Publications
Publications
2024
Savoca MS, Kumar M, Sylvester Z, Czapanskiy MF, Meyer B, Goldbogen JA, Brooks CM (2024) Whale recovery and the emerging human-wildlife conflict over Antarctic krill. Nature Communication. https://doi.org/10.1038/s41467-024-51954-x
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Pettersson OV, Papetti C, Gíslason A, Glenner H, Cartes J, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A (2024) Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nature Communication. https://doi.org/10.1038/s41467-024-50239-7
Hüppe L, Bahlburg D, Busack M, Lemberg J, Payton L, Reinhard N, Helfrich-Förster C, Meyer B (2024) A new Activity Monitor for Aquatic Zooplankter (AMAZE) allows the recording of swimming activity in wild‑caught Antarctic krill (Euphausia superba). Scientific Reports, | https://doi.org/10.1038/s41598-024-67999-3
Laura Payton L, Last KS, Grigor J, Noirot C, Hüppe L, Conway DVP, Dannemeyer M, Wilcockson D, Meyer B (2024) Revealing the profound influence of diapause on gene expression: Insights from the annual transcriptome of the copepod Calanus finmarchicus. Molecular Ecology. 2024;00:e17425. https://doi.org/10.1111/mec.17425
Hill SL, …, Meyer B, …, Yang G (2024) Observing change in pelagic animals as sampling methods shift: the case of Antarctic krill. Frontiers in Marine Science 11:1307402. https://doi.org/10.3389/fmars.2024.1307402
Möller L, Vainshtein Y, Meyer B, Neidhardt J, Eren AM, Sohn K, Rabus R (2024) Rich microbial and depolymerising diversity in Antarctic krill gut. Microbiology Spectrum 12,4, https://doi.org/10.1128/spectrum.04035-2
Primpke S, Meyer B, Falcou-Préfol M, Schütte W, Gerdts G (2024) At second glance: The importance of strict quality control – _A case study on microplastic in the Southern Ocean key species Antarctic krill, Euphausia superba. Science of the Total Environment 918, https://doi.org/10.1016/j.scitotenv.2024.170618 (Co-Corresponding author)
2023
Bahlburg D, Thorpe SE, Meyer B, Berger U, Murphy EJ (2023) An intercomparison of models predicting growth of Antarctic krill (Euphausia superba): The importance of recognizing model specificity. PLoS ONE 18(7): e0286036. https://doi.org/10.1371/journal.pone.0286036
Bahlburg D, Hüppe L, Böhrer T, Thorpe SE, Murphy EJ, Berger U, Meyer B. (2023) Plasticity and seasonality of the vertical migration behaviour of Antarctic krill using acoustic data from fishing vessels. Royal Society Open Science 10: 230520. https://doi.org/10.1098/rsos.230520
Clark MS, Hoffman JI, Peck LS,……Meyer B,….. Wallberg A, Wunder LC, Mock T (2023) Multi-omics for studying and understanding polar life. Nature Communication, https://doi.org/10.1038/s41467-023-43209-y
Heyen S, Schneider V, Hüppe L, Meyer B, Wilkes H (2023) Variations of intact phospholipid compositions in the digestive system of Antarctic krill, Euphausia superba, between summer and autumn. PLoS ONE 18(12): e0295677. doi.org/10.1371/journal.pone.0295677
Kawaguchi S, Atkinson A, Bahlburg D, Bernard KS, Caven EL, Cox ML, Hill SL, Meyer B, Veytia D (2023) Climate change impacts on Antarctic krill behaviour and population dynamics. Nature Earth & Environment, doi.org/10.1038/s43017-023-00504-y
Müller SJ, Pakhomov EA, Urso I, Sales G, Pittà CD, Michael K, Meyer B (2023) Gene expression patterns of Salpa thompsoni reveal remarkable differences in metabolism and reproduction near the Antarctic Polar Front. Biological Letters 19: 20230274. https://doi.org/10.1098/rsbl.2023.0274
Pietzsch BW, Schmidt A, Groeneveld J, Bahlburg D, Meyer B, Berger U (2023) The impact of salps (Salpa thompsoni) on the Antarctic krill population (Euphausia superba): an individual-based modelling study. Ecological Processes, https://doi.org/10.1186/s13717-023-00462-9
Ryabov A, Berger U, Blasius B, Meyer B (2023) Driving forces of Antarctic krill abundance. Science Advances, Sci. Adv. 9, eadh4584, https://www.science.org/doi/10.1126/sciadv.adh4584 (Co-Corresponding author)
Shao CH, Sun S, Liu K,…, Zhao X, Meyer B, Fan G (2023) The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 186, https://doi.org/10.1016/j.cell.2023.02.005 (Co-Corresponding author)
2022
Meyer B, Kawaguchi S (2022) Antarctic marine life under pressure. Science. https://www.science.org/doi/10.1126/science.adf3606
Müller SJ, Michael K, Ilenia Urso I, Sales G, De Pittà C, Suberg L, Wessels W, Pakhomov EA, Meyer B (2022) Seasonal and form-specific gene expression signatures uncover different generational strategies of the pelagic tunicate Salpa thompsoni during the Southern Ocean Winter. Front. Mar. Sci., Sec. Marine Molecular Biology and Ecology, 9 https://doi.org/10.3389/fmars.2022.914095
Payton L, Noirot C, Last KS, Grigor J, Hüppe L, Conway DVP, Dannemeyer M, Suin A, Meyer B (2022) Annual transcriptome of a key zooplankton species, the copepod Calanus finmarchicus, Ecology and Evolution, 12:e8605, https://doi.org/10.1002/ece3.8605
Möller L, Vainstein Y, Wöhlbrand L, Dörries M, Meyer B, Sohn K, Rabus R (2022) Transcriptome–proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes. Proteomics. https://doi.org/10.1002/pmic.202100404
Kawaguchi S, Meyer B, Conroy JA, Zhang H, Rombola E (2022) Antarctic krill and its Fishery: Current status and challenges. SCAR Antarctic Environments Portal. https://doi.org/10.48361/b1vp-mt19
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Valerie Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Smith Jr WO, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Christine K. Weldrick C, Yang G (2022) Status, Change, and Futures of Zooplankton in the Southern Ocean. Front. Ecol. Evol. https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2021.624692/full
Herr H, Sacha Viquerat S, Devas F, Lees A, Wells L, Gregory B, Giffords T, Dan Beecham D. Meyer B (2022) Return of large fin whale feeding aggregations to historical whaling grounds in the Southern Ocean. Scientific Reports. https://doi.org/10.1038/s41598-022-13798-7
Urso I, Biscontin A, Corso D, Bertolucci C, Romualdi C, De Pittà C, Meyer B, Sales G (2022) The most comprehensive annotation of the krill transcriptome provides new insights for the study of physiological processes and environmental adaptation. Scientific reports. https://doi.org/10.1038/s41598-022-15320-5
2021
Pauli NC, Flintrop CM, Konrad C, Evgeny A. Pakhomov EA, Swoboda S, Koch F, Xin-Wang XL, Ji-Chang Zhang JC, Brierley AS, Bernasconi M, Meyer B, Morten H. Iversen M (2021) Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula. Nature Communications. https://doi.org/10.1038/s41467-021-27436-9
Pauli NC, Metfies K, Neuhaus S, Graeve M, Wenta P, Flintrop CM, Badewien TH, Iversen MH, Meyer B (2021) Selective feeding in Southern Ocean key grazers-diet composition of krill and salps. Communications Biology. https://doi.org/10.1038/s42003-021-02581-5
Monti‑Birkenmeier MM, Tommaso Diociaiuti T, Badewien TH, Anne‑Christin Schulz AC, Friedrichs A, Meyer B (2021) Spatial distribution of microzooplankton in different areas of the northern Antarctic Peninsula region, with an emphasis on tintinnids. Polar Biology. https://doi.org/10.1007/s00300-021-02910-8
Böckmann S, Koch F, Meyer B, Pausch F, Iversen M, Driscoll R, Laglera LM, Hassler C, Scarlett Trimborn (2021) Salp fecal pellets release more bioavailable iron to Southern Ocean phytoplankton than krill fecal pellets. Current Biology. https://doi.org/10.1016/j.cub.2021.02.033
Meyer B, Hüppe L, Payton L (2021) Timing requires the right amount and type of light. Nature Ecology & Evolution 5. https://doi.org/10.1038/s41559-020-01373-0
Michael, Suberg L, Wessels W, Kawagushi S, Meyer B (2021)Facing Southern Ocean warming: Temperature effects on whole animal performance of Antarctic krill (Euphausia superba). Zoology 146. https://doi.org/10.1016/j.zool.2021.125910
Bahlburg D, Meyer B, Berger, U (2021) The impact of seasonal regulation of metabolism on the life history of Antarctic krill. Ecological Modelling, https://doi.org/10.1016/j.ecolmodel.2021.109427
Payton L, Hüppe L, Noirot C, Hoede C, Last KS, Wilcockson D, Ershova E, Valière S, Meyer B. (2021) Widely rhythmic transcriptome in Calanus finmarchicus during the high Arctic summer solstice period, iScience https://doi.org/10.1016/j.isci.2020.101927
2020
Payton L, Noirot C, Hoede C, Hüppe L, Last K, Wilcockson D, Ershova E, Valière S, Meyer B (2020) Daily transcriptomes of the copepod Calanus finmarchicus during the summer solstice at high Arctic latitudes, Scientific data www.nature.com/articles/s41597-020-00751-4
Meyer B, Atkinson a, Bernard K, Brierley A, Driscoll R, Hill S, Marschoff E, Maschette D, Perry F, Reiss C, Rombola E, Tarling G, Thorpe S, Trathan P, Zhu G, Kawaguchi S (2020). Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation, Communications Earth & Environment, doi.org/10.1038/s43247-020-00026-1
Piccolin F, Pitzschler L, Biscontin A, Kawaguchi S, Teschke M, Meyer B (2020) Circadian regulation of DVM in Antarctic krill (Euphausia superba) and its link with photoperiod and circadian clock activity. Scientific Reports, doi.org/10.1038/s41598-020-73823-5
Höring F, Biscontin A, Harms L, Sales G, Reiss C, De Pittà, C, Meyer B (2020) Seasonal gene expression profiling of Antarctic krill in three different latitudinal regions. Marine Genomics, authors.elsevier.com/sd/article/S1874-7787(20)30067-2
Hüppe L, Payton L, Kim L, Wilcockson D, Ershova E, Meyer B (2020) Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biological Letters, 16, doi.org/10.1098/rsbl.2020.0257
Groenveld J, Berger U, Henschke N, Pakhomov E, Reiss C, Meyer B (2020) Blooms of a key grazer in the Southern Ocean – an individual-based model of Salpa thompsoni. Progress in Oceanography 185, doi.org/10.1016/j.pocean.2020.102339
2019
Cavan EL, Belcher A, Atkinson A, Hill SL, Kawaguchi S, McCormack S, Meyer B, Nicol S, Ratnarajah L, Schmidt K, Steinberg DK, Tarling GA, Boyd PW (2019). The importance of Antarctic krill in biogeochemical cycles. Nature Communication – A Review, doi.org/10.1038/s41467-019-12668-7
Biscontin A, Martini P, Costa R, Kramer A, Meyer B, Kawaguchi S, Teschke T, De Pitta C. (2019) Analysis of the circadian transcriptome of Antarctic krill Euphausia superba. Scientific Reports, doi.org/10.1038/s41598-019-50282-1
2018
Piccolin F, Suberg L, King R, Kawaguchi S, Meyer B, Teschke M (2018) The seasonal metabolic activity cycle of Antarctic krill (Euphausia superba): evidence for a role of photoperiod in the regulation of endogenous rhythmicity. Frontiers in Physiology – Aquatic Physiology, doi.org/10.3389/fphys.2018.01715
Häfker NS, Teschke M, Last K, Pond D, Hüppe L, Meyer B (2018) Calans finmarchicus seasonal cycle and diapause in relation to gene expression, physiology and endogenous clocks. Limnology and Oceanography, doi.org/10.1002/lno.11011
Häfker NS, Teschke M, Hüppe L, Meyer B (2018) Calanus finmarchicus diel and seasonal rhythmicity in relation to endogenous timing under extreme polar photoperiods. Marine Ecology Progress Series, doi.org/10.3354/meps12696
Höring F, Teschke M, Suberg L, Kawaguchi S, Meyer B (2018) Light regime affects the seasonal cycle of Antarctic krill: Impacts on growth, feeding, lipid metabolism and maturity. Canadian Journal of Zoology. doi.org/10.1139/cjz-2017-0353
Henschke N, Pakhomov EA, Groeneveld J, Meyer B (2018) Modelling the life cycle of Salpa thompsoni. Ecological modelling, doi.org/10.1016/j.ecolmodel.2018.08.017
Piccolin F, Meyer B, Biscontin A, De Pittá C, Kawaguchi S, Teschke M (2018). Photoperiodic modulation of circadian functions in Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea). Journal of Crustacean Biology, doi.org/10.1093/jcbiol/ruy035
2017
Biscontin A, Wallach T, Sales G, Grudziecki A, Janke L, Sartori E, Bertolucci C, Mazzotta G, DePitta C, Meyer B, Kramer A, Costa R. (2017) Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Scientific Reports, doi.org/10.1038/s41598-017-18009-2
Meyer B, Freier U, Grimm V, Groeneveld J, Hunt BPV, Kerwath S, King R, Klaas C, Pakhomov E, Meiners KM, Melbourne-Thomas J, Murphy EJ, Thorpe SE, Stammerjohn S, Wolf-Gladrow D, Auerswald L, Götz A, Halbach L, Jarman S, Kawaguchi S, Krumpen T, Nehrke G, Ricker R, Sumner M, Teschke M, Trebilco R, Yilmaz IN. (2017) The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nature Ecology & Evolution, doi.org/10.1038/s41559-017-0368-3
Ryabov AB, de Roos AM, Meyer B, Kawaguchi S, Blasius B (2017) Competition-induced starvation drives large-scale population cycles in Antarctic krill, Nature Ecology & Evolution, DOI: 10.1038/s41559-017-0177
Häfker NS, Meyer B, Last K, Pond D, Hüppe L, Teschke M (2017) Circadian Clock Involvement in Zooplankton Diel Vertical Migration, Current Biology, doi.org/10.1016/j.cub.2017.06.025
Sales G, Deagle BE, Calura E, Martini P, Biscontin A, De Pittà C, Kawaguchi S, Romualdi C, Meyer B, Rodolfo Costa R, Jarman S (2017) KrillDB: A de novo transcriptome database for the Antarctic krill (Euphausia superba), PLoS One 12(2):e0171908, doi.org/10.1371/journal.pone.0171908
Monti-Birkenmeier M, Diociaiuti T, Umani Fonda S, Meyer B (2017) Microzooplankton composition in the winter sea ice of the Weddell Sea. Antarctic Science, doi.org/10.1017/S0954102016000717
Meiners KM, Arndt S, Bestley S, Krumpen T, Ricker R, Milnes M, Newbery K, Freier U, Jarman S, King R, Proude R, Kawaguchi S, Meyer B (2017) Antarctic pack ice algal distribution: Floe-scale spatial variability and predictability from physical parameters. Geophysical Research Letters, doi.org/10.1002/2017GL074346
2016
Meiners KM, Golden KM, Heil P, Lieser JL, Massom R, Meyer B, William GD (2016) Introduction: SIPEX-2: A study of sea ice physical, biochemical and ecosystem processes off East Antarctica during spring 2012. Deep Sea Research II, doi.org/10.1016/j.dsr2.2016.06.010
Fuentes V , Alurralde G , Meyer B, Aguirre G , Canepa A , Wölfl A-C , Hass HC , Williams GN Schloss IR (2016) Glacial melting: an overlooked threat to Antarctic krill. Scientific Reports, doi.org/10.1038/srep27234
Biscontin A, Frigato E, Sales G, Mazzotta GM, Teschke M, De Pittà C, Jarman S, Meyer B, Costa R, Bertolucci C (2016) The opsin repertoire of the Antarctic krill Euphausia superba. Marine Genomics. doi.org/10.1016/j.margen.2016.04.010
Virtue P, Meyer B, Freier U, Nicholas PD, Jia Z, King R, Virtue J, Swadling KM, Meiners KM, Kawaguchi S (2016) Condition of larval (furcilia VI) and one year old juvenile Euphausia superba during the winter-spring transition in East Antarctica. Deep Sea Research II. doi.org/10.1016/j.dsr2.2016.02.001
2015
Deagle BE, Faux C, Kawaguchi S, Meyer B, Jarman S (2015) Antarctic krill population genomics: apparent panmixia, but genome complexity and large population size muddy the water Molecular Ecology, doi.org/10.1111/mec.13370
Meyer B, Martini P, Biscontin A, De Pittà C, Romualdi C, Teschke M, Frickenhaus S, Harms L, Freier U, Jarman S, Kawaguchi S (2015) Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate-induced environmental changes. Molecular Ecology Resources, doi.org/10.1111/1755-0998.12408
Meyer B, Auerswald L, Teschke M, Hagen W, Kawaguchi S (2015) Physiological response of adult Antarctic krill, Euphausia superba, to long term-starvation. Polar Biology, doi.org/10.1007/s00300-014-1638-z
Groeneveld J, Johst K, Kawaguchi S, Meyer B, Teschke M, Grimm, V (2015). How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model. Ecological Modelling 303:78-86, doi.org/10.1016/j.ecolmodel.2015.02.009
2014
Tremblay N, Werner T, Hünerlage K, Buchholz F, Abele D, Meyer B, Brey T (2014) Euphausiid respiration model revamped. Latitudinal and seasonal shaping effects on krill respiration rates. Ecological Modelling, 291:233-241, doi.org/10.1016/j.ecolmodel.2014.07.031
2012
Flores H, Atkinson A, Kawaguchi S, Krafft BA, Milinevsky G, Nicol S, Reiss C, Tarling GA, Werner R, Bravo Rebolledo E, Cirelli V, Cuzin-Roudy J, Fielding S, van Franeker JA, Groeneveld JJ, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov EA, Van de Putte AP, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec JY, Trathan PN, Tremblay N, Werner T (2012) The response of Antarctic krill to climate change: Implications for management and research priorities. FEATURE ARTICLE Marine Ecology Progress Series 458: 1-19, doi.org/10.3354/MEPS09831
Meyer B (2012) The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective – A Review, Polar Biology 35: 15-37 doi.org/10.1007/s00300-011-1120-0
2011
Teschke M, Wendt S, Kawaguchi S, Kramer A, Meyer B (2011) A circadian clock in Antarctic Krill: An endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba, PLoS One 6(10): e26090, doi.org/10.1371/journal.pone.0026090
2010
Meyer B (2010) Antarctic Krill, Euphausia superba, a model organism to understand the impact of global warming on the marine Antarctic ecosystem, Polarforschung 80: 17-22, doi.org/10.2312/polarforschung.80.1.17
Meyer B, Auerswald L, Spahic S, Pape C, Teschke M, Fach B, Lopata A, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. FEATURE ARTICLE Marine Ecology Progress Series 398: 1-18, doi.org/10.3354/MEPS08371
Töbe K, Meyer B, Fuentes V (2010) Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach. Polar Biology 33: 407-414, doi.org/10.1007/s00300-009-0714-2