Dr. Kai Siedenburg 

+49 (0)441 798-3579 




Musical scene perception of hearing-impaired listeners

Until recently, hearing impairment has been a blind spot of the map of music perception research. We  aim to provide a conceptual and empirical groundwork that may allow an optimization of hearing aids to music. This involves a host of questions:  How do listeners parse and organize complex musical scenes? How is music listening affected by hearing loss?  Hearing aids are currently optimized for speech -- how can we improve music listening with hearing aids?


Kirsten Wagener (Hörzentrum Oldenburg), Volker Hohmann (Uni Oldenburg), Steven van de Par (Uni Oldenburg), Trevor Agus (Queens University, Belfast) 

Key Publications: 

K. Siedenburg, S. Röttges, K. C. Wagener, V. Hohmann (in press). Can you hear out the melody? Testing musical scene perception of young hearing-impaired and older normal-hearing listeners. Trends in Hearing, 24, 1-15, doi: 10.1177/2331216520945826


This project has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 747124. The project was entitled TIMPANI - Test, Predict, and Improve Musical Scene Perception of Hearing-Impaired Listeners. 

Sound onsets: extraction, perception, and modeling

Onset transients have classically been considered as an important acoustical feature for the identification of musical instruments. Here we use a novel sound transient extraction algorithm to more detailedly isolate and study the role of transients and onsets for instrument identification. The subsequent modeling results indicate that onsets possess a wealth of acoustic information that can be exploited by the human auditory system. [Sound examples]


Simon Doclo (Uni Oldenburg), Marc René Schädler & David Hülsmeier (Uni Oldenburg)

Key Publications: 

Siedenburg, K., Schädler, M. R., Hülsmeier, D. (in press). Modeling the onset advantage in musical instrument identification. The Journal of the Acoustical Society of America - Express Letters

Siedenburg, K. (2019). Specifying the perceptual relevance of onset transients for musical instrument identification. The Journal of the Acoustical Society of America, 145(2):1078–1087.

Siedenburg, K. and Doclo, S. (2017). Iterative structured shrinkage algorithms for stationary/transient audio separation. In Proc. of the 20th Int. Conf. on Digital Audio Effects (DAFx- 20), Edinburgh, Sep 5–8. [Best Paper Award]

Ambiguity in auditory scene analysis revealed by a timbral Shepard illusion

The famous Shepard illusion yields the impression of an infinitely ascending or descending sequence of pitches.  It can be shown that an analogue phenomenon also works for brightness perception, using stimuli with modulating spectral envelopes. This allows us to raise new questions regarding the mechanisms underlying spectral change perception: under which circumstances are shifts in spectral fine structure (related to pitch) and shifts in spectral envelope (related to timbre) ambiguous? When do they interfere which each other? And what does this tell us about the relation of pitch and timbre perception?  [Sound examples]


Daniel Pressnitzer (Ecole Normale Supérieure, Paris) & Jackson Graves (Ecole Normale Supérieure, Paris) 

Key Publications: 

Siedenburg, K. (2018). Timbral Shepard-illusion reveals perceptual ambiguity and con- text sensitivity of brightness perception. The Journal of the Acoustical Society of America, 143(2):EL93.

Musical timbre perception

What is musical timbre and what does it do in music? What are the acoustic and cognitive factors that affect timbre dissimilarity and brightness perception? Gaining a better understanding of these questions may not only inform the psychological basis of this important auditory parameter, but also improve our general understanding of music perception. 


Stephen McAdams (McGill University), Charalampos Saitis (Queen Mary University of London)

Key Publications:

Siedenburg, K., Saitis, C., McAdams, S., Popper, A. N., and Fay, R. R. (2019). Timbre: Acoustics, Perception, and Cognition. Springer Handbook of Auditory Research. Springer Nature, Heidelberg, Germany.

Webma/myxster ( (Changed: 2020-09-09)