high-coherence electron pulses, MRS Bulletin 43, 505 (2018).

[37] A. Feist, N. Rubiano da Silva, W. Liang, C. Ropers, S. Schäfer, Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy, Struct. Dyn. 5, 014302 (2018).

[36] S. Vogelgesang, G. Storeck, S. Schramm, K. Rossnagel, S. Schäfer, C. Ropers, Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction, Nature Physics 14, 184 (2018).

2017

[35] O. Kfir, S. Zayko, C. Nolte, M. Sivis, M. Möller, B. Hebler, S. S. P. K. Arekapudi, D. Steil, S. Schäfer, M. Albrecht, O. Cohen, S. Mathias, C. Ropers, Tabletop Nanoscale Magnetic Imaging using High-Harmonic Radiation, Science Advances, 3, eaao4641 (2017).

[34] K. E. Priebe, C. Rathje, S. V. Yalunin, Th. Hohage, A. Feist, S. Schäfer, C. Ropers, Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy, Nature Photonics 11, 793 (2017).

[33] G. Storeck, S. Vogelgesang, M. Sivis, S. Schäfer, C. Ropers, Nanotip-based photoelectron microgun for ultrafast LEED, Struct. Dyn. 4, 044024 (2017).

[32] Th. Danz, A. Neff, J. H. Gaida, R. Bormann, C. Ropers, S. Schäfer, Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved photoluminescence, Phys. Rev. B 95, 241412(R) (2017).

[31] A. Feist, N. Bach, N. Rubiano da Silva, Th. Danz, M. Möller, K. E. Priebe, T. Domröse, J. G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, C. Ropers, Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam, Ultramicroscopy 176, 63-73 (2017).

[30] T. Eggebrecht, M. Möller, J. G. Gatzmann, N. Rubiano da Silva, A. Feist, U. Martens, H. Ulrichs, M. Münzenberg, C. Ropers, S. Schäfer, Light induced metastable magnetic texture uncovered by in-situ Lorentz microscopy, Phys. Rev. Lett. 118, 097203 (2017).
Featured in: Research Highlights, Nature Nanotech. 12, 286 (2017).

2016

[29] M. Gulde, A. Rissanou, V. Harmandaris, M. Müller, S. Schäfer, C. Ropers, Structure and dynamics of monolayer polymer crystallites on graphene, Nano Lett. 16, 6994–7000 (2016).

[28] K. E. Echternkamp, A. Feist, S. Schäfer, C. Ropers, Ramsey-type phase control of free electron beams, Nature Phys. 12, 1000-1004 (2016).

[27] S. Zayko, M. Sivis, S. Schäfer, C. Ropers, Polarization contrast of nanoscale waveguides in high-harmonic imaging, Optica 3, 239 (2016).

[26] K. E. Echternkamp, G. Herink, S. V. Yalunin, K. Rademann, S. Schäfer, C. Ropers, Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics, Appl. Phys. B 122, 1­–10 (2016).

2015

[25] B. Schröder, M. Sivis, R. Bormann, S. Schäfer, C. Ropers, An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons, Appl. Phys. Lett. 107, 231105 (2015).

[24] R. Bormann, S. Strauch, S. Schäfer, C. Ropers, An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode, J. Appl. Phys. 118, 173105 (2015).

[23] B. Schröder, T. Weber, S. V. Yalunin, C. Matyssek, T. Kiel, M. Sivis, S. Schäfer, F. von Cube, S. Irsen, K. Busch, C. Ropers, S. Linden, Real space imaging of nanotip plasmons using electron energy-loss spectroscopy, Phys. Rev. B 92, 085411 (2015).

[22] S. Zayko, E. Mönnich, M. Sivis, D. Mai, T. Salditt, S. Schäfer, C. Ropers, Coherent diffractive imaging beyond the projection approximation: Waveguiding at extreme ultraviolet wavelengths, Opt. Exp. 23, 19911 (2015).

[21] A. Feist, K. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).
Featured in: Mathieu Kociak, Microscopy: Quantum control of free electrons, Nature 521, 166-167 (2015), and R. Vogelgesang, J. Vogelsang, C. Lienau, Elektronen steuern mit Licht, Physik Journal, 06/2015.

2014

[20] M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, C. Ropers, Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014).
Featured in: Erik T. J. Nibbering, Low-energy electron diffraction at ultrafast speeds, Science 345, 137–138 (2014).

2012

[19] A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, R. Ernstorfer, Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study, J. Appl. Phys. 112, 113109 (2012).

[18] W. Liang, S. Schäfer, A. H. Zewail, Ultrafast electron crystallography of heterogeneous structures: Gold-graphene bilayer and ligand-encapsulated nanogold on graphene, Chem. Phys. Lett. 542, 8–12 (2012).

[17] W. Liang, S. Schäfer, A. H. Zewail, Ultrafast electron crystallography of monolayer adsorbates on clean surfaces: Structural dynamics, Chem. Phys. Lett. 542, 1–7 (2012).

[16] A. Yurtsever, S. Schäfer, A. H. Zewail, Ultrafast Kikuchi Diffraction: Nanoscale Stress–Strain Dynamics of Wave-Guiding Structures, Nano Lett. 12, 3772–3777 (2012).

[15] S. M. Kast, S. Schäfer, R. Schäfer, Thermally induced polarizabilities and dipole moments of small tin clusters, J. Chem. Phys. 136, 134320 (2012).

2011

[14] S. Schäfer, W. Liang, A. H. Zewail, Structural dynamics of surfaces by ultrafast electron crystallography: Experimental and multiple scattering theory. J. Chem. Phys., 135, 214201 (2011).

[13] S. Schäfer, W. Liang, A. H. Zewail, Structural dynamics of nanoscale gold by ultrafast electron crystallography. Chem. Phys. Lett. 515, 278–282 (2011).

[12] S. Heiles, S. Schäfer, R. Schäfer, On the rotational temperature and structure dependence of electric field deflection experiments: A case study of germanium clusters. J. Chem. Phys. 135, 034303 (2011).

[11] S. Schäfer, W. Liang, A. H. Zewail, Primary structural dynamics in graphite. New J. Phys. 13, 063030 (2011).

2010

[10] S. Schäfer, W. Liang, A. H. Zewail, Structural dynamics and transient electric-field effects in ultrafast electron diffraction from surfaces. Chem. Phys. Lett. 493, 11–18 (2010).

[9] B. Assadollahzadeh, S. Schäfer, P. Schwerdtfeger, Electronic properties for small tin clusters Snn (n≤ 20) from density functional theory and the convergence toward the solid state, J. Comp. Chem. 31, 929–937 (2010).

[8] S. Heiles, S. Schäfer, R. Schäfer, Mass spectrometry and beam deflection studies of tin–lead nanoalloy clusters. Phys. Chem. Chem. Phys. 12, 247–253 (2010).

2009

[7] U. Rohrmann, S. Schäfer, R. Schäfer, Size-and temperature-dependent magnetic response of molecular cage clusters: manganese-doped tin clusters. J. Phys. Chem. A 113, 12115–12121 (2009).

2008

[6] C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S. Schäfer, R. Schäfer, Relativistic and electron correlation effects in static dipole polarizabilities for the group-14 elements from carbon to element Z= 114: Theory and experiment. Phys. Rev. A 78, 052506 (2008).

[5] S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, R. Schäfer, Structure and Electric Properties of SnN Clusters (N= 6− 20) from Combined Electric Deflection Experiments and Quantum Theoretical Studies. J. Phys. Chem. A 112, 12312–12319 (2008).

[4] S. Schäfer, R. Schäfer, New Molecular Cage Clusters of Pb by Encapsulation of Mg. ChemPhysChem 9, 1925–1929 (2008).

[3] S. Schäfer, S. Heiles, J. A. Becker, R. Schäfer, Electric deflection studies on lead clusters.J. Chem. Phys. 129, 44304–44304 (2008).

[2] S. Schäfer, R. Schäfer, Dielectric response of germanium clusters. Phys. Rev. B 77, 205211 (2008).

[1] S. Schäfer, M. Mehring, R. Schäfer, P. Schwerdtfeger, Polarizabilities of Ba and Ba2: Comparison of molecular beam experiments with relativistic quantum chemistry. Phys. Rev. A 76, 052515 (2008).

(Changed: 19 Jan 2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page