Navigation

Projects

Agile Frameworks

Agile frameworks are a well-established methodology for software development and other activities. But the Agile Manifesto and frameworks like Scrum leave many tasks and options open for interpretation and implementation. For example, Scrum starts with a filled product backlog, but does not include a process for requirements engineering. The Agile Frameworks project deals with questions and open steps like this.

 
Logo Innovation plus

In der Programmier- und Softwaretechnikausbildung ist neben der Vermittlung theoretischer Grundlagen ein wichtiger Aspekt die praktische Anwendung und Umsetzung der gelernten Konzepte durch die Studierenden. Dabei geht es um Programmierung und Modellierung von einfachen bis zu komplexen Aufgaben als Aspekte der Softwareentwicklung. Primärziel des Projektes ist es, den Studierenden eine Plattform zum Selbststudium bereitzustellen, auf der sie zeitnah Rückmeldungen zu Fehlern und Problemen ihrer Programmier- und Modellierungslösungen erhalten, die aber gleichzeitig durch Automatisierung für bis zu 500 Studierende einer Veranstaltung skaliert. Die Plattform soll sowohl für Einzelarbeit als auch für Team-basierte Entwicklungsmethoden wie Pair-Programming oder kollaborative Modellierung ausgelegt sein.

 
Multi-viewpoint IoT development

IoT is a multi-aspect domain that encompass heterogeneous technology stack applying hardware, software and network. Moreover, IoT development activities require the participation of various stakeholders that provide expertise in different domains and they have different concerns regarding the system. These concerns may cover different aspects of the IoT system, such as system requirements, interoperability between hardware and software, network aspects, etc. To effectively conduct development activities, stakeholders need a common infrastructure, where they can address their concerns regarding the system from their own viewpoint. Concerns may cover various aspects like requirements, “thing” components, services, etc. As stakeholders work on different aspects of the IoT system, there is a need to ensure the consistency of the elements within the system. Therefore, viewpoints need to be integrated to allow keeping elements synchronized in different views.

This project addresses challenges of describing IoT aspects in the form of viewpoints and integration of viewpoints.

 
Time is Fake

„Time is fake“ ist ein Kunstwerk des Oldenburger Künstlers und Kunsttechnikers Michael Olsen aus den Jahren 2016 – 2018, das mit softwaretechnischer Unterstützung der Abteilung Softwaretechnik realisiert wurde und dabei als Beispiel für verteilte und plattformübergreifende Entwicklung dient.

 
Logo SuMoCoS

The SuMoCoS project (Sustainability and Mobility in the Context of Smart cities) is a travelling conference with project partners in Germany, Uzbekistan and Mongolia.

The aim of the project is to strengthen the cooperation between all project partners and to further deepen the understanding of the theoretical and practical challenges of Smart City projects in Central Asia. In addition, there will be an exchange of knowledge between the participants with the aim of deepening and promoting cooperation in research and in economic projects.

SuMoCoS Website

 
Logo J@TA

In this cooperation project, TARGIS GmbH and the University of Oldenburg examine approaches to software development and maintenance, including tool support. These approaches are targeted to the concrete requirements of the TARGIS GmbH, and are tested and refined in an application environment.

 
Logo Harmonisation of the Training in Programming

Programming is one of the fundamental skills any aspiring computer scientist must possess. To assist students in their endeavor, the Carl von Ossietzky Universität Oldenburg provides several courses on different levels that cover the relevant topics in the field of programming. Goal of the “Harmonisation of the Training in Programming” (HTP) project is to optimize the existing set of courses, to identify and eliminate overlap, to leverage synergies, to incorporate new findings from didactic research, and to re-organize where necessary.

 
Logo NEMo: Sustainable Fulfillment of Mobility Needs in Rural Areas

With more than 60% of the german population living in rural areas, where public transport coverage is, in general, declining, diverse mobility needs arise. NEMo is an interdisciplinary, holistic approach towards fulfilling those needs by considering social, demographic, accessibility, legal, economic, and ecological conditions and objectives. IT is seen as key enabler to create a mobility platform software system for the provision and consumation of mobility services.

The software engineering group seeks to research, develop, and apply novel means to bridge the semantic gap between business processes and component-based implementations. The group's Sensei approach, originally conceived as service-oriented, model-driven framework for tool integration, provides the basis, and will be extended and generalized to meet the demands of the NEMo project in particular, and software development beyond tool integration, in general.

 
Software Testing in Cloud Computing

TODO

 
Model Consistency ensured by Metamodel Integration (MoConseMI)

In multi-perspective software development, several perspectives exist presenting different views on the developed artefacts. Because some perspectives handle the same data and all the data have relationships between each other, there is a strong need for synchronization of the data between different perspectives. To solve this problem, this project aims at developing and validating a method for integrating the single metamodels of each perspective into one integrated single underlying metamodel (SUMM).

 
Process Modeling

This research area includes the development of process models for software development and software evolution, and the adaption of existing process models for specific needs of companies.

 
Logo Exploit Dynamics

The research of ExploIT Dynamics focuses on utilizing and controlling of dynamic systems in which systems should be improved in each step. Thereby, software-intensive systems which have a high rate of changes should be considered. To achieve an improved system, a dynamic system must be observed, analyzed, decided, and actuated.

 
Modeling Deltas

Since large scaled software models typically exist in many revisions, extraction and representation of differences between versions is a crucial issue of model versioning systems. While handling model differences is playing an essential role in evolution of models, there is a need for appropriate techniques to maintain model changes and analyse model histories. This PhD thesis intents to reveal appropriate approaches to versioning software models which is substantial challenge of current MVCS.

 
Graph Technologies
Graphs and algorithms using graphs as data structure allow the flexible creation, analysis, and storage of information. Main advantage is the high performance of searching within typed graphs which allows the usage of graphs conform to a graph schema in software engineering for lots of purposes. This research area targets approaches, techniques, and tools to create, improve, analyze, and store graphs, graph schemas, and graph algorithms.
 
Requirements and Specification
Requirements are important while the complete lifecycle of a software and of a project. In the beginning, requirements help to concretise the goals of a software, which have to be fulfilled by design and implementation, and validated by test cases. This research area targets approaches, techniques, and tools to create, improve, analyze, check, and (re)use requirements and other specifications.
 
Metamodeling and Model Based Engineering
Modeling and Metamodeling allow the graph-based creation, analysis, and storage of information. Model Based Engineering summerizes these and further techniques which use models as first-order objects. This research area targets approaches, techniques, and tools to create, improve, analyze, and store models conform to metamodels among the whole software life cycle.
 
Software Quality and Testing
The Quality is an important aspect of software and has high impact on the evolution of software and the possibilities of their modernization. Testing is an important technique to improve the quality of software. This research area targets approaches, techniques, and tools to detect, measure, and improve the quality of software among the whole software life cycle.
 
Logo Software Evolution
Software evolution research is a major focus of the software engineering group, and has been exercised through participation in software migration and software quality projects like SOAMIG and Q-MIG. Tools and techniques of software evolution have also been applied towards achieving energy efficiency in software. Modernizing legacy systems is, due to their size and complexity, only feasible with a high degree of automation. Thus, a major challenge of the field is the provision of integrated tool support. This is addressed by research on software evolution services, and the toolchain-building framework SENSEI.
 
Logo Software Evolution Services – The SENSEI Approach
Software evolution research is a major focus of the software engineering group, and has been exercised through participation in software migration and software quality projects like SOAMIG and Q-MIG. Tools and techniques of software evolution have also been applied towards achieving energy efficiency in software. Modernizing legacy systems is, due to their size and complexity, only feasible with a high degree of automation. Thus, a major challenge of the field is the provision of integrated tool support. This is addressed by research on software evolution services, and the toolchain-building framework SENSEI.
 
Webmasdccetepgr (meier@cnmsqse.uh1mpni-oldenburg.de) (Changed: 2020-07-03)