Contact

Prof. Dr. Tim Jürgens

Lübeck University of Applied Sciences
Department of Applied Sciences
Institute of Acoustics
Mönkhofer Weg 239
23562 Lübeck

Tel.: +49 451 300-5261

Publications

Since 1 April, 2018, the former head of the group holds a professorship at Lübeck University of Applied Sciences. Here, only publications connected to Oldenburg and prior are listed.

Peer-reviewed publications

[1] A. Zedan, T. Jürgens, B. Williges, D. Hülsmeier, B. Kollmeier “Modelling speech reception thresholds and their improvements due to spatial noise reduction algorithms in bimodal cochlear implant users“, Hearing Research, 420, 2022, doi: 10.1016/j.heares.2022.108507.

[2] T. Jürgens, T. Wesarg, D. Oetting, L. Jung, B. Williges, “Spatial speech-in-noise performance in simulated single-sided deaf and bimodal cochlear implant users in comparison with real patients“, Int. J. Audiol., 64, 2021, doi: 10.1080/14992027.2021.2015633.

[3] A. Zedan, T. Jürgens, B. Williges, B. Kollmeier, K. Wiebe, J. Galindo, T. Wesarg “Speech Intelligibility and Spatial Release From Masking Improvements Using Spatial Noise Reduction Algorithms in Bimodal Cochlear Implant Users“, Trends in Hearing, 25, 2021, doi: 10.1177/23312165211005931.

[4] B. Williges, T. Wesarg, L. Jung, L. Geven, A. Radeloff, T. Jürgens “Spatial Speech-in-Noise Performance in Bimodal and Single-Sided Deaf Cochlear Implant Users“, Trends in Hearing, 23, 2019, doi: 10.1177/2331216519858311.

[5] A. Zedan, B. Williges, T. Jürgens “Modeling SpeechIntelligibilityofSimulated Bimodal and Single-Sided Deaf Cochlear Implant Users“, Acta Acustica, 104, 2018, doi: 10.3813/AAA.919256.

[6] T. Jürgens, V. Hohmann, A. Büchner, W. Nogueira “The effects of electrical field spatial spread and cognitive factors on speech-in-noise performance of individual cochlear implant users predicted by a computer model,” PLoS ONE 13(4), 2018, e0193842, pp.1-20.

[7] B. Williges, T. Jürgens, H. Hu, M. Dietz "Coherent coding of enhanced interaural cues improves sound localization in noise with bilateral cochlear implants," Trends in Hearing, 22, 2018, pp. 1-18.

[8] N.R. Clark, W. Lecluyse, T. Jürgens “Analysis of compressive properties of the BioAid hearing aid algorithm,” Int. J. Audiol, 2017, 57, S130-S138.

[9] L. Zamaninezhad, V.Hohmann, A. Büchner, M.R. Schädler, T. Jürgens, „A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing,“ Hear. Res., 344, 2017, pp. 50-61.

[10] F. Langner and T. Jürgens, “Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm”, Trends in Hearing, 20, 2016, pp. 1-14.

[11] T. Jürgens, N.R. Clark, W. Lecluyse, R. Meddis, „Exploration of a physiologically-inspired hearing aid algorithm using a computer model mimicking impaired hearing“, Int. J. Audiol., 55, 2016, pp. 346-357

[12] A. Eichenauer, M. Dietz, B. T. Meyer, and T. Jürgens “Introducing temporal rate coding for speech in cochlear implants: A microscopic evaluation in humans and models,” Proceedings of the 17th Interspeech conference, San Francisco, CA, 2016, pp. 635-639.

[13] B. Williges, M. Dietz, V. Hohmann, and T. Jürgens, „Spatial unmasking of speech in simulated cochlear implant users with and without access to low-frequency acoustic hearing,“ Trends in Hearing, 19, 2015, pp. 1-14.

[14] S. Hochmuth, T. Jürgens, T. Brand, and B. Kollmeier, “Talker- and language-specific effects on speech intelligibility in noise assessed with bilingual talkers: Which language is more robust against noise and reverberation?,“ Int. J. Audio., 54, 2015, pp. 23-34.

[15] S. Hochmuth, B. Kollmeier, T. Brand, and T. Jürgens, “Influence of noise type on speech reception thresholds across four languages measured with matrix sentence tests,“ Int. J. Audiol., 54, 2015, 62-70.

[16] M.R. Panda, W. Lecluyse, C.M. Tan, T. Jürgens, and R. Meddis, “Hearing dummies: Individualized computer models of hearing impairment,“ Int. J. Audiol. 53, 2014, pp. 699–709.

[17] T. Jürgens, B. Kollmeier, S.D. Ewert, and T. Brand, “Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model,“ J. Acoust. Soc. Am. 135, 2014, pp. 1535-1541.

[18] R. Meddis, N. R. Clark, W. Lecluyse, and T. Jürgens, “BioAid - Ein biologisch inspiriertes Hörgerät,“ Zeitschrift für Audiologie - Audiol. Acoust., 52(4), 2013, pp. 148-152.

[19] T. Jürgens, T. Brand, R. Meddis, N. R. Clark, and G. J. Brown, “The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions,“ J. Acoust. Soc. Am. 134, 2013, pp. EL282-EL288.

[20] N. Moritz, M.R. Schädler, K. Adiloglu, B.T. Meyer, T. Jürgens, T. Gerkmann, B. Kollmeier, S. Doclo, S. Goetze, “Noise robust distant automatic speech recognition utilizing NMF based source separation and auditory feature extraction,“ The 2nd CHiME workshop on machine listening in multitalker environments, Vancouver, Canada, 2013.

[21] N. R. Clark, G. J. Brown, T. Jürgens, and R. Meddis, “A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise,“ J. Acoust. Soc. Am. 132, 2012, pp. 1535-1541.

[22] T. Jürgens, B. Kollmeier, T. Brand, and Stephan D. Ewert, “Assessment Of Auditory Nonlinearity For Listeners With Different Hearing Losses Using Temporal Masking And Categorical Loudness Scaling,“ Hear. Res. 280, 2011, pp. 177-191.

[23] G.J. Brown, T. Jürgens, R. Meddis, M. Robertson, and N.R. Clark, “The representation of speech in a nonlinear auditory model: time-domain analysis of simulated auditory-nerve firing patterns,“ Proceedings of the 12th Annual Conference of the International Speech Communication Association - Interspeech, Florence, Italy, 2011, pp. 2453–2456.

[24] T. Jürgens, S. Fredelake, R. M. Meyer, T. Brand, and B. Kollmeier, “Challenging the Speech Intelligibility Index: macroscopic vs. microscopic prediction of sentence recognition in normal and hearing-impaired listeners,“ Proceedings of the Interspeech, Makuhari, Japan, 2010, pp. 2478-2481.

[25] B. Meyer, T. Jürgens, T. Wesker, T. Brand, and B. Kollmeier, “Human phoneme recognition depending on speech-intrinsic variability “ J. Acoust. Soc. Am. 128 (5), 2010, pp. 3126–3141.

[26] T. Jürgens, T. Brand, “Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model,“ J. Acoust. Soc. Am. 126 (5), 2009, pp. 2635-2648.

[27] T. Jürgens, T. Brand, B. Kollmeier, “Modelling the human-machine gap in speech reception: microscopic speech intelligibility prediction for normal-hearing subjects with an auditory model,“ in Proceedings of the 8th Interspeech conference, Antwerp, Belgium, 2007, pp. 410-413.

[28] T. Jürgens, L. Gütay, G.H. Bauer, “Photoluminescence, open circuit voltage, and photocurrents in Cu(In,Ga)Se2 solar cells with lateral submicron resolution,“ Thin Solid Films 511, 2006, pp. 678-683.

Patents

[29] T. Jürgens, A. Eichenauer, M. Dietz “Variation der Cochlea-Implantat Elektrodenzuordnung in Abhängigkeit von spektralen Eigenschaften mit unterschiedlichen Stimulationsraten,” Patent DE 10 2016 214 745.5, 2016, German patent office.

Theses

[30] T. Jürgens “A microscopic model of speech recognition for listeners with normal and impaired hearing”, PhD-thesis, Medizinische Physik. Carl-von-Ossietzky Universität Oldenburg, 2010, published in Shaker-Verlag, Aachen.      

[31] T. Jürgens „Photoströme und Photolumineszenz von Cu(In,Ga)Se2-Solarzellen mit lateraler sub-µm-Auflösung“, Diplomarbeit, Institut für Physik. Carl-von-Ossietzky Universität Oldenburg, 2005.

(Changed: 07 Feb 2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page