Navigation

News

3 July 2020 

We are looking for two new doctoral coworkers (PhD students) for our lab. Please see advertisement of the positions here.

 

30 June 2020 

We have been granted access to large amounts of computing resources by the Northern German Network for HPC Computing (HLRN).

 

24 June 2020 

Our paper on learning of higher-order statistics for image encoding (Mousavi, Drefs, Lücke, 2020) has been accepted by the International Conference on Machine Learning, Optimization, and Data Science.

 

20 May 2020 
We have received top-up funding for the processing of SARS-CoV-2 EM microscopy images within our BMBF project SPAplus.

 

1 April 2020 
Our project "SPAplus" (collaborative BMBF project, 3 years) has started. We will investigate medical image processing using generative models.

 

25 March 2020 
Our paper "Phase transition for parameter learning of Hidden Markov Models" (Rau et al.) has been made available on arXiv.

 

15 March 2020 
Our research activities shift to home offices due to the Corona crisis

 

4 March 2020 
Our paper "Maximal Causes for Exponential Family Observables" (Mousavi et al.) has been made available on arXiv.

 

18 Feb 2020 
Our abstract "Optimal Inference of Sound Intensities and Sound Components Using Generative Representations" (Monk, Savin, Lücke) has been accepted for the ASA Conference in Chicago, where it will be presented as a talk.

 

6 Feb 2020 
Our project proposal "SPAplus" (collaborative BMBF project, 3 years) has been accepted and will be funded.

 

1 August 2019
Release of the open source software library "ProSper". The library contains a collection of algorithms for probabilistic sparse coding. For the source code see here. For a description see here.

 

1 July 2019
Our paper "k-Means as a Variational EM Approximation of Gaussian Mixture Models" has been published by Pattern Recognition Letters and is available online (PRLetters, arXiv).

 

2 April 2019
Our paper "k-Means as a Variational EM Approximation of Gaussian Mixture Models" was accepted for publication by Pattern Recognition Letters.

 

14-15 March 2019
Jörg Lücke gave a series of three lectures on Generative Machine Learning at the IK 2019 Spring School.

 

17 Jan 2019
Our paper "STRFs in primary auditory cortex emerge from masking-based statistics of natural sounds" (Sheikh et al.) has been published by PLOS Computational Biology.
 

16 July 2018
Our paper "Neural Simpletrons - Learning in the Limit of Few Labels with Directed Generative Networks" (Forster et al.) has been published by Neural Computation.
 

5 July 2018
Our paper "Truncated Variational Sampling for ‘Black Box’ Optimization of Generative Models" has been presented at the LVA/ICA 2018.

 

3 July 2018
Our paper "Optimal neural inference of stimulus intensities" (Monk et al.) has been published by Nature's Scientific Reports.
 

24 March 2018
Our paper "Evolutionary Expectation Maximization" (Guiraud et al.) has been accepted for GECCO 2018.
 

19 March 2018
Our paper "Truncated Variational Sampling for ‘Black Box’ Optimization of Generative Models" (Lücke et al.) has been accepted for LVA/ICA 2018.
 

5 March 2018
Our paper "Neural Simpletrons - Learning in the Limit of Few Labels with Directed Generative Networks" (Forster et al.) has been accepted by Neural Computation.
 

22 Dec 2017
Our paper "Can clustering scale sublinearly with its clusters?" (Forster & Lücke) has been accepted for AISTATS 2018.
 

30 June 2017
Our paper "Discrete Sparse Coding" (Exarchakis & Lücke) has been accepted by Neural Computation.
 

7 June 2017
Our paper "Models of acetylcholine and dopamine signals differentially improve neural representations" (Holca-Lamarre et al.) has been accepted by the journal Frontiers in Neuroscience.
 

25 May 2017
Our paper "Binary non-negative matrix deconvolution for audio dictionary learning" (Drgas et al.) has been accepted by the journal IEEE Transactions on Audio, Speech and Language Processing.

Contact

Head of lab

Prof. Dr. Jörg Lücke

+49 441 798 5486

+49 441 798-3902

W30 2-201

 

Secretary

tba

+49 441 798-

+49 441 798-3902

W30 2-202

 

Postal Address

Prof. Dr. Jörg Lücke
Arbeitsgruppe Machine Learning
Exzellenzcluster Hearing4all und
Department für Medizinische Physik und Akustik
Fakultät für Medizin und Gesundheitswissenschaften
Carl von Ossietzky Universität Oldenburg
D-26111 Oldenburg

Office Address

Room 201 (2nd floor)
Building W30 (NeSSy)  
Küpkersweg 74
26129 Oldenburg

Learning in Neural Circuits

 

Circuit diagram of the first processing stages in a cortical column.

Comparison of distributions of simple cells RFs and RFs developed by different models. Blue dots mark the column model in Lücke, Neural Comp, 2009

In this project computational models of learning in neural microcircuits are studied. The studied systems are motivated by recent data on synaptic plasticity and on on the fine-scale structure of neural circuits. We study the implications of such models for learning and compare the resulting neural response properties to experimental data.

DownloadColumns_Code.zip

Further Reading

  • C. Keck*, C. Savin*, and J. Lücke (2012).
    Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin? (online access, bibtex)
    PLoS Computational 8(3): e1002432.
    *joint first authorship


  • C. Keck, C. Savin and J. Lücke (2011).
    Input normalization and synaptic scaling - two sides of the same coin (abstract, poster)
    Proc. COSYNE.

  • C. Keck and J. Lücke (2010).
    Learning of Lateral Connections for Representational Invariant Recognition (pdf, bibtex).
    Proc. ICANN 2010, LNCS 6354, 21-30.

  • J. Bornschein, M. Henniges, G. Puertas, J. Lücke (2010)
    Binary Hidden Variables and Sparse Sensory Coding
    Frontiers Comp Neurosci, Proceedings BCCN. (online access)

  • J. Bornschein and J. Lücke (2009).
    Applications of Non-linear Component Extraction to Spectrogram Representations Of Auditory Data
    Frontiers in Compuational Neuroscience, Proc. BCCN (poster, online access).

  • J. Lücke (2009).
    Receptive Field Self-Organization in a Model of the Fine-Structure in V1 Cortical Columns (online access, bibtex).
    Neural Computation 21(10):2805-2845.

  • J. Lücke (2007).
    A Dynamical Model for Receptive Field Self-Organization in V1 Cortical Columns (bibtex).
    Proc. ICANN, Springer, LNCS 4669, 389-398

  • J. Lücke and J. D. Bouecke (2005).
    Dynamics of Cortical Columns - Self-Organization of Receptive Fields. (pdf, bibtex).
    Proc. ICANN, Springer, LNCS 3696, 31-37.

  • J. Lücke and C. von der Malsburg (2004).
    Rapid processing and unsupervised learning in a model of the cortical macrocolumn (pdf, bibtex).
    Neural Computation, 16(3):501-533.

  • J. Lücke (2004).
    Hierarchical self-organization of minicolumnar receptive fields (pdf, bibtex).
    Neural Networks 17:1377-1389.

     

Copyright notice

The papers listed above have been published after peer review in different journals. These journals remain the only definitive repository of the content. Copyright and all rights therein are usually retained by the respective publishers. These materials may not be copied or reposted without their explicit permission. Use for scholarly purposes only.

Webmaste0nr+k0d8 (petra.wicf83plts@uol.w37de) (Changed: 2020-07-08)