KONTAKT

Prof. Dr. Tim Jürgens

Fachhochschule Lübeck
Fachbereich Angewandte Naturwissenschaften
Institut für Akustik
Mönkhofer Weg 239
23562 Lübeck

Tel.: +49 451 300-5261

Publikationen

Zum 01.04.2018 folgte der Leiter der Arbeitsgruppe einem Ruf an die Fachhochschule Lübeck. Hier sind nur Publikationen gelistet, die mit der Zeit in Oldenburg zusammenhängen oder davor entstanden sind.

Peer-reviewed publications

[1] A. Zedan, T. Jürgens, B. Williges, D. Hülsmeier, B. Kollmeier “Modelling speech reception thresholds and their improvements due to spatial noise reduction algorithms in bimodal cochlear implant users“, Hearing Research, 420, 2022, doi: 10.1016/j.heares.2022.108507.

[2] T. Jürgens, T. Wesarg, D. Oetting, L. Jung, B. Williges, “Spatial speech-in-noise performance in simulated single-sided deaf and bimodal cochlear implant users in comparison with real patients“, Int. J. Audiol., 64, 2021, doi: 10.1080/14992027.2021.2015633.

[3] A. Zedan, T. Jürgens, B. Williges, B. Kollmeier, K. Wiebe, J. Galindo, T. Wesarg “Speech Intelligibility and Spatial Release From Masking Improvements Using Spatial Noise Reduction Algorithms in Bimodal Cochlear Implant Users“, Trends in Hearing, 25, 2021, doi: 10.1177/23312165211005931.

[4] B. Williges, T. Wesarg, L. Jung, L. Geven, A. Radeloff, T. Jürgens “Spatial Speech-in-Noise Performance in Bimodal and Single-Sided Deaf Cochlear Implant Users“, Trends in Hearing, 23, 2019, doi: 10.1177/2331216519858311.

[5] A. Zedan, B. Williges, T. Jürgens “Modeling SpeechIntelligibilityofSimulated Bimodal and Single-Sided Deaf Cochlear Implant Users“, Acta Acustica, 104, 2018, doi: 10.3813/AAA.919256.

[6] T. Jürgens, V. Hohmann, A. Büchner, W. Nogueira “The effects of electrical field spatial spread and cognitive factors on speech-in-noise performance of individual cochlear implant users predicted by a computer model,” PLoS ONE 13(4), 2018, e0193842, pp.1-20.

[7] B. Williges, T. Jürgens, H. Hu, M. Dietz "Coherent coding of enhanced interaural cues improves sound localization in noise with bilateral cochlear implants," Trends in Hearing, 22, 2018, pp. 1-18.

[8] N.R. Clark, W. Lecluyse, T. Jürgens “Analysis of compressive properties of the BioAid hearing aid algorithm,” Int. J. Audiol, 2017, 57, S130-S138.

[9] L. Zamaninezhad, V.Hohmann, A. Büchner, M.R. Schädler, T. Jürgens, „A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing,“ Hear. Res., 344, 2017, pp. 50-61.

[10] F. Langner and T. Jürgens, “Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm”, Trends in Hearing, 20, 2016, pp. 1-14.

[11] T. Jürgens, N.R. Clark, W. Lecluyse, R. Meddis, „Exploration of a physiologically-inspired hearing aid algorithm using a computer model mimicking impaired hearing“, Int. J. Audiol., 55, 2016, pp. 346-357

[12] A. Eichenauer, M. Dietz, B. T. Meyer, and T. Jürgens “Introducing temporal rate coding for speech in cochlear implants: A microscopic evaluation in humans and models,” Proceedings of the 17th Interspeech conference, San Francisco, CA, 2016, pp. 635-639.

[13] B. Williges, M. Dietz, V. Hohmann, and T. Jürgens, „Spatial unmasking of speech in simulated cochlear implant users with and without access to low-frequency acoustic hearing,“ Trends in Hearing, 19, 2015, pp. 1-14.

[14] S. Hochmuth, T. Jürgens, T. Brand, and B. Kollmeier, “Talker- and language-specific effects on speech intelligibility in noise assessed with bilingual talkers: Which language is more robust against noise and reverberation?,“ Int. J. Audio., 54, 2015, pp. 23-34.

[15] S. Hochmuth, B. Kollmeier, T. Brand, and T. Jürgens, “Influence of noise type on speech reception thresholds across four languages measured with matrix sentence tests,“ Int. J. Audiol., 54, 2015, 62-70.

[16] M.R. Panda, W. Lecluyse, C.M. Tan, T. Jürgens, and R. Meddis, “Hearing dummies: Individualized computer models of hearing impairment,“ Int. J. Audiol. 53, 2014, pp. 699–709.

[17] T. Jürgens, B. Kollmeier, S.D. Ewert, and T. Brand, “Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model,“ J. Acoust. Soc. Am. 135, 2014, pp. 1535-1541.

[18] R. Meddis, N. R. Clark, W. Lecluyse, and T. Jürgens, “BioAid - Ein biologisch inspiriertes Hörgerät,“ Zeitschrift für Audiologie - Audiol. Acoust., 52(4), 2013, pp. 148-152.

[19] T. Jürgens, T. Brand, R. Meddis, N. R. Clark, and G. J. Brown, “The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions,“ J. Acoust. Soc. Am. 134, 2013, pp. EL282-EL288.

[20] N. Moritz, M.R. Schädler, K. Adiloglu, B.T. Meyer, T. Jürgens, T. Gerkmann, B. Kollmeier, S. Doclo, S. Goetze, “Noise robust distant automatic speech recognition utilizing NMF based source separation and auditory feature extraction,“ The 2nd CHiME workshop on machine listening in multitalker environments, Vancouver, Canada, 2013.

[21] N. R. Clark, G. J. Brown, T. Jürgens, and R. Meddis, “A frequency-selective feedback model of auditory efferent suppression and its implications for the recognition of speech in noise,“ J. Acoust. Soc. Am. 132, 2012, pp. 1535-1541.

[22] T. Jürgens, B. Kollmeier, T. Brand, and Stephan D. Ewert, “Assessment Of Auditory Nonlinearity For Listeners With Different Hearing Losses Using Temporal Masking And Categorical Loudness Scaling,“ Hear. Res. 280, 2011, pp. 177-191.

[23] G.J. Brown, T. Jürgens, R. Meddis, M. Robertson, and N.R. Clark, “The representation of speech in a nonlinear auditory model: time-domain analysis of simulated auditory-nerve firing patterns,“ Proceedings of the 12th Annual Conference of the International Speech Communication Association - Interspeech, Florence, Italy, 2011, pp. 2453–2456.

[24] T. Jürgens, S. Fredelake, R. M. Meyer, T. Brand, and B. Kollmeier, “Challenging the Speech Intelligibility Index: macroscopic vs. microscopic prediction of sentence recognition in normal and hearing-impaired listeners,“ Proceedings of the Interspeech, Makuhari, Japan, 2010, pp. 2478-2481.

[25] B. Meyer, T. Jürgens, T. Wesker, T. Brand, and B. Kollmeier, “Human phoneme recognition depending on speech-intrinsic variability “ J. Acoust. Soc. Am. 128 (5), 2010, pp. 3126–3141.

[26] T. Jürgens, T. Brand, “Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model,“ J. Acoust. Soc. Am. 126 (5), 2009, pp. 2635-2648.

[27] T. Jürgens, T. Brand, B. Kollmeier, “Modelling the human-machine gap in speech reception: microscopic speech intelligibility prediction for normal-hearing subjects with an auditory model,“ in Proceedings of the 8th Interspeech conference, Antwerp, Belgium, 2007, pp. 410-413.

[28] T. Jürgens, L. Gütay, G.H. Bauer, “Photoluminescence, open circuit voltage, and photocurrents in Cu(In,Ga)Se2 solar cells with lateral submicron resolution,“ Thin Solid Films 511, 2006, pp. 678-683.

Patents

[29] T. Jürgens, A. Eichenauer, M. Dietz “Variation der Cochlea-Implantat Elektrodenzuordnung in Abhängigkeit von spektralen Eigenschaften mit unterschiedlichen Stimulationsraten,” Patent DE 10 2016 214 745.5, 2016, German patent office.

Theses

[30] T. Jürgens “A microscopic model of speech recognition for listeners with normal and impaired hearing”, PhD-thesis, Medizinische Physik. Carl-von-Ossietzky Universität Oldenburg, 2010, published in Shaker-Verlag, Aachen.      

[31] T. Jürgens „Photoströme und Photolumineszenz von Cu(In,Ga)Se2-Solarzellen mit lateraler sub-µm-Auflösung“, Diplomarbeit, Institut für Physik. Carl-von-Ossietzky Universität Oldenburg, 2005.

(Stand: 20.06.2024)  | 
Zum Seitananfang scrollen Scroll to the top of the page