Prof. Dr. Tim Jürgens

Lübeck University of Applied Sciences
Department of Applied Sciences
Institute of Acoustics
Mönkhofer Weg 239
23562 Lübeck

Tel.: +49 451 300-5261



Peer-reviewed publications

[1] N.R. Clark, W. Lecluyse, T. Jürgens “Analysis of compressive properties of the BioAid hearing aid algorithm,” Int. J. Audiol, 2017, early online, 1-9. 

[2] L. Zamaninezhad, V.Hohmann, A. Büchner, M.R. Schädler, T. Jürgens, „A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing,“ Hear. Res., 344, 2017, pp. 50-61.

[3] F. Langner and T. Jürgens, “Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm”, Trends in Hearing, 20, 2016,   pp. 1-14.

[4] T. Jürgens, N.R. Clark, W. Lecluyse, R. Meddis, „Exploration of a physiologically-inspired hearing aid algorithm using a computer model mimicking impaired hearing“, Int. J. Audiol., 55, 2016, pp. 346-357

[5] A. Eichenauer, M. Dietz, B. T. Meyer, and T. Jürgens “Introducing temporal rate coding for speech in cochlear implants: A microscopic evaluation in humans and models,” Proceedings of the 17th Interspeech conference, San Francisco, CA, 2016, pp. 635-639.

[6] B. Williges, M. Dietz, V. Hohmann, and T. Jürgens, „Spatial unmasking of speech in simulated cochlear implant users with and without access to low-frequency acoustic hearing,“ Trends in Hearing, 19, 2015,pp. 1-14.

[7] S. Hochmuth, T. Jürgens, T. Brand, and B. Kollmeier, “Talker- and language-specific effects on speech intelligibility in noise assessed with bilingual talkers: Which language is more robust against noise and reverberation?,“ Int. J. Audio., 54, 2015, pp. 23-34.

[8] S. Hochmuth, B. Kollmeier, T. Brand, and T. Jürgens, “Influence of noise type on speech reception thresholds across four languages measured with matrix sentence tests,“ Int. J. Audiol., 54, 2015, 62-70.

[9] M.R. Panda, W. Lecluyse, C.M. Tan, T. Jürgens, and R. Meddis, “Hearing dummies: Individualized computer models of hearing impairment,“ Int. J. Audiol. 53, 2014, pp. 699–709.

[10] T. Jürgens, B. Kollmeier, S.D. Ewert, and T. Brand, “Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model,“ J. Acoust. Soc. Am. 135, 2014, pp. 1535-1541.

[11] R. Meddis, N. R. Clark, W. Lecluyse, and T. Jürgens, “BioAid - Ein biologisch inspiriertes Hörgerät,“ Zeitschrift für Audiologie - Audiol. Acoust., 52(4), 2013, pp. 148-152.

[12] T. Jürgens, T. Brand, R. Meddis, N. R. Clark, and G. J. Brown, “The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions,“ 
J. Acoust. Soc. Am. 134, 2013, pp. EL282-EL288.

[13] N. Moritz, M.R. Schädler, K. Adiloglu, B.T. Meyer, T. Jürgens, T. Gerkmann, B. Kollmeier, S. Doclo, S. Goetze, “Noise robust distant automatic speech recognition utilizing NMF based source separation and auditory feature extraction,“ The 2nd CHiME workshop on machine listening in multitalker environments, Vancouver, Canada, 2013.

[14] N. R. Clark, G. J. Brown, T. Jürgens, and R. Meddis, “A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise,“ J. Acoust. Soc. Am. 132, 2012, pp. 1535-1541. 

[15] T. Jürgens, B. Kollmeier, T. Brand, and Stephan D. Ewert, “Assessment Of Auditory Nonlinearity For Listeners With Different Hearing Losses Using Temporal Masking And Categorical Loudness Scaling,“ Hear. Res. 280, 2011, pp. 177-191.

[16] G.J. Brown, T. Jürgens, R. Meddis, M. Robertson, and N.R. Clark, “The representation of speech in a nonlinear auditory model: time-domain analysis of simulated auditory-nerve firing patterns,“ Proceedings of the 12th Annual Conference of the International Speech Communication Association - Interspeech, Florence, Italy, 2011, pp. 2453–2456.

[17] T. Jürgens, S. Fredelake, R. M. Meyer, T. Brand, and B. Kollmeier, “Challenging the Speech Intelligibility Index: macroscopic vs. microscopic prediction of sentence recognition in normal and hearing-impaired listeners,“ Proceedings of the Interspeech, Makuhari, Japan, 2010, pp. 2478-2481. 

[18] B. Meyer, T. Jürgens, T. Wesker, T. Brand, and B. Kollmeier, “Human phoneme recognition depending on speech-intrinsic variability “ J. Acoust. Soc. Am. 128 (5), 2010, pp. 3126–3141.

[19] T. Jürgens, T. Brand, “Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model,“ J. Acoust. Soc. Am. 126 (5), 2009, pp. 2635-2648. 

[20] T. Jürgens, T. Brand, B. Kollmeier, “Modelling the human-machine gap in speech reception: microscopic speech intelligibility prediction for normal-hearing subjects with an auditory model,“ in Proceedings of the 8th Interspeech conference, Antwerp, Belgium, 2007, pp. 410-413.

[21] T. Jürgens, L. Gütay, G.H. Bauer, “Photoluminescence, open circuit voltage, and photocurrents in Cu(In,Ga)Se2 solar cells with lateral submicron resolution,“ Thin Solid Films 511, 2006, pp. 678-683.

Submitted peer-reviewed publications

[22] T. Jürgens, V. Hohmann, A. Büchner, W. Nogueira “The effects of electrical field spatial spread and some cognitive factors on speech-in-noise performance of individual cochlear implant users -  a computer model study,” submitted to PlosOne

[23] B. Williges, T. Jürgens, H. Hu, M. Dietz"Coherent coding of enhanced interaural cues improves sound localization in noise with bilateral cochlear implants," submitted to Trends in Hearing


[24] T. Jürgens, A. Eichenauer, M. Dietz „“Variation der Cochlea-Implantat Elektrodenzuordnung in Abhängigkeit von spektralen Eigenschaften mit unterschiedlichen Stimulationsraten,” Patent DE 10 2016 214 745.5,  2016, submitted to German patent office.

(Changed: 19 Dec 2022)  |