Complex Materials
Contact
Complex Materials
We investigate the electronic structure of complex materials for the next generation of optoelectronic and photovoltaic applications as well as of electron sources.
We study the evolution of halide perovskites from solution species to thin films in the project GLIMPSE within the DFG Priority Program 2196.
Ongoing research in this direction includes also the characterization of the electronic structure of multi-alkali antimonides and tellurides as photocathode materials for particle accelerators.
Relevant Publications
- C. Cocchi, X-ray absorption fingerprints from Cs atoms in Cs3Sb, Physica Status Solidi – RRL 4, 2000194 (2020).
- C. Cocchi, S. Mistry, M. Schmeißer, R. Amador, J. Kühn, and T. Kamps, Electronic structure and core electron fingerprints of caesium-based multi-alkali antimonides for ultra-bright electron sources, Scientific Reports 9, 18276 (2019).
- C. Cocchi, S. Mistry, M. Schmeißer, J. Kühn, and T, Kamps, First-principles many-body study of the electronic and optical properties of CsK2Sb, a semiconducting material for ultra-bright electron sources, J. Phys.: Condens. Matter 31, 014002 (2018).