Over the last 60 years global production and consumption of plastics have increased rapidly and led to a steep rise of plastic litter and its accumulation in the marine environment. Physically, chemically, and biologically driven degradation and fragmentation processes result in a constant decrease of the particle size of plastics whereas the number fragments increases continuously. Together with micro-sized primary plastic litter from consumer products these micro-fragments (secondary plastic) below 5 mm are so called “microplastics”. Its ubiquitous presence, persistence, accumulation, interaction potential with environmental pollutants, and size dependent increasing bioavailability in the marine environment have amplified awareness of the potential risks. However, the impact of plastic particles on aquatic ecosystems is far from being understood. In our work group pyrolysis-gas chromatography-mass spectrometry has been established as a novel and reliable method for highly sensitive qualitative and quantitative analysis of common user plastics representing more than 80 % of the actual plastic demand. The technique has already been applied successfully to marine environmental samples like fishes, sediments, and surface water. In addition to the quantification of microplastics the leaching behavior of different additives from plastics into the aquatic system as well as interactions with surfaces and organisms are under scrutiny.
More information...